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Abstract Cellular characteristics and their adjustment to a state of disease have become more evident due to recent advances
in imaging, fluorescent reporter mice, and whole genome RNA sequencing. The uncovered cellular heterogeneity
and/or plasticity potentially complicates experimental studies and clinical applications, as markers derived from whole
tissue ‘bulk’ sequencing is unable to yield a subtype transcriptome and specific markers. Here, we propose definitions
on heterogeneity and plasticity, discuss current knowledge thereof in the vasculature and how this may be improved
by single-cell sequencing (SCS). SCS is emerging as an emerging technique, enabling researchers to investigate different
cell populations in more depth than ever before. Cell selection methods, e.g. flow assisted cell sorting, and the quan-
tity of cells can influence the choice of SCS method. Smart-Seq2 offers sequencing of the complete mRNA molecule
on a low quantity of cells, while Drop-seq is possible on large numbers of cells on a more superficial level. SCS has
given more insight in heterogeneity in healthy vasculature, where it revealed that zonation is crucial in gene expression
profiles among the anatomical axis. In diseased vasculature, this heterogeneity seems even more prominent with dis-
covery of new immune subsets in atherosclerosis as proof. Vascular smooth muscle cells and mesenchymal cells also
share these plastic characteristics with the ability to up-regulate markers linked to stem cells, such as Sca-1 or CD34.
Current SCS studies show some limitations to the number of replicates, quantity of cells used, or the loss of spatial in-
formation. Bioinformatical tools could give some more insight in current datasets, making use of pseudo-time analysis
or RNA velocity to investigate cell differentiation or polarization. In this review, we discuss the use of SCS in unravel-
ling heterogeneity in the vasculature, its current limitations and promising future applications.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Keywords Heterogeneity • Single-cell sequencing • Vasculature • Atherosclerosis

1. Introduction

Atherosclerosis is a long process of lipid and inflammatory cell accumula-
tion in the vessel wall, leading to plaque formation and ultimately plaque
rupture. Clinical manifestations of cardiovascular diseases are still the lead-
ing cause of death worldwide, necessitating better, targeted treatment.1

Current therapies to reduce the clinical manifestations, myocardial infarc-
tion and stroke, have been aimed at one or multiple risk factors such as
dyslipidaemia, hypertension, or inflammation.2–4 However, as many cell
types are involved and/or dysfunctional, a fully effective therapy has not

been developed. Pinpointing progression of a disease to a certain cell type
is challenging because of strong heterogeneity and/or plasticity of cells not
only inside the plaque but also the surrounding tissue. Hence, we see the
need to define and address heterogeneity in the healthy and atheroscle-
rotic vasculature, and highlight a new technology to capture this heteroge-
neity at an unprecedented level: single-cell sequencing (SCS).

Before discussing cellular heterogeneity and plasticity in detail, one
has to consider the classical definition of a cell type. The distinction be-
tween classical vascular cell types, such as endothelial cells (ECs), vascu-
lar smooth muscle cells (vSMCs), macrophages, and fibroblasts, is based
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on embryonic germ line origin, anatomical or organ location, micro-
scopic morphology, and phenotype/function. In the distant past, this was
largely based on morphology, while it is currently also based on popula-
tion averages of the transcriptome, the expression of classical cell type
markers, i.e. cluster of differentiation (CD) molecules, and lineage
reporters models using these classical markers. In this framework, one
can distinguish differences within a cell type, and changes between cell
types, i.e. heterogeneity and plasticity. These terms are used interchange-
ably, causing considerable confusion. Much knowledge can be gained
from the stem cell field, where cell plasticity and heterogeneity are often
discussed subjects. The presence of absence of marker genes linked to
stem cells, for instance stem cell antigen-1 (Sca-1) or CD34, does not
limit the cell in question as belonging to the stem cell population.5,6 It
rather shows that a range of genes are linked to stem cells and the ex-
pression of these genes is possibly different between cells in this popula-
tion, creating a very heterogeneous cell population. Therefore, in this
review, we will describe heterogeneity as moderate changes in transcrip-
tome and function, enabling adaptation to the micro-environment, organ
or anatomical location. Importantly, this adaptation does not lead in loss
or acquisition of classical cell identity markers and yields cellular sub-
types. Often adaptation of a cell to its environment is also termed pheno-
typic plasticity, but if cell identity is not lost, we regard this as
heterogeneity. Cellular plasticity, on the other hand, is used here to refer
to complete changes in cell identity, upon changes in micro-
environment. This process is accompanied by loss or acquisition of clas-
sical cell identity markers, and includes so called trans-differentiation and
reversal of this. Taken together, plasticity and heterogeneity may be
regarded as cell types versus subtypes. A schematic overview of vascular
cell types and their heterogeneous phenotypes is depicted in Figure 1.
Certainly, this definition is not always unambiguous, and we will discuss
the potential benefit of SCS to aid in this distinction.

2. Heterogeneity and plasticity in
the vasculature: current evidence

The process of atherosclerosis starts with dysfunction of the ECs facing
the vascular lumen. This leads to the extravasation of low-density lipopro-
tein (LDL) into the subendothelial space. Here LDL accumulates, is oxi-
dized and will further trigger inflammation.7,8 Monocytes are attracted by
inflammatory cytokines originating from the forming fatty streak and try
to phagocytose the growing amount of LDL, leading to the formation of
foamy macrophages. After extensive LDL uptake, these macrophages go
into apoptosis and are cleared by other macrophages through efferocyto-
sis.9 However, when plaque development progresses, the amount of apo-
ptotic cells increases and clearance by other macrophages becomes
ineffective. Post-apoptotic necrosis occurs, leading to the formation of a
necrotic core in the plaque consisting of dead cells and cholesterol crys-
tals. Macrophages release tissue factor, matrix proteases, and pro-
angiogenic factors, which influence plaque stability and ultimately plaque
rupture.10,11 Alongside the growing amount of macrophages and thus
growing necrotic core, the amount of alpha smooth muscle actin
(aSMA)þ vSMCs lining the atherosclerotic plaque will diminish. The role
of vSMCs in atherosclerosis is already marked at the very beginning of the
process, when intimal thickening is observed due to haemodynamic shear
stress. Matrix proteoglycans, collagen and elastin fibres are secreted and a
stable environment is created.7 While the plaque grows, vSMCs migrate
from the medial layer towards the lumen forming the fibrous cap. This fi-
brous cap becomes thinner over the years due to smooth muscle cell

(SMC) apoptosis and matrix degradation by macrophages. This can ulti-
mately lead to cap rupture, exposing the plaques’ thrombogenic content,
triggering thrombus formation and lumen occlusion, and consequently
causing myocardial infarction or stroke.

In recent years evidence accumulates that most of the major cell types
in atherosclerotic plaques, e.g. ECs, macrophages, T-cells, and vSMCs are
heterogeneous and/or plastic to some extent. William Aird highlighted
different concepts of endothelial heterogeneity in atherosclerosis with
regards to anatomical location, activation, and dysfunction.12 He stipu-
lated that EC heterogeneity and plasticity are dependent on multiple fac-
tors. The same is true for vSMCs, who undergo phenotypic switching
upon lipid and cytokine exposure in the plaque. The vSMCs switch from a
quiescent state to a proliferative, more migrative state, is also known as
contractile-to-synthetic switch, which we classify as heterogeneity of sub-
types.13 Lipid loading does not solely trigger contractile-to-synthetic
switch, but also initiates trans-differentiation to macrophage-like smooth
muscle cells and may be classified as plasticity of vSMCs. Multiple groups
have now shown that expression of different macrophage markers, like
galectin-3 (LGALS3) and CD68, increased during lipid-loading of vSMCs,
while the vSMC markers alpha-actin-2 (ACTA2) and myosin heavy chain
11 (MYH11) decreased in expression.14–18

Immune cell heterogeneity is also widely discussed in atherosclerosis
development, emphasizing different polarization states of macrophages.
Polarization of macrophages into the pro-inflammatory M1 macrophage,
via lipopolysaccharide or tumor necrosis factor-alpha, vs. the anti-
inflammatory M2 macrophage, via interleukin (IL)-4 or IL-10, already
shows a distinct phenotypic difference.19 However, we now know that the
range of phenotypes is much more subtle and diverse than M1 vs. M2 and
that stimuli and microenvironment are decisive for every subset of macro-
phages.20–22 Immune cell heterogeneity is not only restricted to macro-
phages but also occurs in other immune subsets. Activated macrophages
can recruit T cells, and therefore further enhance inflammation. These T
cells are not only activated by macrophages and their secreted cytokines
but also by the vast amount of oxLDL in the plaque.23 This again yields a
broad spectrum of differentially activated T cells. The diversity of macro-
phages and T cells opens up the possibility for drugs to tackle small subsets
of immune cells with distinct phenotypes regarding plaque progression.24

Although ECs, macrophages, T cells, and vSMCs are the most discussed
cells relating to disease progression, recent research in the field has shown
that mesenchymal cells possibly also play a role. They may originate from a
mesenchymal stem cell-like cell type, which can give rise to various cell
types like (myo)fibroblasts or vSMCs.25 These cells have been reported to
stem from the adventitial layer surrounding the vasculature and are posi-
tive for stem cell markers, like stem cell antigen 1 (Sca1) and GLI-Kruppel
family member 1 (Gli1).26–28 Furthermore, evidence suggests that these
cells originate from a process called endothelial-to-mesenchymal transition
(EndMT), which can be triggered via various pathways.29,30 ECs exposed
to different plaque traits, like hypoxia, oxidative stress, or transforming
growth factor b (TGF-b), undergo this transformation where they lose
gene and protein expression of endothelial markers like CD31, endothelial
nitric oxide synthase (eNOS), while simultaneously gaining mesenchymal
markers such as fibroblast activation protein (FAP), alpha-actin 2
(ACTA2), and regulatory transcription factors Snail and Slug, SNAI1&2, re-
spectively.29 In human atherosclerotic plaques, EndMT is usually found in
larger, unstable plaques and thus linking EndMT to plaque instability.

These examples already clearly illustrate the intricate complexity of
atherosclerosis development and all cell types involved, with heteroge-
neity as a key concept. Heterogeneity of vSMCS, ECs, mesenchymal
cells, and immune cells makes it difficult to study them in the context of

1706 K. van Kuijk et al.



..

..

..

..

..

..

..

..

..

..

.
healthy and diseased vasculature. However, an emerging technique might
be able to give us more insight than ever before. The recent advances in
the field of SCS are providing an unprecedented opportunity to unravel
complex biological systems on multiple biological levels with single-cell
resolution. The averaged data scientists have generated using bulk popu-
lations of cells or whole tissues can obscure relevant biological insight.
Moreover, SCS enables researchers to zoom in on cell populations and

investigate them in more depth. This potentially yields new cell pheno-
types, uncovering subpopulations with different functions, and providing
definitive answers to issues of cellular-trans-differentiation. In this review,
we will discuss the use of SCS to unravel heterogeneity in healthy and
disease vasculature. We will first summarize the principles and different
methods for SCS, followed by discussion of published data on heteroge-
neity in healthy and diseased vasculature using SCS.

Figure 1 The different layers of the vasculature (adventitia, media, and intima) and the development of atherosclerosis with all involved cell types. The
graphical overview shows heterogeneity (indicated here by thick, black/white filled arrows and cell types in distinct colors) and plasticity (indicated here by
single line, black arrows, and cell types in shades of the same color) of all these subsets and their capability to adjust their phenotype to the lipid-rich environ-
ment. Endothelial cell (EC) types are zonated46,55 and EC I and II can undergo endothelial-to-mesenchymal transition (EndMT) in hyperlipidemia. Smooth
muscle cells (SMCs) can translocate to the cap and become more synthetic. Moreover, they can transdifferentiate into a macrophage-like cell upon lipid
engulfing. Macrophages (Mu) are depicted with their different subsets according to certain gene expression profiles (M1, M2, MTrem61). They are located in
the lipid-rich intima, just above the interna elastica lamina (IEL). In the adventitia, located underneath the externa elastica lamina (EEL), several mesenchymal
subsets appear, indicated with I-II-III-IV.56 The adventitia is mostly inhabited by these subsets of mesenchymal cells (MCs), immune cells, and distinct EC sub-
sets. These different subsets all have different functional profiles. Macrophages and MC II were shown to cross-talk as indicated by dotted arrow. The ? indi-
cates new findings or unclarities that need further study.

Single cell sequencing in vessels 1707
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3. SCS technologies today

A decade ago, Tang et al.31 reported that it was possible to gain substan-
tial transcriptomic information out of a single cell using next generation
sequencing. This discovery soon sparked the development of technolo-
gies that now allow researchers to study large numbers of cell simulta-
neously. Although an overview of all types of SCS technologies goes
beyond the scope of this review, there are certain landmarks that must
be mentioned, as they also illustrate that the choice of single-cell tech-
nology is often depending on the experimental question.

In many experimental setups, a primary selection of the cells of inter-
est from an organ or organism is necessary, and one of the most com-
mon tools to select cells of interest is Fluorescence Assisted Cell Sorting
(FACS). This technology allows for single cells to be identified in a cell
suspension and subsequent sorting of the cells in wells of a 96 or 384
well plate that contains lysis buffer and RNAse inhibitors. After this pri-
mary selection of cells, the chemistry by which a sequencing library is
generated from the mRNA of a single cell can be chosen freely, with the
Smart-Seq2 chemistry commonly used as being the most sensitive and
accurate.32 Smart-seq2 allows for the recovery of sequencing informa-
tion of the entire mRNA molecule, only limited by the efficiency of the
reverse transcriptase used to create cDNA.33,34 However, Smart-Seq2
is sensitive to PCR-induced biased amplification noise. A solution to this
bias is the inclusion of Unique Molecular Identifiers (UMI’s), a barcode
that is unique to every cDNA molecule in the sequencing library. This
allows for accurate counting of mRNA molecules expressed per cell,
provided that each mRNA molecule is captured for reverse transcrip-
tion only once.35

The selection of cells using FACS also provides drawbacks. The pro-
cedure of cell sorting by itself is already introducing bias, since large and/
or delicate cells will not survive the fluidic shear stress induced by the
FACS. But most importantly, selection of cells using FACS is limited in its
throughput, as most FACS machines are only accurate enough to sort
reliably in a 384 well format, thus limiting the liquid handling of the library
preparation to a format in which only 384 cells can be analysed. This
makes larger scale single-cell analysis using microwell plate based chemis-
try too inefficient to consider for experimental questions where a large
heterogeneity is expected and thousands of cells need to be analysed.
For these experiments, technologies based on droplet encapsulation,36

capture of cells in microwells,37 and in situ barcoding38,39 are the most
prominent ones used today, with the drop-seq implementation com-
mercialized by 10x Genomics being the most popular technology due to
its ease of use and simple implementation in research environments.
This technology allows the analysis of thousands of cells per sample at a
decent gene recovery per cell. Finally, in situ barcoding allows for the
analysis of millions of cells simultaneously, however, at a comparably low
gene recovery per cell.40 For very small sample sizes, where every cell
needs to be analysed in the highest detail, the depth of Smart-Seq2 is
preferred, while for samples with enormous complexity (like whole
organisms), the width of in situ barcoding or Drop-Seq is needed. This
allows researchers, depending on the presence of cell populations in cer-
tain organs and pre-enriching techniques like FACS, to decide on which
technique is most capable of answering a specific research question.
A complete overview of the workflow, from tissue towards bioinformat-
ical analysis, is depicted in Figure 2.

Today, the generation of single-cell data is widely accessible to
researchers thanks to the plethora of available technologies and their
various commercial implementations. However, the proper analysis of
single-cell data is often not trivial due to the high complexity of the data

that it provides. In a dataset, every cell is in essence a separate sample
with quantitative information for every single gene, making the data sev-
eral orders of magnitude richer compared to bulk transcriptomics. Most
commonly, the data are visualized using a t-stochastic neighbour embed-
ding algorithm (t-SNE).41 This algorithm takes the high-dimensional data
points (i.e. the cells with gene expression information) and reduces this
complexity to two dimensions (an X–Y graph). Data points (cells) with
high similarity are placed in neighbouring positions, with different neigh-
bourhoods (often called ‘clouds’ or ‘data clusters’) represented.
However, one needs to be aware that t-SNE is a visualization foremost,
and that it can easily be tuned to change the look of the data by changing
the algorithm’s parameters. Also, it is important to remember that the
distance between data clusters is not always a measure for difference be-
tween cell types, a common misconception.42 For this reason, many new
algorithms are being developed. Recently, the Uniform Manifold
Approximation and Projection (UMAP) algorithm was created, which is
similar in its visualization style to t-SNE, but represents the relationship
between cell types with higher fidelity.43 Another hurdle in single-cell
data analysis is that the data is often a snapshot in time, while cells in a
heterogeneous tissue are seldomly static. For example, in a diseased
state like atherosclerosis, the vSMC are very plastic and to explore the
dynamics of the cells, clustering of the cells while preserving the relation-
ship between cell types is paramount. The RNA velocity algorithm
allows prediction of future cell states by taking into account the ratio of
unspliced vs. spliced RNA, which is a measurement of the ‘age’ of the
RNA and the activity of the gene that produced it.44 Finally, the vascula-
ture is difficult to classify into cell types since the ECs are zonated (i.e.
their transcriptome gradually changes according to an anatomical
axis).45,46 This gradual change in phenotype is well visualized with the
Sorting Points Into Neighbourhoods (SPIN) algorithm, which sorts all
cells on an X-axis according to similarity, while the Y-axis represents the
expression level of a chosen zonated gene.47 A clustering variant of the
SPIN algorithm, BackSPIN, can then be used to split the sorted cells into
clusters, if desired.48 For a recent overview and discussion on clustering
algorithms for single-cell data, we would like to refer the reader to an ex-
cellent recent review by Kiselev et al.49

4. Healthy vasculature

All organs have a specific vasculature dedicated to their relative function
and this vascular organotypicity has long been recognized. Indeed, the
vasculature can present itself as a strong barrier, a highly permeable fen-
estrated structure, or, as exemplified by the lungs, an interface for facili-
tated gas exchange. For an excellent overview of organotypic
vasculature, we refer the reader to a recent review of Augustin and
Koh.50 However, the heterogeneity of a vascular network within an or-
gan has been studied poorly, until the use of SCS to molecularly define
cell types in a vascular network. Recent SCS work has shown that brain
and lung ECs are zonated, a term indicating that the transcriptome of
cells gradually changes according to an anatomical axis. This thus relates
to heterogeneity of cells, as phenotype adaptation does not result in full
change or loss of EC identity.45,46 This term was first coined by
Jungermann et al.,51 when describing metabolic zonation of the liver hep-
atocytes, which later has been extended towards molecular zonation by
Halpern et al.52 using SCS. The zonation of brain ECs as shown by grad-
ual changes in their transcriptome, related to their position in the vascu-
lature, is schematically shown in Figure 3. In contrast to the ECs, mural
cells (vSMC and pericytes) do not present a clear zonated pattern in the

1708 K. van Kuijk et al.
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..brain. While pericytes appear to be largely uniform in their transcrip-
tome and mostly lack expression of genes required for contractility,
vSMC differ between arteries and veins. Indeed, vSMCs on arteries stand
out by the strong presence of gene programmes required for contractil-
ity, while vSMCs on veins are more similar to pericytes. Similar zonated

patterns were also found in lung vasculature, although strong organoty-
picity of ECs and pericytes was found.46 Furthermore, Vanlandewijck
et al. also described the presence of ‘fibroblast-like’ cells that sit outside
of the smooth muscle cell layer, but under the astrocyte end-feet, of the
larger arteries and veins. These cells have previously also been referred

Figure 2 Complete overview from tissue collection, processing, selection, sequencing method, and analysis. The advantages and disadvantages from all
three sequencing methods are shown in a small diagram within Figure 1.

Single cell sequencing in vessels 1709
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..to as vascular leptomeningeal cells.53 Dobnikar et al.54 provided further
support and detail of vSMCs heterogeneity using SCS on healthy mouse
vessels and was able to show that a small portion of vSMCs are positive
for stem cell marker Sca-1. They also showed that this specific subset of
vSMCs is up-regulated during disease. Even more recently, Kalluri et al.55

and Gu et al.56 were able to describe vascular heterogeneity in both the
healthy murine aorta and adventitia using an unbiased methods starting
from all vascular cells. Kalluri isolated total aortic medial and intimal cells
without FACS preselection, compared two different enzymatic digestion
mixes, sequenced over 6000 cells with low and high sequencing depth
(17 000 and 145 000 reads/cell, respectively) to define a complete aortic
atlas.55 Eleven major cell populations were identified with both read
depths and enzyme mixes, including SMCs, fibroblasts, monocytes, and
ECs. They emphasized three phenotypically distinct EC subsets, reveal-
ing different functional aspects.55 The major EC subset was enriched for
canonical EC markers, however, the other two would have been missed
by pre-sorting for canonical markers. Differential genes for the second
largest subset were involved in angiogenesis, lipid handling, and it was
enriched in a tip cell gene signature. The third subset were marked as
lymphatic ECs, which together with the large number of fibroblasts,
raises the question if the dissection of adventitia from aorta was suffi-
cient, as both cells are mainly thought to reside in the adventitia.
However as in total 33% of all cells appear to be fibroblasts this contra-
dicts the possibility of a small contamination. Validation of tissue RNA or

protein localization of these cell types and subsets would add greatly to
the biological insight, which is where most current reports are still lack-
ing. However, this report adds considerable insight into the healthy mu-
rine cell atlas and shows that cell number is more important for
discovery of new subsets than sequencing depth.

The second recent report by Gu et al. made use of SCS to sketch an
atlas of all cell types in the adventitia from�2000 total cells from healthy
and �3000 cells from atherosclerotic mice. Gu et al. was able to obtain
15 different cell clusters, including T-cells, B-cells, natural killer cells,
monocytes, macrophages and two clusters which they classify as non-
immune cells. Despite the relatively small number of non-immune cells
(�800), they showed four different mesenchymal clusters, all linked to
specific markers and functional aspects, specifically one cluster was
linked to immune cells activation.56

Recently, the liver vasculature was investigated with SCS by Halpern
et al.45 using paired-cell sequencing, a method where endothelial/hepato-
cyte cell pairs are deliberately selected. Thus, spatial information can be
obtained from the zonated profile of the hepatocyte52 and endothelial
specific gene signatures can be found by subtracting the hepatocyte tran-
scriptome. Although the work has provided interesting insights in liver
vascular heterogeneity, the authors also recognize that the dependence
on specific paired cells (hepatocytes) is limiting in capturing the complete
complexity of the liver vasculature. Further profiling of single cells of the
entire vasculature of the liver is warranted.

Figure 3 Zonation of endothelial cells in the brain. Gene expression profiles differ along the anatomical axis of the vasculature and thus influence the func-
tional profile of the endothelial cells.

1710 K. van Kuijk et al.
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In order to unify the efforts to create organism-wide single-cell atlases,

international consortia are formed. Most prominently are the Tabula
Muris Consortium and the Human Cell Atlas Consortium, aiming to pro-
file all cell types of the mouse and the human, respectively. In large,
organ-wide single-cell datasets, the vasculature is also represented, but
often the lack of specific focus impedes a molecular characterization of
the vasculature for several reasons. First, the separation of ECs from
pericytes often requires special dissociation protocols, since they are
embedded within the same basement membrane.57 As most organ-wide
single-cell atlas projects are not specifically aiming for the dissociation of
these two cell types, an artificial endothelial/pericyte hybrid is commonly
described as a cell type of its own.37,58 Secondly, the vasculature is often
underrepresented or insufficiently subclustered into separate cells, lead-
ing to annotation of all vascular cells as ‘endothelium’.59,60 For these rea-
sons, specific SCS profiling of vascular beds of healthy, adult organs and
the body’s main large arteries and veins (aorta, carotid artery, vena cava)
is still paramount in establishing a molecular definition of vascular cell
types across organs.

5. Diseased vasculature

While heterogeneity and zonation are already evident from recent SCS
studies using healthy vasculature, heterogeneity is greatly amplified when
looking at different disease models. Two reports emerging at the same
time focused on immune cell heterogeneity in atherosclerosis.61,62

Cochain et al.61 dived into the immune aspect of atherosclerosis, using
mice on a LDL receptor knock-out (LDLR-/-) background for SCS.
CD45 positive cells from healthy and atherosclerotic tissue were used
to investigate immune cell heterogeneity. In total, 13 clusters were found
with distinct gene expression patterns, of which three clusters were only
present in atherosclerotic tissue. These findings clearly show again the
cellular adaptability within disease progression, emphasizing the impor-
tance of cellular heterogeneity and plasticity in the vasculature. SCS en-
abled them to find a new gene, triggering receptor expressed on myeloid
cells 2 (TREM2), to be highly expressed on a subset of atherosclerotic
macrophages, which had not been described before. This subset is in-
volved in lipid metabolism, regulation of cholesterol efflux and oxidative
stress, and was previously linked to osteoclasts and disease-associated
microglia. Winkels et al.62 showed a diversity of 11 different clusters of
leucocytes based on unsupervised clustering and validate these clusters
by using a secondary technique, mass spectrometry cytometry of time of
flight (CyTOF). Even though these papers are leading in the field of im-
mune cell heterogeneity in context of diseased vasculature, there are still
some limitations to these studies. Both papers only make use of CD45
positive cells, eliminating the option to look at their communication with
other cells within the same tissue. Furthermore, the amount of cells used
for analysis could be greatly enhanced.

Aforementioned papers were the first to use SCS as a new technique
to investigate immune cell heterogeneity; however, heterogeneity and
plasticity of other cells in diseased vasculature have already been de-
scribed by others over the last years. Hao et al.63 already proposed
vSMC heterogeneity in vascular disease back in 2003. With regards to ar-
terial calcification, location seems to be key in the genetic and functional
properties of the different SMCs.64 In atherosclerosis, Chappell et al.65

show that a small subset of very plastic vSMCS proliferate extensively,
which results in accumulation of vSMCs that can gain macrophage
markers, like CD107b (MAC3). The given is not only true for atheroscle-
rotic vSMCs, but also for those involved in vascular injury.

In recent years, mesenchymal progenitor cells, a plastic and thus het-
erogeneous cell type by nature, have been getting more and more atten-
tion in vascular disease. These cells are thought to originate from the
adventitia which is a progenitor niche, according to Majesky et al.26 This
is supported by earlier data by Hu et al.27 who showed clusters of cells in
the adventitia of aortic roots, positive for stem cell markers like Sca-1,
CD34, and c-Kit. In addition to the detection of these cells, they also
demonstrate their ability to differentiate into vSMCs upon PDGF-BB
stimulation. Further support for the relevance of arterial progenitor cells,
stems from a report showing that vascular endothelial growth factor
stimulation of CD34þ isolated cells in vitro pushes them to an EC type
with the ability to form small capillaries.66 These progenitor cells are not
only important in maintaining normal vessel composition but also play a
crucial role in vascular disease. The earlier mentioned study by Hu et
al.27 showed that the transformation of Sca-1þ cells to SMCs is also hap-
pening in a murine vein graft in vivo. When combined with the hyperlipi-
daemic, apolipoprotein E knockout (ApoE-/-) atherosclerosis mouse
model, they observed that�20% of SMCs were Sca-1þ and thus of pro-
genitor origin. These findings are supported by multiple groups who also
described the transition of adventitial progenitor cells to SMCs and ECs
in the neointima, depending on the stimulus.67–69 Furthermore, these
mesenchymal cells can generate myofibroblasts and therefore play a role
in organ fibrosis, which is not only restricted to the vasculature of large
arteries but also in kidneys, lungs, or liver.25 The aforementioned SCS
study by Gu et al.56 mapping cells in the adventitia of healthy and hyper-
cholesterolaemic ApoE-/- mice now confirms heterogeneity of adventi-
tial mesenchyme. However, the relative contribution and function of the
observed four mesenchymal clusters was not adapting drastically to the
diseased situation. Possibly, the low number of cells (�800) prevented
full assessment of changes. Interestingly, cross-communication of an in-
flammatory mesenchymal subset was observed with activated macro-
phages in the diseased setting. The unbiased approach use to map all
cells allowed this important new biological insight.56 Likewise, the whole
aortic medial and intimal cell atlas resulting from the study by Kalluri et
al. was derived from an unbiased approach. Here, the observed three EC
subsets were conserved upon a high cholesterol diet, while induction of
genes involved in collagen turnover suggested the presence of EndMt.
Further the relative presence of the main subset was enhanced in dis-
eased, while the opposite was true for the lipid/angiogenic EC subset.
This seems rather contradictory to the current knowledge of angiogenic
induction upon true hypercholesterolaemic disease-settings in double
deficient apoE-/- to LDLr-/- mice.70 However the current study involved
diet fed wildtype C57Bl6 mice representing possibly very early EC dys-
function, not an atherosclerosis model with overt hypercholesterolae-
mia and plaque development. It is, therefore, very interesting to
compare the EC subsets in the—yet unavailable—total cell atlas of ath-
erosclerotic plaques.

All these data together already stress the importance of heterogeneity
and/or plasticity of ECs, vSMCs, mesenchymal cells, and immune cells in
the vasculature and how this can affect vascular disease progression.
Published SCS data on large, diseased arteries is currently limited to mu-
rine studies, only on atherosclerosis, with no data yet available on ECs in
atherosclerotic models or on other large artery pathologies, such as pul-
monary hypertension, and aneurysms. However, further support for
disease-driven amplification of heterogeneity can be gained from a non-
cardiovascular model, i.e. hyperpermeable tumour microvasculature.
Zhao et al.71 used human xenografts implanted in mice and detected tu-
mour heterogeneity in endothelial and mesenchymal cells, linked to
Notch signalling. Also Lambrechts et al.72 made use of SCS in a lung
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cancer model in mice, separating stromal cells into 52 different subsets
with their own gene signature. Bian et al.73 even combined single-cell
transcriptome data with methylome and mutation data of human colo-
rectal cancer samples, broadening the genetic fingerprint all the more so.
Data from tumour microvasculature again confirms the heterogeneity in
the vasculature and how SCS gave more insight in processes involved,
e.g. the methylome.

To summarize, these data show the complexity of murine vasculature
and how SCS enables us look at different cell types and their gene ex-
pression patterns on a deeper level than ever before. This could impact
the identification of cell types and new subtypes, since SCS gives more
depth to expression patterns belonging to different cell types and their
subpopulations. However, few studies go beyond description of the sub-
sets, and it is yet to be resolved if there are actual implications for func-
tional heterogeneity. Further investigation of functional heterogeneity
and cell-cell interactions in human atherosclerotic tissue can elucidate
processes involved in disease and how the compares between physiol-
ogy and pathology.

6. Biological implications

Thus far, the first groups confirmed the basal atherosclerotic plaque im-
mune cell compositions and have described subtype heterogeneity
thereof, and uncovered a potential new macrophage subtype, while SCS
of ECs in healthy brain and lung vasculature revealed EC zonation, and
arterial- and venous-specific vSMC types.45,46,61,62 Broadly, we see bio-
logical implications related to cell type identity and the pathogenesis of
disease.

The introduction of SCS has challenged the classical definition of cell
types, which was determined by morphology, tissue location and a few
cell identity markers. Bulk transcriptomics and fluorescent reporter mice
have already changed this simplified view, and uncovered new subtypes
and trans differentiated cells. This distinction between heterogeneity
and/or plasticity of cells is often ambiguous and open to errors. In the
past, these errors have been made due to lack of high resolution micros-
copy in three dimensions, the lack of specific cell identity markers used
for CRE reporters, and the analysis of population averages, obscuring in-
dividual differences and subpopulations. SCS has the potential to clearly
distinguish between heterogeneity and plasticity. Grouping cells with
similar transcriptomes will identify complete gene signatures of cell iden-
tity, validating classical identity markers and uncovering new ones.
Clustering tools will enable dissecting major cell types with very distinct
cell identity marker signatures, from subtypes whose signatures differ
within the boundaries of a cell type signature. Although SCS may simplify
the distinction, ambiguity may still exist when there is no real end-stage
identity, such as in a dynamic and reversible process like EndMT.
Hopefully, detailed pseudotime bioinformatics analysis of the temporal
changes in the transcriptome in a controlled experimental setting, may
further resolve these issues.

Upon consensus of cell type and subtype identity signatures, and the
functional implications thereof, there may arise opportunities for im-
proved resolution of disease. While general anti-inflammation therapy in
humans has shown proof-of-concept, it only prevented the relative risk
of clinical events by 15%.2 Speculating about the potential future advan-
ces this insight from SCS could bring the field, raises the possibility of
new, subtype selective imaging targets and/or adaptable regulation of cell
and subtypes. Adapting therapy to selectively inhibit immune cell sub-
types with a detrimental function, or to trigger the conversion into a cell

subtype with a more beneficial function could in theory be more effec-
tive to prevent clinical events. In future, the adaptable regulation of cell
types and subtypes, potentially even in a personalized manner, is
expected to have a durable effect on improving life expectancy, quality
of life, and avoiding unnecessary treatments. Nevertheless, development
and delivery of such subtype-specific inhibitors or reprogramming agents
are far more clear and many hurdles need to be taken.

7. Future technical improvements

Although clearly important new insights are gained from latest SCS
reports, several improvements can be made, both on the technological
level, as well as bioinformatics. Here, we will discuss limitations and solu-
tions to incomplete genome coverage, number of replicates and how to
deal with stoichiometry, low throughput, loss of spatial information and
cellular interaction, the need for fresh material, as well as highlight new
technologies and analysis tools.

One major limitation of the current technologies is that not the entire
transcriptome of individual cells can be mapped and thus, every single-
cell transcriptome is but a stochastic sample of the pool of mRNA pre-
sent in that cell In addition, only highly expressed non-coding RNAs can
now be identified. However, the sensitivity of the methods is continu-
ously improving allowing the detection of more and more genes in every
individual cell, as well as non-coding RNAs. Recently, an optimized ver-
sion of SCRB-Seq was developed called mcSCRB-Seq74 (molecular
crowding single-cell RNA Barcoding and sequencing) using the molecu-
lar crowding agent PEG (polyethylenglycol), which increases the effi-
ciency of the RT (reverse transcription) reaction in a concentration
dependent manner. Thus, this protocol is at the moment the most sensi-
tive plate-based single-cell RNA-Seq protocol (benchmarked using
ERCCs). In addition, 10X genomics recently released a new version of
the 30 single-RNA-Seq assay with a higher capture capacity of polyaden-
lylated RNA, thus leading to more detected genes per cell.

The matter of biological replicates is also important to consider. Many
published studies use a single sample, or a single pool of samples for the
assessment of heterogeneity in an organ or disease condition. Although
a single sample is already very informative in exploring cellular heteroge-
neity, it is often dangerous to extrapolate the result into a definite ‘atlas’.
Taking into account current pricing of SCS, the trade-off between using
more replicates, comparing different models or including more time-
points is often hard to decide upon and is very specific to the experimen-
tal question.75,76

It is obvious that more replicates would increase the robustness of
the data, yet one has to take batch effects into account that occur with
every RNA-Seq reaction. To minimize batch effects, different experi-
mental groups should ideally not be on separate days. With the use of
barcoded oligos, different samples can be pooled in one reaction for
droplet based assays, like 10X genomics, thus reducing batch effects.
Sometimes, this may not be applicable due to low number of cells, but
bioinformatic tools exist that allow the correction for batch effects.77

High-throughput analysis of multiple ‘omics’ on single-cell level will
likely provide new biological insights into tissue heterogeneity and dis-
ease development. Single-cell RNA sequencing has evolved to a high-
throughput technology with the development of technological advances
like combinatorial indexing or droplet based technologies, which re-
duced costs and increased throughput to over 100 000 cells that can be
analysed in one experiment.38,39,78,79 Indeed, early studies may have
been hindered by low cell numbers studied, obscuring the identification
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of rare (sub)populations. Higher throughput of cells would allow inclu-
sion of all cells in an organ, and with appropriate bioinformatics their in-
teraction could then also be mapped. This could for instance be
achieved by studying receptor-ligand interaction pairs as described by
Skelly et al.80 in the mouse heart. In addition to cell–cell interactions, also
spatial information can now be retrieved. Most single-cell analysis experi-
ments start with the dissociation of single cells from tissues, so that spa-
tial information is lost. One solution to regain spatial information has
been demonstrated by Halpern et al.52 who used a panel of zonated
landmark genes with smFISH to remap the single-cell transcriptomes of
mouse liver cells to the zonation profile. Other approaches are osmFISH
or huluFISH.81,82 Techniques for direct in situ transcriptomics have also
been described (e.g. MERFISH, STARmap).83,84

The majority of studies report on murine material as proof of princi-
ple, due to need for fresh, homogeneous samples, necessitating fewer
biological replicates. To speed up human discovery, the use of frozen,
bio-archived material would make large sets of previously collected, fro-
zen patient material available. The current use of fresh material for
droplet-based technology, hinders the step to large scale collection of
human samples, usually presenting one by one. In addition to larger het-
erogeneity compared with animal models, this adds potential batch
effects and might obscure disease-related transcriptional changes.
Although some reports claim that transcriptomics are comparable be-
tween fresh and frozen samples,85 recently also isolation protocols and
studies of single nuclei have been evolved that allow the analysis of bio-
archived tissues.86 These isolation protocols also reduce the isolation
bias that comes with tissue dissociation protocols resulting in better iso-
lation of some cell types compared to others. Furthermore, nuclear iso-
lation might minimize transcriptional changes during the isolation
process since the full isolation can be carried out at 4�C, as no enzymatic
digestion is needed.87

The aforementioned technological advancements can overcome
some of the current limitations. We will briefly highlight other develop-
ments allowing, i.e. simultaneous quantifications of protein levels, multi-
plexing of samples, and sequencing of the active transcriptome. The
addition of oligonucleotide based barcoded antibodies to the single-cell
suspension has added protein expression abundance on the cell surfaces
to the sequencing data called Cite-Seq.88 This technique was also devel-
oped to combine more sample in one reaction, e.g. on the 10X
Chromium to reduce batch effects and study more cells called cell-
hashing. Another approach to multiplex several samples from different
individuals in one single-cell experiment by using genetic variation of indi-
viduals has been recently described.89 Further developments to study in-
tracellular proteins or phosphoproteins are being developed.90 Another
exciting technology is the mapping of open chromatin regions in single
cells.91 Using combinatorial indexing techniques or commercially kits,
single ATAC sequencing has now become available for high throughput
analysis.92 The additional DNA accessibility information in detected cell
populations combined with mRNA-expression data from regular
scRNA-seq will certainly help to identify novel cell populations and also
validate the mRNA expression data on whether a detected population is
truly distinct from the other cell-populations. An additional level has
been recently added to this using FANS (fluorescent associated nuclei
sorting) and single nuclear (sn)ATAC.92,93 snATAC allows the discovery
of unique enhancer regions and regulatory logic in distinct cell types but,
due to the nature of the data, does not allow the same accuracy of unsu-
pervised clustering as with scRNA-Seq data. Analysis of both datasets
scRNA-seq and scATAC-seq complements each other and allows
among other things the identification of rare cell clusters. 94

In addition, bioinformatics tools are also evolving to accommodate
current limitations. Much can be gained from in-depth bioinformatics
such as pseudo-time trajectory analysis to study cellular trans-
differentiation in detail. New exciting computational tools that allow
pseudo-time analysis in single-cell data have been developed and re-
fined.95,96 As further techniques are being developed, bioinformatical in-
tegration of multi-omics datasets of single-cell analysis represents a
major challenge.97

8. Conclusions

This review emphasizes the importance of cell heterogeneity and plastic-
ity in healthy vasculature and how this relates to atherosclerosis devel-
opment and progression. We discussed SCS as a very useful technique in
further investigating cell heterogeneity and plasticity. SCS has given the
opportunity to link gene expression patterns to classical cell types and
their subpopulations, but also how these patterns vary upon different en-
vironmental stimuli, challenging the plasticity of these cells. The depth in
which SCS can offer genetic insight is dependent on the method chosen
by researchers. Where Smart-Seq2 offers researchers the possibility to
investigate expression of full-length RNA in cells, it limits the number
processed cells per batch to 384. On the other hand, Drop-seq and in
situ barcoding enable researchers to use larger quantities of cells or even
complete embryos, but with lower gene recovery per cell. Development
of new bioinformatic analysis tools is emerging and is allowing research-
ers analyse more information, such as RNA splicing or zonation. The lat-
ter seems of great importance regarding cell heterogeneity, which is
proven in multiple organs in healthy state such as liver, lung, and the brain
as shown for the latter by Vanlandewijck et al.46 Heterogeneity and plas-
ticity of ECs, vSMCs, immune cells, and mesenchymal cells has shown to
be present in healthy vasculature but is even more amplified in diseased
vasculature. Current studies highlight this by using SCS in studying
changes in cell populations and gene expression patterns in atheroscle-
rotic mouse models. However, these studies are still only limited to mu-
rine models, since only fresh material can be used. Nowadays more
advanced methods, such as Single Nucleus RNAseq, are broadening the
field with the use of frozen tissue and thus also adding possibility of using
human biopsies from tissue banks, expanding single-cell knowledge
across species. This insight could help to identify novel therapeutic tar-
gets and pave the way towards urgently needed novel targeted thera-
peutics for the vast and growing patient population suffering from
cardiovascular disease. However, latest and future advancements in
technology and bio-informatics should be implemented to drive the in-
sight from SCS data from mere description of existing and new subpopu-
lations towards a full, in-depth insight into functional and spatial
heterogeneity in vivo and cell–cell communication in healthy and diseased
vasculature.
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