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MicroRNAs (miRNAs or miRs) are small, noncoding RNAs
that are implicated in the regulation of most biological pro-
cesses. Global miRNA biogenesis is altered in many cancers, and
RNA-binding proteins play a role in miRNA biogenesis, pre-
senting a promising avenue for targeting miRNA dysregulation
in diseases. miR-34a exhibits tumor-suppressive activities by
targeting cell cycle regulators CDK4/6 and anti-apoptotic factor
BCL-2, among other regulatory pathways such as Wnt, TGF-�,
and Notch signaling. Many cancers exhibit down-regulation or
loss of miR-34a, and synthetic miR-34a supplementation has
been shown to inhibit tumor growth in vivo. However, the post-
transcriptional mechanisms that cause miR-34a loss in cancer
are not entirely understood. Here, using a proteomics-mediated
approach in non-small-cell lung cancer (NSCLC) cells, we iden-
tified squamous cell carcinoma antigen recognized by T-cells 3
(SART3) as a putative pre-miR-34a– binding protein. SART3 is
a spliceosome recycling factor and nuclear RNA-binding pro-
tein with no previously reported role in miRNA regulation. We
found that SART3 binds pre-miR-34a with higher specificity
than pre-let-7d (used as a negative control) and elucidated a new
functional role for SART3 in NSCLC cells. SART3 overexpres-
sion increased miR-34a levels, down-regulated the miR-34a tar-
get genes CDK4/6, and caused a cell cycle arrest in the G1 phase.
In vitro binding experiments revealed that the RNA-recognition
motifs within the SART3 sequence are responsible for selective
pre-miR-34a binding. Our results provide evidence for a signif-
icant role of SART3 in miR-34a biogenesis and cell cycle pro-
gression in NSCLC cells.

RNA-binding proteins (RBPs)2 are proteins containing one
or more RNA-binding domains and have been widely impli-

cated in post-transcriptional regulation of gene expression
(1–3). RBPs serve as mediators of RNA transcription (4), mod-
ification (5, 6), splicing (6, 7), transport (8, 9), and turnover (10).
For many years, RBPs were almost exclusively studied with
respect to mRNA (11, 12); however, more recently, an
improved understanding of RNA biology and next-generation
sequencing technologies have led to the discovery of new roles
for RBPs as regulators of noncoding RNAs such as miRNAs (11,
13–17).

miRNAs are a class of small noncoding RNA that act as post-
transcriptional regulators of gene expression. Briefly, miRNAs
are transcribed as several-kb primary transcripts (pri-miR) by
RNA polymerase II (18, 19). This pri-miR is processed by the
nuclear Microprocessor complex, composed of Drosha and
DiGeorge syndrome critical region 8 (DGCR8), resulting in a
�60 – 80-nucleotide pre-miR hairpin (20 –23). Following
nuclear export by Exportin-5, the pre-miR is processed by Dicer
to yield a mature miRNA duplex (24 –27). The guide strand of
the duplex is loaded onto an Argonaute (AGO) protein to form
the RNA-induced silencing complex (RISC), whereas the pas-
senger strand is degraded (28 –30). RISC then facilitates silenc-
ing of miRNA target gene transcripts (31–33).

The canonical miRNA biogenesis pathway can be disrupted
in cancers, and miRs with tumor-suppressive functions are
often down-regulated in these diseased states (34 –36). RBPs
have recently garnered increased attention as modulators of
miRNA processing and potential contributors to loss of miRNA
activity (13–17). A prominent example is the let-7–Lin28
miRNA-protein interaction, which has been shown to promote
several forms of human cancer (34, 37–40). The let-7 family of
miRNA has been widely implicated in tumor suppression by
targeting oncogenes such as RAS and Myc (34, 41). Lin28 pro-
tein binds the hairpin loop of pri- or pre-let-7 to inhibit pro-
cessing by Drosha or Dicer, respectively, leading to let-7 degra-
dation (42–44).

miR-34a is one of the most extensively characterized miRs
and has been shown to mediate tumor suppression by targeting
the Notch (45, 46), TGF-� (47), and Wnt signaling pathways
(48), as well as influencing the cell cycle (49, 50), senescence (51,
52), and apoptosis. Like let-7, as a tumor suppressor, miR-34a is
lost or down-regulated in multiple cancers (53–55). Transcrip-
tional regulation of miR-34a has been widely studied; miR-34a
is transcriptionally induced by the p53 tumor suppressor (50,
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54, 56 –58) and can also be inactivated by CpG methylation (59,
60). Previous work in non-small-cell lung cancer (NSCLC)
demonstrated that exogenous miR-34a supplementation inhib-
ited tumor growth in vitro and in vivo (55, 61). Remarkably,
growth inhibition occurred independent of p53 status and
endogenous expression levels of miR-34a (61). These findings,
in conjunction with a growing interest in RBPs as modulators of
miRNAs (13–16), led us to hypothesize that an RBP may be
influencing the observed loss of miR-34a activity in NSCLC.
Herein, we describe the use of a tandem MS-based approach to
identify such protein-binding partners for miR-34a.

Results

SART3 is a putative pre-miR-34a– binding protein

To identify proteins in the miR-34a interactome, we first
established a method for miR-binding protein discovery in
mammalian cells (Fig. 1A). In brief, a 5� biotinylated pre-miR is
used as bait and incubated with cell lysate, enabling subsequent
pulldown of the RNA and its bound proteins on streptavidin-
coated resin. After stringent washing, the resin is analyzed by
Western blotting or LC-tandem MS (LC-MS/MS) to identify
protein interactors. We optimized experimental conditions
using the pre-let-7–Lin28 interaction as proof-of-concept, and
our method led to the identification of Lin28 as a specific bind-
ing partner for pre-let-7d relative to pre-miR-21 in HEK293T
and NTERA-2 cell lines by MS and Western blotting (Fig. S1).

Next, we used our pulldown strategy to identify RBPs for
pre-miR-34a. With the aim of uncovering a p53-independent
interaction, we opted to conduct experiments in two NSCLC
cell lines: A549, which bears WT p53, and H1299, which carries
mutant p53. Pre-let-7d was chosen as our negative control such
that Lin28 enrichment could serve as an internal control for
proteomics experiments. Pulldowns were performed in freshly
lysed A549, H1299, and HEK293T cell lines for analysis by LC-
MS/MS. 754 proteins were identified and quantified across all
three cell lines (Fig. 1B). These proteins were visualized based

on reproducibility and -fold change enrichment for pre-miR-
34a (Fig. 1C). Only two proteins exhibited �2 log2 -fold change
for pre-miR-34a/pre-let-7: SART3 and the DExH-box protein
DHX30 (Fig. 1D). Interestingly, the interaction between SART3
and DHX30 has been observed in several cell lines (62), and
both proteins have been shown to interact with AGO1 (63). As
DHX30 belongs to a highly conserved family of RNA helicases
broadly involved in most aspects of RNA biology (64), we
turned our focus to SART3, which showed the highest pre-
miR-34a enrichment by two methods of label-free relative
quantification (Fig. S2). A combined ranking of all proteins
highlighted SART3 as a top hit across all cell lines (Fig. 1E), a
finding that was also validated by Western blotting (Fig. 1F).
Conversely, we also found that miR-34a was enriched upon
immunoprecipitation of SART3 (Fig. S3). In further support of
our findings, we noted that SART3 had also been detected as a
pre-miR-34a-BP via MS-based proteomics in a recent report,
which identified this interaction across several cancer cell lines
using a test set of 72 pre-miRs (15). From these results, we
concluded that SART3 protein interacts with pre-miR-34a with
specificity relative to pre-let-7d and several other pre-miRs.

C-terminal RNA-recognition motifs give rise to selective pre-
miR-34a binding

Having characterized a phenotype related to SART3 expres-
sion, we next sought to elucidate a potential mechanism for
recognition of pre-miR-34a by SART3. SART3 is a 110-kDa
nuclear RBP composed of multiple HAT (half-a-tetratricopep-
tide repeat) domains, two neighboring nuclear localization
sequences (NLSs), and two RNA-recognition motifs (RRMs)
(Fig. 2A, top) (65, 66). The HAT domain is a conserved helical
motif that has been found in several proteins involved in RNA
metabolism (67–69), and the RRM is a domain important for
RNA recognition and binding (3, 70). Within SART3 specifi-
cally, the HAT domains have roles in pre-mRNA 3�-end pro-
cessing, ubiquitin-specific protease (USP) recruitment, and
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Figure 1. Proteomic analysis identifies SART3 as a pre-miR-34a– binding protein. A, pulldown scheme for MS-based proteomics using a biotinylated
pre-miR probe as bait. B, Venn diagram of total proteins identified across each cell line. C, volcano plot of the 750 proteins commonly identified in all cell lines
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spliceosome recycling (65, 66, 71–74). The NLS allows SART3
to function as a nuclear protein, and the RRMs contribute to
RNA recognition, binding, and splicing activity (65, 74).

Recognizing that each of these regions of SART3 could be
involved in miRNA regulation, we asked which of these
domains were crucial for binding to pre-miR-34a. To this end,
we generated 3�FLAG constructs to express different variants
of SART3, each containing deletions or truncations of one or
more domains of the protein (Fig. 2A). To assess the binding
activity for each construct, we transiently transfected
HEK293T cells with each plasmid, subsequently performed
pre-miR-34a pulldown experiments as outlined in Fig. 1A, and
visualized binding relative to pre-let-7d by Western blotting for
the FLAG epitope tag.

We first compared the N and C termini of SART3 with the
full-length protein using an empty 3�FLAG vector as a nega-
tive control. Interestingly, we found that the N terminus bound
both pre-miR probes, whereas the C terminus was enriched
with pre-miR-34a (Fig. 2B). We further investigated the C ter-
minus of SART3 by testing constructs where either of the two
RRMs was deleted, as well as a short fragment containing only
the RRMs (Fig. 2A). The RRM 1 � 2 fragment appeared to bind
pre-miR-34a with the highest specificity relative to pre-let-7d.
Moreover, each of the individual RRM deletions showed a mod-
erate enrichment of pre-miR-34a (Fig. 2B). These data suggest
that the HAT domains participate in nonspecific RNA binding,
whereas the RRMs of SART3 are important for specific binding
of pre-miR-34a.

SART3 knockdown up-regulates miR-34a target genes CDK4
and CDK6

SART3, also referred to as Tip110, is annotated as a nuclear
RBP and has been thoroughly characterized as a spliceosome
recycling factor (65, 71, 73–75). SART3 has additional reported
roles in pre-mRNA splicing (76), regulation of viral gene tran-
scription (77, 78), histone chaperoning (66, 72), and stem cell
growth and pluripotency (65, 79, 80). Moreover, SART3 has
been investigated as an antigen for cancer immunotherapies
(76, 81–85). Among these reported functions, we found no evi-

dence that SART3 had previously been studied as a modulator
of miRNA biogenesis or activity. As such, we first asked
whether manipulation of SART3 levels would influence miR-
34a expression or that of its target genes. To address this ques-
tion, we depleted SART3 levels in A549 and H1299 cells via
transfection with SART3-targeted siRNA. Robust knockdown
of SART3, as well as significant increases in two well-estab-
lished miR-34a target genes, CDK4 and CDK6 (54, 56), was
observed relative to cells transfected with a noncoding siRNA
control (Fig. 3A). Cyclin-dependent kinases 4 and 6 (CDK4/6)
are cell cycle regulators that facilitate progression through the
G1 phase via cyclin D–mediated phosphorylation of the retino-
blastoma (RB) protein (86 –88). Thus, to explore a functional
consequence for up-regulation of CDK4/6, we performed addi-
tional knockdown experiments and observed that RB phosphor-
ylation was also increased (Fig. 3A). These initial results sug-
gested that, unlike Lin28-mediated regulation of let-7, SART3
may instead function to facilitate miR-34a maturation.

SART3 overexpression increases miR-34a levels and decreases
CDK4/6

To test the hypothesis that SART3 promotes miR-34a mat-
uration, we generated stable cell lines overexpressing
1�FLAG-SART3. Following lentiviral transduction, levels of
miR-34a, CDK4, and CDK6 were assessed by quantitative RT-
PCR (qRT-PCR). Importantly, we found increased levels of pre-
miR-34a, as well as the active and inactive strands of the mature
miR-34a duplex (miR-34a and miR-34a*, respectively) upon
SART3 overexpression (Fig. 3C). Despite our efforts to quantify
or visualize pri-miR-34a by qPCR and Northern blotting, we
were unable to detect the primary transcript in any of our cell
lines. This was not surprising, as pri-miRNAs are often pro-
cessed very rapidly or co-transcriptionally. Reciprocal to what
was observed after SART3 knockdown, decreased levels of
CDK4 and CDK6 were noted at the protein and mRNA levels
(Fig. 3B and Fig. S4). Similarly, phosphorylation of RB protein
was also decreased concomitant with CDK4/6 (Fig. 3B). These
results indicate that SART3 overexpression leads to increased
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miR-34a levels and further support the hypothesis that SART3
has a role in aiding miR-34a biogenesis.

SART3 overexpression leads to G1 arrest

Prominent tumor-suppressive functions of miR-34a include
induction of cell cycle arrest, senescence, and apoptosis (50 –
52, 54, 56 –58, 89, 90). Due to the well-known roles of CDK4
and CDK6 as cell cycle regulators, our results prompted us to
characterize growth and cell cycle distribution in our SART3
overexpressing cell lines. Consistent with the observed de-
crease in CDK4, CDK6, and phospho-RB upon SART3 overex-
pression, we found that these cells exhibited dramatic growth
inhibition by colony formation assays (Fig. 4A). This slowed
growth was in line with what has previously been observed in
cancer cells treated with miR-34a, including NSCLC (53, 54, 56,
61, 91).

We next analyzed cell cycle distribution by flow cytometry
with propidium iodide–stained cells. In both A549 and H1299
parental lines, substantial growth arrest in the G1 phase was
observed upon overexpression of SART3 (Fig. 4B). In addition

to cell cycle profiles, we analyzed apoptosis and cellular senes-
cence in these populations. Only a modest increase in apoptosis
was detected in SART3-overexpressing cells by annexin V
staining (Fig. S6), and no indication of senescence by senes-
cence-associated �-gal staining was found (data not shown).
These experiments provide evidence that high SART3 expres-
sion levels induce G1 arrest via the miR-34a-CDK4/6 axis.

Discussion

Here we have described a novel miRNA-protein interaction
between pre-miR-34a and SART3 in two NSCLC cell lines.
Moreover, we have characterized what is, to our knowledge, a
new function for the SART3 protein as a modulator of CDK4,
CDK6, and cell cycle regulation. Interestingly, the phenotypes
we observed indicate that SART3 possesses tumor-suppressive
properties in NSCLC cells, which is in contrast to reports
describing SART3 as an antigen in other cancers. This would
suggest that the functions of SART3 are diverse and not yet fully
understood. As such, our results warrant additional studies to
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probe the SART3 interactome in a more comprehensive
fashion.

Although we report compelling evidence of a role for SART3
in the regulation of miR-34a biogenesis, the stage of biogenesis
where this interaction occurs remains unclear. It is possible that
the second protein identified, DHX30, also plays a role in miR-
34a maturation. Notably, both proteins interact with AGO1,
but neither has been reported to bind to Drosha, Exportin-5, or
Dicer; however, DHX30 interacts with DGCR8 (62). Given
these networks, it is conceivable that SART3 could act on pri-
or pre-miR-34a as part of a larger complex containing DHX30
and Drosha/DGCR8. Based on the changes observed in pre-
and mature miR-34a levels in response to SART3 overexpres-
sion, as well as the annotated roles for SART3 as a nuclear RBP,
we hypothesize that this protein acts to facilitate miR-34a pro-
cessing in the nucleus, likely at the precursor level. However, it
is also possible that SART3 interacts with pri-miR-34a, as the
precursor hairpin is embedded within the primary transcript
(Fig. S7). Either hypothesis is supported by the trends observed
in miR-34a target genes in response to altered SART3 expres-
sion. Future work will investigate the effects of SART3 on other
miRNAs and cellular pathways to better understand the speci-
ficity of this RNA-protein interaction.

From a molecular recognition standpoint, our results suggest
that the RNA-recognition motifs play an important role in
forming a specific interaction with pre-miR-34a. The N termi-
nus of SART3 containing several HAT domains binds RNA in a
more promiscuous fashion; thus, we postulate that the RRMs
contribute toward selectivity and recognition of miR-34a,
whereas the N terminus supplies additional RNA-binding
capacity. Future work will aim to elucidate a structural basis for
this interaction. Such studies will provide added insight into
how SART3 functions and will uncover any potential nucleo-
tide sequence or secondary structures important for RNA
recognition.

Although significant progress has been made in identifying
RBPs as modulators of miRNA biogenesis, our results highlight
the need for more detailed functional investigations of these
interactions. Characterization of new miR-RBP binding events
will improve our current understanding of miRNA regulation
in disease, in addition to offering the potential to find new net-
works for selective therapeutic targeting of dysregulated
miRNAs.

Experimental procedures

Cell culture

A549 (a gift from Dr. Beth Lawlor) and HEK293T cells (a gift
from Dr. Carol Fierke) were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum
(FBS) and 2 mM L-glutamine. H1299 cells (a gift from Dr. Nouri
Neamati) were cultured in RPMI 1640 medium supplemented
with 10% FBS and 2 mM L-glutamine. NTERA-2 cells were pur-
chased from ATCC and cultured in Dulbecco’s modified Eagle’s
medium with 10% FBS, 2 mM L-glutamine, 1 mM sodium pyru-
vate, and 1% penicillin-streptomycin. Cells were grown at 37 °C
with 5% CO2 in a humidified incubator. All cell lines were
authenticated by STR profiling and regularly tested for myco-
plasma contamination. For knockdown experiments, cells were
reverse-transfected in triplicate with 25 nM SART3 SmartPool
siRNA (Dharmacon) or siGENOME Nontargeting siRNA 2
(Dharmacon), using 7.5 �l of Lipofectamine RNAiMax (Invit-
rogen) in 500 �l of Opti-MEM (Gibco) per well of a 6-well dish.
Lysates were harvested 48 h after transfection.

Pre-miR pulldown assays

Cells were grown to 80% confluence, washed with PBS, and
harvested with a cell scraper. Cells were collected in 1 ml of lysis
buffer (50 mM Tris, pH 7.6, 150 mM NaCl, 2 mM MgCl2, 10%
glycerol, 0.5% Triton X-100, and freshly added protease inhib-
itor mixture) per 10-cm dish, kept on ice, and lysed by sonica-
tion. Lysate concentrations were normalized to 1 mg/ml by
BCA assay (Thermo), and 200 �l of lysate was aliquoted for
each pulldown. To the lysate aliquots, 100 �l of binding buffer
(50 mM Tris, pH 7.6, 150 mM NaCl, 5% glycerol, 0.05% Tween
20, freshly added 2 mM ZnCl) was added, and a biotinylated
pre-miR probe was added to a final concentration of 500 nM.
Mixtures were incubated at room temperature for 30 min. To
ensure an excess of miRNA relative to beads, 5 �l of streptavi-
din-coated magnetic resin (Roche Applied Science) per sample
was aliquoted and washed with binding buffer. Lysate incuba-
tions were added to the streptavidin beads and incubated at
room temperature for 1 h with constant agitation. Flow-
throughs from each pulldown were collected, and resins were
washed once with a stringent buffer (100 mM phosphate, pH 7,
200 mM NaCl, 0.25% Tween 20) and three times with PBS.
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Figure 4. Increased SART3 expression results in growth inhibition and cell cycle arrest in G1 phase. A, colony formation of SART3-overexpressing cell
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histograms are shown in Fig. S5.
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Protein identification by LC-MS/MS

Protocols for in-solution digestion are adapted from Yu et al.
(92). Beads were resuspended in 50 �l of 0.1 M NH4HCO3 buffer
(pH �8). Cysteines were reduced by adding 50 �l of 10 mM

DTT and incubating at 45 °C for 30 min. Samples were cooled
to room temperature, and cysteines were alkylated with 65 mM

2-chloroacetamide for 30 min at room temperature. Proteins
were digested overnight with 1 �g of sequencing grade trypsin
at 37 °C. Digestion was stopped by acidification, and peptides
were desalted using SepPak C18 cartridges (Waters) and then
dried using a Vacufuge concentrator (Eppendorf). Resulting
peptides were dissolved in 8 �l of 0.1% formic acid, 2% acetoni-
trile solution, and 2 �l of peptide solution was resolved on a
nanocapillary reverse-phase column (Acclaim PepMap C18, 2
�m, 50 cm, Thermo) over 180 min. Eluent was directly intro-
duced into an Orbitrap Fusion mass spectrometer (Thermo)
using an EasySpray source. MS1 scans were acquired at 120,000
resolution (AGC target � 1 � 106; maximum IT � 50 ms).
Data-dependent collision-induced dissociation MS/MS spectra
were acquired using the top speed method (3 s) following each
MS1 scan (normalized collision energy �32%; AGC target 1 �
105; maximum IT � 45 ms). Protein identification and quanti-
fication was performed using MaxQuant (version 1.6.7.0) (93).
MS/MS spectra were searched with Andromeda against the
reference human database from Uniprot (February 2, 2014
download, 39,882 sequences) appended with common contam-
inants and the automatically generated reverse database for the
decoy search, which was used to calculate the false discovery
rate (FDR). Carbamidomethylation of cysteine (57.021464 Da)
was set as a fixed modification; acetylation of protein N termini
(42.010565 Da) and oxidation of methionine (15.994915 Da)
were set as variable modifications. Other search parameters
included fixed main-search MS1 error of 4.5 ppm, with 0.5-Da
mass deviation allowed for fragment ions; minimum peptide
length of 7; two missed cleavages were allowed. Match between
runs was enabled for consecutively run samples within the same
cell line, with a match time window of 0.5 min.

Data analysis

Relative quantification of proteins was achieved with the
MaxLFQ algorithm using default settings. Proteins identified
with an FDR of �1% were further filtered by removal of known
contaminants and decoy proteins, as were proteins identified
by �3 peptide-to-spectrum matches in all samples and those
identified by only one peptide. This final list of proteins was
loaded into Perseus (version 1.6.5.0), and LFQ intensities were
log2-transformed before imputing missing values column-wise,
based on a normal distribution (downshift of 1.8 and a width of
0.3). For proteins identified by multiple isoforms, LFQ intensi-
ties were reported or imputed for each isoform individually. For
the volcano plot (Fig. 1C), -fold changes (LFQ miR34 versus
LFQ Let7d control) for the 754 common proteins were calcu-
lated within each cell line (n � 3) and combined into a single file
before importing into Perseus to perform a two-sided Student’s
t test, with pulldowns in the different cell lines serving as repli-
cates. All replicates are biological. The MS proteomics data
have been deposited to the ProteomeXchange Consortium via

the PRIDE (94) partner repository with the data set identifier
PXD015278. Raw proteomics data is also shown in Table S1.

Lentivirus production and infection

1�FLAG-SART3 was amplified from A549 cDNA and
cloned into pLentilox-IRES-Puro (obtained from University of
Michigan vector core) by standard PCR using NheI and XhoI
restriction enzymes (see Table S2 for primers). Lentiviruses
were packaged, and stable cell lines were generated as described
(95).

Western blotting

All lysates were prepared, and immunoblotting was per-
formed as described previously (95). The antibodies used in this
work are listed in Table S2.

RNA isolation and qRT-PCR

Total and small RNA were isolated using the mirVana
miRNA isolation kit (Invitrogen). For mRNA quantification,
cDNA was prepared from total RNA using the Superscript III
first-strand synthesis kit (Invitrogen) according to the manufa-
cturer’s instructions. PowerUP SYBR Green master mix
(Applied Biosystems) was used for gene expression analysis. For
miRNA quantification, cDNA was prepared from small RNA
using the miScript II RT kit (Qiagen) using the manufacturer’s
instructions. miScript SYBR Green PCR kit (Qiagen) was used
for miRNA expression analysis. All qPCR was performed on a
ViiA7 thermocycler using the fast qPCR protocol, and relative
-fold change was calculated using the comparative threshold
(CT) method. Primers used in this work are listed in Table S2.

Colony formation assays

Cells were seeded in 6-well plates at a density of 1,000 cells
per well for A549 and 500 cells/well for H1299. After 9 days,
cells were stained and imaged as described (95).

Flow cytometry

Cell cycle analysis was performed as described (94). For apo-
ptosis analysis, cells were grown to 70% confluence, collected
96 h post-transduction, and stained with annexin V–Alexa Flu-
orTM 488 (Invitrogen) according to the manufacturer’s proto-
col. Fluorescence of stained cellular DNA content and/or
annexin V conjugates were measured on a CytoFLEX Flow
Cytometer (Beckman-Coulter). Cells were gated and analyzed
using FlowJo software (version 10).

3�FLAG-SART3 variant cloning

Full-length SART3 and all variants were amplified from our
pLentilox-1�FLAG-SART3 vector using standard PCR and
cloned into pcDNA3 containing a 3�FLAG tag (95) using
EcoRI and XbaI restriction enzymes. All primers used for clon-
ing are listed in Table S2.
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