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The DNA-binding protein PU.1 is a myeloid lineage– de-
termining and pioneering transcription factor due to its ability
to bind “closed” genomic sites and maintain “open” chromatin
state for myeloid lineage–specific genes. The precise mecha-
nism of PU.1 in cell type–specific programming is yet to be elu-
cidated. The melanoma cell line B16BL6, although it is nonmy-
eloid lineage, expressed Toll-like receptors and activated the
transcription factor NF-�B upon stimulation by the bacterial
cell wall component lipopolysaccharide. However, it did not
produce cytokines, such as IL-1� mRNA. Ectopic PU.1 expres-
sion induced remodeling of a novel distal enhancer (located �10
kbp upstream of the IL-1� transcription start site), marked by
nucleosome depletion, enhancer-promoter looping, and his-
tone H3 lysine 27 acetylation (H3K27ac). PU.1 induced enhanc-
er-promoter looping and H3K27ac through two distinct PU.1
regions. These PU.1-dependent events were independently
required for subsequent signal-dependent and co-dependent
events: NF-�B recruitment and further H3K27ac, both of which
were required for enhancer RNA (eRNA) transcription. In
murine macrophage RAW264.7 cells, these PU.1-dependent
events were constitutively established and readily expressed
eRNA and subsequently IL-1� mRNA by lipopolysaccharide
stimulation. In summary, this study showed a sequence of epi-
genetic events in programming IL-1� transcription by the distal
enhancer priming and eRNA production mediated by PU.1 and
the signal-dependent transcription factor NF-�B.

The nuclear protein PU.1 (encoded by the gene SPI1 in
humans or Spi1 in mice) is an E26 transformation–specific
(Ets)3-family transcription factor that plays a crucial role in the

development of myeloid and lymphoid lineage cells (1–3). PU.1
is induced at high levels during myeloid development, ranging
up to �200 copies of mRNA per cell, even above the “house-
keeping gene” glyceraldehyde-3-phosphate dehydrogenase (4,
5). This high amount of PU.1 is required for myeloid cell
development (6) and optimal transcription of inflammatory
response genes upon stimulation in macrophages (7). PU.1 has
been regarded as a lineage-determining and pioneering tran-
scription factor for its capability to bind to “closed” chromatin
in a sequence-specific manner and remodel it to an “open” state
that allows recruitment of signal-dependent transcription fac-
tors/co-factors to enhancers and promoters of cell type–
specific genes (8 –10). Indeed, forced expression of PU.1, in the
presence or co-expression of the leucine zipper–type transcrip-
tion factor CCAAT/enhancer-binding protein (C/EBP)�/�,
reprograms lymphocytes, such as pre-T cells (11) and pre-B
cells (12), and nonhematopoietic cells, such as primary fibro-
blasts and NIH 3T3 cells (13), into macrophage-like cells.
C/EBP� and PU.1 cooperate to reprogram cells by activating
prospective macrophage enhancers as a pioneer factor or a sec-
ondary factor, depending on gene types (14). Similarly, PU.1
can interact with other pioneering factors, such as Runx1 (15)
and GATA-1 (16), to program different lineage cell types.

Enhancers are distal regulatory elements that are activated by
common and cell type–specific regulators and characterize cell
type–specific gene expression (17, 18). Binding of PU.1 to
enhancers induces multiple nucleosomal changes, including
nucleosome depletion, deposition of active enhancer histone
marks such as histone H3 lysine 4 monomethylation
(H3K4me1) and lysine 27 acetylation (H3K27ac) (19 –22), and
enhancer-promoter looping formation, all of which are medi-
ated by interacting with different proteins and protein com-
plexes (23, 24). Active enhancers also recruit the RNA polymer-
ase II– containing transcription initiation complex and RNA
capping machinery, yielding transcripts that are referred to as
enhancer RNAs (eRNAs) (25–27). eRNAs enhance mRNA
transcription; however, their mechanism in regulating gene
transcription is unclear. For example, eRNAs were shown to
enhance enhancer-promoter looping formation (28), whereas
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they were also shown to participate in the process of releasing
paused RNA polymerase II without changing enhancer-pro-
moter looping (29). eRNAs were also shown to enhance chro-
matin accessibility of transcription machinery (30); however, it
was also shown that active enhancer transcription leads to
enhancer remodeling independent of eRNA transcription (31).
Therefore, how PU.1 regulates enhancers and how eRNAs par-
ticipate in gene regulation remain to be determined.

One of the key characteristics of myeloid cells such as macro-
phages is rapid and robust production of inflammatory cyto-
kines in response to microbial stimulation. Enhancers and pro-
moters of these genes are in poised status, harboring active
histone marks and transcriptional machinery that is waiting to
be activated immediately by extracellular signals (31, 32).
Among those cytokines, interleukin (IL)-1� (derived from the
proteolytic processing of pro-IL-1� gene product) is a potent
inflammatory cytokine that is rapidly induced by activated
Toll-like receptors (TLRs), such as TLR4, activated by the
Gram-negative bacterial component lipopolysaccharide (LPS).
PU.1 is crucial for priming enhancers and robust pro-IL-1�
(herein referred to as IL-1�) transcription in macrophages (33–
35). In human macrophages, PU.1 is crucial for establishing
poised promoter architecture and, particularly, looping
between the promoter and a remote enhancer located about
�3,000 bp from the transcription start site (TSS) of IL-1� gene
(36, 37). Although both promoter and enhancer elements are
expected to be similar in mice, the distal regulatory elements
and mechanism of PU.1 in regulating IL-1� transcription in
mice are less well-understood.

To examine the detailed mechanisms of PU.1 in program-
ming IL-1� transcription, we used the murine melanocyte cell
line B16BL6 (B16). Melanocytes, best known for their role in
skin and hair pigmentation, are differentiated from melano-
blasts that are originated from pluripotent neural-crest cells
(38). These cells express various innate immune receptors, such
as TLRs, and exhibit similar phagocytic, antigen-presenting,
and inflammatory response capabilities with macrophages (39).
Unlike melanocytes, we found that B16 cells lacked PU.1 and
failed to produce IL-1� mRNA by TLR stimulation. However,
ectopic expression of PU.1 led these cells to express IL-1�. We
identified a novel enhancer located �10 kbp from the IL-1�
TSS. Binding of PU.1 in the enhancer induced nucleosome
depletion, enhancer-promoter looping, and H3K27ac. The
PU.1-dependent enhancer-promoter looping and H3K27ac
were independently required for subsequent signal-dependent
and co-dependent events: NF-�B recruitment and further
H3K27ac, both of which were required for the eRNA and sub-
sequent IL-1� mRNA transcription.

Results

Ectopic expression of PU.1 reprograms B16 cells to express
IL-1� mRNA in response to TLR activation

Human melanocytes and melanoma cells were shown to
express TLRs, and activation of these receptors induces expres-
sion of inflammatory cytokines, such as IL-1� (40, 41). Unex-
pectedly, B16 mouse melanoma cells failed to express IL-1�
mRNA in response to lipoteichoic acid (LTA), polyinosinic-

polycytidylic acid (poly(I:C)), LPS, and CpG dinucleotides,
which are TLR2, -3, -4, and -9 ligands, respectively (Fig. 1A).
However, these cells activated ERK and p38 mitogen-activated
protein kinases (MAPKs) and NF-�B in response to LPS (Fig.
1B), suggesting that these cells are defective in processing sig-
naling downstream to these pathways. Lineage-determining
(pioneering) transcription factors, such as C/EBP�, C/EBP�,
PU.1, and Runt-related transcription factor 1 (RUNX1), play
key roles in programming myeloid cells for their characteristics
in expressing cytokines (42). Therefore, we examined expres-
sion of these transcription factors in these cells. Based on RT-
qPCR analysis, these cells constitutively expressed C/EBP� and
RUNX1, but not C/EBP� and PU.1 (Fig. S1). Consistent with
these results, Western blotting also failed to detect PU.1 and
C/EBP� proteins in these cells (Fig. 1C). However, in B16 cells
transfected with C/EBP� and PU.1, robust transcription of
IL-1� mRNA was detected in response to TLR2, -4, and -9
ligands (Fig. 1A) without affecting the levels of ERK, p38, and
NF-�B activation (Fig. 1B). Because C/EBP�, together with
PU.1, was shown to be involved in establishing monocyte-spe-
cific enhancers (43), we further examined whether both
C/EBP� and PU.1 were required for programming IL-1�
mRNA transcription. Unexpectedly, PU.1 alone promoted
IL-1� mRNA expression to the same extent as detected in cells
expressing both PU.1 and C/EBP� (Fig. 1D). Ectopic expression
of PU.1 was also shown to induce macrophage colony–
stimulating factor receptor (M-CSFR) expression, which is
involved in reprogramming nonmyeloid lineage cells into mac-
rophage-like cells (11–13). As expected, ectopic expression of
PU.1 together with or without C/EBP� induced expression of
M-CSFR mRNA at low levels (Fig. 1E, left). In cells transfected
with PU.1 � C/EBP�, M-CSF induced low levels of IL-1�
mRNA expression at basal state; however, the extent of IL-1�
mRNA induction by LPS was not affected by M-CSF treatment
(Fig. 1E, right). These data suggest that PU.1 programs B16 cells
to express IL-1� mRNA in response to TLR activation through
a mechanism independent of M-CSF.

Ectopically expressed PU.1 associates with distal IL-1�
enhancer and proximal promoter regions and enhances
H3K27ac levels and DNase I accessibility

PU.1 was shown to remodel promoters and, particularly, dis-
tal regulatory elements of cell-specific and signal-dependent
genes (8). To identify potential regulatory elements (enhancers)
of the IL-1� gene, we first examined key histone remodeling
markers, such as H3K27ac and histone H3 Lys-4 methylation
(20, 22, 44), located within 100 kbp of the IL-1� locus using the
ENCODE mouse (mm9) genome database (http://genome.
ucsc.edu/ENCODE/;4 Fig. 2A). Two regions, located �10 and
�2 kbp upstream of the TSS, showed strong H3K27ac signals in
bone marrow– derived macrophages. These regions (hereafter
referred to as E1 for the enhancer located �2 kbp upstream and
E2 for �10 kbp upstream of IL-1� TSS) were also very high
in H3K4me1, but low in histone H3 Lys-4 trimethylation
(H3K4me3), signals (top two panels). Particularly, these

4 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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H3K27ac signals were unique to macrophages and not found
in other nonmyeloid cell types (bottom panel). Within and proxi-
mal to these regions, five putative PU.1-binding sites (GGAAGTG
(45); �513, �2,285, �9,476, �9,870, and �10,124 bases upstream
of the TSS) were found (Fig. 2A). Because only 1% of all potential
PU.1-binding motifs found within the human genome are actually
occupied by PU.1 (45), we examined PU.1 binding to these regions
by ChIP-qPCR analysis and found that PU.1 was indeed recruited
to these sites upon ectopic expression of PU.1 in B16 cells (Fig. 2B,
top). PU.1 was also shown to recruit the histone acetyltransferases
cAMP-response element-binding protein-binding protein (CBP)
and the related p300 to specific genomic regions (46, 47). As
expected, PU.1 expression increased H3K27ac levels in these
enhancer regions (Fig. 2B, bottom). In addition, ectopic expression
of PU.1-enhanced chromatin accessibility of DNase I to the
regions coincided with the PU.1 recruitment and H3K27ac signal
region of the enhancer and also 5� downstream of the IL-1� pro-
moter (Fig. 2C). Collectively, these results suggest that PU.1 is
recruited to these enhancers and promoter and induces H3K27ac
and nucleosome-free chromatin conformation in these regions.

eRNA transcription induced by NF-�B is required for optimal
IL-1� mRNA transcription

Active enhancers are transcribed in a cell type–specific man-
ner and regulate transcription of nearby genes (25). The tran-
scripts, referred to as eRNAs, are involved in histone acetyla-
tion and mRNA transcription (31). Therefore, we examined
whether distal enhancers produced eRNAs that regulated

IL-1� mRNA transcription. Upon LPS treatment with cells
transfected with PU.1, eRNAs encoded by a region upstream of
the PU.1-binding site in the E2 enhancer were clearly detected
(Fig. 3A). The E2 eRNA transcription peaked 4 h after LPS
treatment, preceding the peak transcription of IL-1� mRNA at
12 h (Fig. 3B). Knocking down the eRNA using GapmeR anti-
sense oligonucleotides (ASO; targeting negative stranded
DNA) inhibited IL-1� mRNA transcription (Fig. 3C). These
data indicate that the E2 eRNA is functional in regulating IL-1�
transcription. To further reveal signaling cascades involved in
eRNA transcription, we examined eRNA and mRNA transcrip-
tion after treating cells with various chemical inhibitors target-
ing different MAPK isoforms and NF-�B at maximum nontoxic
doses. Among them, NF-�B inhibitor (NF�Bi) potently inhib-
ited transcription of both IL-1� eRNA and mRNA (Fig. 3D).
Both ERK1/2 (U0126; U0) and p38 (SB203580; SB) inhibitors
significantly prevented IL-1� mRNA transcription, but not
eRNA. The JNK inhibitor (JNKi) had no effects on IL-1� eRNA
and mRNA transcription. NF-�B was also recruited to the 5�
regions of both the enhancer and promoter upon LPS stimula-
tion in PU.1-expressing cells, but not in WT cells (Fig. 3E),
supporting a key role of NF-�B in transcription of IL-1� eRNA
and mRNA.

eRNA is required for IL-1� mRNA expression in macrophages

To confirm that E2 eRNA also plays a key role in macro-
phages that already express high levels of PU.1 (5, 48), tran-
scription of E2 eRNA and its role in IL-1� transcription in

Figure 1. Ectopic expression of PU.1 reprograms B16 cells to express IL-1� mRNA in response to TLR activation. B16 cells were transfected with pcDNA3
(Vector) or pcDNA3-HA-PU.1 (PU.1) and pMSCV-C/EBP� (CEBP�) for 24 h as described under “Experimental procedures.” A, after replating and culturing in a
fresh dish for an additional 16 –18 h, cells were stimulated with TLR4, -2, -9, and -3 ligands LPS (100 ng/ml), LTA (10 �g/ml), mouse CpG (20 �g/ml), and poly(I:C)
(10 �g/ml), respectively, for 6 h. IL-1� mRNA transcription was then measured using RT-qPCR. Data are expressed as means � S.D. (n � 2). B, cells were treated
with LPS (100 ng/ml) for the time indicated, and phosphorylation levels of p38, ERK, and inhibitor-�B (I�B) were analyzed by immunoblotting. �-Actin
immunoblotting was used as a loading control. One representative blot of three independent experiments is shown. C–E, similarly, cells were transfected with
pcDNA3 (Vector) or PU.1 and C/EBP� expression vectors for �48 h. C, expression of PU.1 and C/EBP� was analyzed by immunoblotting using anti-PU.1 and
anti-C/EBP� antibodies, respectively, in B16 cells transfected with vector, PU.1, and/or C/EBP� (left) and in WT B16 and RAW cells (right). Western blots shown
are representative of three independent experiments. D, cells were treated with LPS (100 ng/ml) for 6 h, and IL-1� mRNA transcription was analyzed by
RT-qPCR. Data are expressed as means � S.D. (n � 3). E, after transfection, cells were further cultured for 16 –18 h, and expression of M-CSFR mRNA was analyzed
and compared with that of a housekeeping gene, GAPDH (left). These cells were also cultured in the presence or absence of murine M-CSF (20 ng/ml) and
stimulated with LPS (100 ng/ml) for 6 h. IL-1� mRNA transcription was measured by RT-qPCR. Data are expressed as means � S.D. (n � 2; right).
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response to LPS stimulation were examined in RAW cells.
Because qPCR analysis can be misleading when high levels of
eRNA were produced at basal levels, we used a droplet digital
PCR (ddPCR) technique that analyzes absolute quantities of
DNAs (49). As shown in Fig. 4A (top), ddPCR analysis clearly
showed an increase of droplet signals in LPS-treated cells when
compared with those of control cells. The ddPCR results were
also very similar to those of qPCR analysis (bottom), indicating
that qPCR analysis accurately represented absolute quantities
of the eRNA. Similar to B16 cells, RAW cells strongly produced
E2 eRNA by LPS stimulation with faster kinetics, where E2
eRNA and IL-1� mRNA peaked in 90 and 180 min, respectively,
after LPS treatment (Fig. 4B). As in B16 cells, knocking down
eRNA by ASO in RAW cells also significantly suppressed IL-1�

mRNA expression (Fig. 4C). These results suggest that E2 is a
functional enhancer for IL-1� transcription in RAW cells.

PU.1 induces E2-promoter looping formation prerequisite for
E2 eRNA and IL-1� mRNA transcription by LPS

Spatial interaction between enhancer and promoter through
looping is a mechanism by which enhancers regulate transcrip-
tion of target genes (50). Therefore, we examined whether PU.1
binding to the E2 enhancer induced looping between the IL-1�
enhancer and promoter through chromatin conformation cap-
ture (3C)-TaqMan qPCR analysis (51). Using the IL-1� pro-
moter as anchor, interactions between the enhancer and pro-
moter were examined, using the constant (forward orientation)
primer and TaqMan probe (starting �912 and �890 bases,

Figure 2. Ectopically expressed PU.1 associates with distal IL-1� enhancer and proximal promoter regions and enhances H3K27ac levels and DNase
I accessibility. A, screen snapshots of H3K4me1, and H3K4me3 ChIP-Seq signals in murine bone marrow– derived macrophages (BMDM; top two panels) and
H3K27ac ChIP-Seq signals in bone marrow– derived macrophages, ES-Bruce4, and mouse embryonic fibroblasts (MEF) (bottom panel) from the ENCODE-UCSC
database. The black vertical arrows indicate locations where primers are targeting for qPCR analysis, and numerical values indicate locations of the first reverse
primer nucleotide from the IL-1� TSS. The triangles show locations of putative PU.1-binding sites; the diamonds show locations of putative NF-�B– binding
sites; the black bar indicates the target site of the GapmeR ASO. B and C, B16 cells were transfected with pcDNA3 (Vector) or pcDNA3-HA-PU.1 (PU.1) as described
in the legend to Fig. 1. B, ChIP, using anti-PU.1 (top) or anti-H3K27ac (bottom), followed by qPCR using the primer sets indicated, was performed as described
under “Experimental procedures.” Data are presented as percentage of enrichment with the precipitated target sequence compared with input DNA from two
independent experiments. *, p 	 0.05 (Student’s t test). C, nuclei were prepared and digested using DNase I as described under “Experimental procedures.”
Digested DNAs were then purified and analyzed by qPCR using the primer sets indicated. DNase I sensitivity was expressed as qPCR cycle threshold values
subtracted from the cycle threshold values of nondigested nuclei.
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respectively, from the TSS) and 16 test (reverse orientation)
primers targeting different DpnII-generated fragments within
15 kbp from TSS (Fig. 5A). In B16 cells, we detected high levels
of interactions with seven fragments, which did not change in
frequency between vector- and PU.1-transfected cells (Fig. 5A,
top, dotted lines). In PU.1-transfected cells, six new interactions
(reverse primers 9, 10, 11, 12, 13, and 15, starting �7,993,
�8,640, �9,014, �9,882, �10822, and �13,584 bases from the
TSS, respectively), four of which were located within the E2
enhancer, were detected (Fig. 5A, middle, solid lines). Upon LPS
stimulation, these interactions were increased �2-fold (gray
versus black bars). In RAW cells, which constitutively express
PU.1 at high levels, enhancer-promoter interactions (reverse
primers 9, 10, 11, and 13) were detected in nontreated cells (Fig.
5A, bottom). As in B16 cells, the enhancer-promoter interac-
tions were increased �2-fold by LPS treatment (gray versus
black bars). To further examine the role of PU.1 in the enhanc-
er-promoter interactions, regions containing the PU.1-binding
site (from �9,824 to �10,833: CRISPR-PU.1) and eRNA-cod-
ing region (�10,833 to �11,843: CRISPR-eRNA) were deleted
using the CRISPR vector system in B16 cells (Fig. S2). Both
CRISPR-PU.1 and CRISPR-eRNA cells produced significantly
lower amounts of IL-1� mRNA than control (CRISPR vector–
transfected) cells by LPS treatment (Fig. 5B, top). No differences
were detected in producing mRNAs of other cytokines, such as
CXCL9, in these cells (Fig. 5B, bottom). Similar to IL-1� mRNA

transcription, neither CRISPR-PU.1 nor CRISPR-eRNA cells
were able to produce the eRNA (Fig. 5C). The enhancer-pro-
moter looping, however, was intact in CRISPR-eRNA cells but
defective in CRISPR-PU.1 cells (Fig. 5D). These results suggest
that recruitment of PU.1 to the 5� upstream region of E2 is
required for enhancer-promoter looping formation and subse-
quent E2 and IL-1� mRNA transcription.

E2-promoter looping and H3K27ac are mediated by distinct
regions of PU.1

PU.1 protein has three distinct functional domains (52): the
transactivation domain (amino acids 2–100), the PEST domain
(amino acids 118 –167), and the DNA-binding Ets domain
(amino acids 171–267) (Fig. 6A). The transactivation domain
harbors two regions that include acidic (2–74 amino acids) and
glutamine-rich (74 –100 amino acids) domains (53). Within the
acidic domain, two acid regions (I (amino acids 2–30) and II
(amino acids 33–74)) were further identified (Fig. 6A). To
examine the role of each domain in enhancer-promoter looping
and eRNA/mRNA transcription, different deletion and amino
acid substitution mutants were constructed and transfected
into B16 cells (Fig. S3). B16 cells transfected with the PU.1
mutants, lacking either acidic or glutamine-rich domains or
containing R230A/R233A substitutions, failed to produce the
E2 eRNA and IL-1� mRNA, whereas PEST domain deletion
(
118 –167) had no effects on this transcription (Fig. 6B, top

Figure 3. E2 eRNA transcription induced by NF-�B is required for optimal IL-1� mRNA transcription. B16 cells were transfected with pcDNA3 (Vector) or
pcDNA3-HA-PU.1 (PU.1) and stimulated with LPS (100 ng/ml) for 6 h as described in the legend to Fig. 1. A, E2 eRNA expression levels were analyzed by RT-qPCR
using the primer sets indicated. Data are expressed as mean values from three independent experiments. B, similarly, B16 cells were stimulated with LPS for the
time indicated, and E2 eRNA and mRNA transcription was analyzed by qPCR. Data are expressed as means � S.D. (n � 2). C, B16 cells transfected with PU.1
expression vector were further treated with scrambled or E2 eRNA-specific ASO (250 pmol) for 24 h. Cells were then stimulated with LPS for 6 h, and expression
levels of E2 eRNA and mRNA were analyzed by RT-qPCR. D, cells were pretreated with MAPK inhibitors (U0126 (10 �M), SB203580 (10 �M), and JNK inhibitor (10
�M)) and NF�Bi (5 �M) for 1 h, and after LPS (100 ng/ml; 6 h) stimulation, IL-1� mRNA and E2 eRNA transcription was analyzed by qPCR. Data are expressed as
means � S.D. (n � 3); *, p 	 0.01; **, p 	 0.05 (Student’s t test). E, ChIP analysis was performed in B16 cells stimulated with or without LPS (4 h) using anti-NF-�B
(p65). Purified DNAs were then analyzed by qPCR using the primers indicated. Data are presented as percentage of enrichment with the precipitated target
sequence compared with input DNA (n � 2); *, p 	 0.05 (Student’s t test).
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two panels). Deletion of the acidic domain II (
33–74) or the
glutamine-rich domain (
74 –100) had no effects on the forma-
tion of enhancer-promoter looping. However, the enhancer-
promoter looping was defective in cells transfected with PU.1
mutant lacking the acidic domain I (
2–30 and 
1–100) or
containing R230A/R233A substitutions (Fig. 6B, bottom). PU.1
was shown to interact with the histone acetyltransferase CBP
through the transactivation domain (47) that targets histone H3
Lys-27 (54). Thus, we examined whether histone acetylation
was required for enhancer-promoter looping. As shown in Fig.
6C, the 
2–30 mutant had no defects in H3K27ac, whereas the

33–74 mutant was not able to induce H3K27ac in both the E2
and E1 enhancer regions, suggesting that PU.1-dependent
enhancer-promoter looping and H3K27ac are independent events
mediated by two different acidic regions of PU.1. To further con-
firm that histone acetylation is not required for enhancer-pro-
moter looping, the bromodomain and extra-terminal motif (BET)
family protein (histone acetyl-lysine reader, BRD) 2/4 inhibitor
JQ1 (55) was pretreated in B16 cells. JQ1 had no effects on the
enhancer-promoter looping induced by PU.1 (Fig. 6D). These data
further suggest that histone acetylation and enhancer-promoter
looping are independently induced by PU.1.

H3K27ac and NF-�B recruitment to the IL-1� enhancer and
promoter regions by LPS are mutually dependent events that
are independent of eRNA transcription

eRNAs play an important role in gene transcription (25) and
IL-1� mRNA transcription (Figs. 3C and 4D). Histone acetyla-

tion enhances accessibility of transcription factors through
recruiting chromatin remodelers, such as BET-binding pro-
teins (56). At the same time, signal-dependent transcription
factors, such as NF-�B, induce histone acetylation (57). Thus,
we examined the relationship between H3K27ac and NF-�B
recruitment and the role of eRNA in the IL-1� transcription in
B16 cells. LPS further increased H3K27ac levels above the levels
induced by PU.1 in both E2 and E1 regions, which was pre-
vented by NF-�Bi (Fig. 7A). Inversely, JQ1 inhibited recruit-
ment of NF-�B to the enhancer and promoter (Fig. 7B), which
resulted in inhibition of LPS-induced IL-1� mRNA/eRNA
transcription (Fig. 7C). Interestingly, cells specifically deleted in
the IL-1� eRNA sequences (CRISPR-eRNA) induced similar
levels of H3K27ac in E2 and E1 regions as those of control cells
(CRISPR-vector; Fig. 7D), suggesting that eRNA is not required
for H3K27ac in E2 and E1 regions. In line with these results and
Fig. 6B, B16 cells transfected with 
2–30 (lacking E2-promoter
looping) and 
33–74 (lacking CBP interaction) mutants failed
to further induce H3K27ac in response to LPS treatment (Fig.
7E). Collectively, these results suggest that E2-promoter loop-
ing is required for NF-�B recruitment and H3K27ac induced by
LPS stimulation.

Discussion

Here, we examined the role of PU.1 in programming IL-1�
expression, using murine B16 and RAW cells. Among several
lineage-determining transcription factors, C/EBP� and PU.1
are particularly involved in IL-1� transcription (37), where

Figure 4. E2 eRNA is also required for IL-1� mRNA expression in RAW macrophages. RAW cells were cultured with or without LPS (100 ng/ml) for the time
indicated. Expression of E2 eRNA and IL-1� mRNA was analyzed by RT-qPCR as described under “Experimental procedures.” A, the absolute quantity of E2 eRNA was
measured using ddPCR, and fluorescence signals were illustrated. The y axis represents fluorescence amplitude of one droplet, and the x axis shows 20,000 droplets per
column (sample). The dots that are positioned above the threshold line represent positive droplets. These results were compared with qPCR results (bottom). Concen-
tration of eRNA in copies/�l (solid line) from each sample is derived from the number of positive droplets shown in the dot graphs above the panel. The dotted line
represents the -fold changes of eRNA in LPS-stimulated samples quantified via RT-qPCR. B, transcription of E2 eRNA and IL-1� mRNA was analyzed in RAW cells
stimulated with LPS for the time indicated. C, cells transfected with scrambled or E2 eRNA-specific ASO for 24 h were stimulated with LPS (100 ng/ml) for 90 min, and
transcription of E2 eRNA and IL-1� mRNA was analyzed by RT-qPCR. The data are expressed as means � S.D. (n � 3); *, p 	 0.05; **, p 	 0.01 (Student’s t test).
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PU.1 directly binds to genomic DNA and recruits transcription
machineries through interacting with C/EBP� (36, 58). This
study mainly used B16 cells, which were selectively deficient in
PU.1 expression, to examine the detailed epigenetic mecha-
nism of PU.1 in regulating IL-1� expression.

PU.1 primes the remote regulatory element and eRNA
production required for IL-1� expression

Previous studies have identified several cis-acting elements
that regulate IL-1� transcription in murine and human macro-
phages. In murine macrophages, proximal (�100 to �50 bp
upstream of the TSS) and distal (�2,586 to �2,106; herein,
referred to as E1) regulatory elements that contain C/EBP�-
binding sites have been described (59, 60). In addition to the E1
element, we identified a potential regulatory element located

further upstream (�10 kbp) of the TSS (E2), based on the
H3K27ac, H3K4me1, and H3K4me3 profiles in the ENCODE
database (Fig. 2A). Here, we demonstrated that the E2 element
is a functional and distal enhancer for IL-1�. In B16 cells, ectop-
ically expressed PU.1 was recruited to the E2 region and
induced H3K27ac and nucleosome depletion (Fig. 2, B and C).
The E2 element also transcribed RNAs in both PU.1-trans-
fected B16 and WT RAW cells in response to LPS treatment,
preceding IL-1� mRNA transcription (Figs. 3B and 4B). Impor-
tantly, deletion of the PU.1-binding site in the E2 region by
CRISPR (Fig. 5B) or knocking down E2 eRNA by ASO targeting
negative strand of E2 significantly and specifically prevented
IL-1� transcription (Fig. 3C and 4C). It appears that the size of
E2 eRNA is �5,000 bases long in both B16 and RAW cells,
which is longer than usual eRNAs, which range from 500 to

Figure 5. PU.1 induces E2-promoter looping formation prerequisite for E2 eRNA and IL-1� mRNA transcription. A, nuclei were extracted from WT B16
cells (top), B16 cells transfected with PU.1 with or without LPS stimulation (6 h; middle), and RAW macrophages with or without LPS stimulation (3 h; bottom).
Genomic DNAs were purified after digestion with DpnII and subsequently ligated and de-cross-linked. Proximal localization of DNA fragments of E2 and IL-1�
promoter was analyzed by chromatin conformation capture assay, followed by TaqMan probe qPCR as described under “Experimental procedures.” The
numbers below the lines (1–16) indicate the test (reverse orientation) primers used to probe the digested DNA fragments. Each test primer (•) was utilized in
combination with the promoter-recognizing constant (forward orientation) primer (–) and TaqMan probe (�). The dotted lines (top) indicate basal ligation
between the promoter and DNA fragments detected in all samples regardless of PU.1 expression or LPS stimulation. The solid lines represent newly detected
interactions after PU.1 expression in B16 cells (middle) or RAW cells with/without LPS stimulation (bottom). The bars (gray, untreated; black, LPS-treated) in each
diagram represent the frequencies of ligation, compared with the ligation frequency of the promoter window and adjacent DNA fragment (primer 1). B–D,
E2-deleted (CRISPR-eRNA; 
11843–10833) and PU.1-binding region– deleted (CRISPR-PU.1; 
10833–9824) B16 cells were generated using the CRISPR/Cas9
gene-editing system as described under “Experimental procedures” and in Fig. S2. CRISPR vector, CRISPR-eRNA, and CRISPR-PU.1 cells were transfected with
pcDNA3-HA-PU.1 plasmid for 48 h as described under “Experimental procedures.” Cells were then stimulated with LPS (100 ng/ml) for 6 h, and transcription of
IL-1� and CXCL9 mRNAs (B) and E2 eRNA (C) was examined by RT-qPCR. The proximal localization of E2 and IL-1� promoter was analyzed, and cumulative
values of primer sets 9, 10, and 11 were plotted (D). Data are expressed as means � S.D. (error bars) (B and C, n � 3; D, n � 2).
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2,000 bases (61). However, �3-kb-wide enhancers have been
identified in so-called “stretch enhancers” and “superenhanc-
ers” (62). Also, considering the locations of PU.1– and NF-�B–
binding sites, which should be located 5� upstream of tran-
scripts, E2 eRNA is likely a negative-strand unidirectional
eRNA in B16 cells (Fig. 3A). In RAW cells, the E2 element
appears to render bidirectional eRNAs, but the positive-strand
eRNA is shorter than the negative-stranded eRNA (Fig. 4A).
Further detailed studies are required to address the exact size,
direction, and role of these transcripts in IL-1� expression.

Distinct regions of PU.1 are involved in priming events for
IL-1� expression

PU.1 has multiple domains that manifest cell type– and
gene–specific programming activities (52). We found that both
the transactivation and Ets domains, but not the PEST domain,
were essential for E2 eRNA and IL-1� mRNA transcription
(Fig. 6B). These results are in line with previous studies high-
lighting an essential role of the Ets DNA-binding domain, but
not the PEST domain, in maximal gene transactivation (53) and
IL-6 transcription (63). The 3C analysis we used here was not
able to determine whether PU.1 induced looping between E1
and promoter due to high basal interactions (Fig. 5A, top).
Because E1 is located close to the promoter, it may communi-
cate with the promoter through a “linking model” (64). This

model proposed that enhancers recruit the transcription pre-
initiation complex and progressively extend along the chroma-
tin fiber from enhancer to promoter without looping forma-
tion. Our 3C assay, however, found that the E2 element formed
a loop with the IL-1� promoter upon ectopic expression of
PU.1 in B16 cells or constitutively in RAW cells (Fig. 5A).
Importantly, establishment of the E2-promoter looping by
PU.1 was an essential step for the following events induced by
LPS stimulation: H3K27ac (Fig. 7E) and transcription of E2
eRNA and IL-1� mRNA (Figs. 5 (B and C) and 8). The E2-pro-
moter looping required binding of PU.1 at the E2 region
(between �10,833 and �9,824 sequences from the TSS, which
contains three putative PU.1-binding sites; Fig. 5D). We further
found that the E2-promoter looping required both the acidic
region I in the acidic domain and arginine residues at 230/233
in the Ets domain, but not the PEST domain (Fig. 6B). The
residues Arg-230 and Arg-233 have been shown to be crucial
for GGAA sequence–specific DNA binding and nuclear local-
ization (65, 66); therefore, it is not surprising that R230A/
R233A mutant failed to induce the looping. However, unlike
our results, the immunoglobulin � 3� enhancer, located 8.5 kbp
downstream of the Ig� gene (67), utilizes the PEST domain, but
not the acidic domain, to communicate with the promoter in B
cells (68). Because enhancer-promoter looping is mediated by

Figure 6. E2-promoter looping and H3K27ac were mediated by distinct domains of PU.1. A, schematic presentation of PU.1 domains and constructs of PU.1
mutants. B, B16 cells were transfected with PU.1 WT or PU.1 mutant (PU.1
2–30, PU.1
33–74, PU.1
75–100, PU.1
1–100, PU.1
118 –167, and PU.1R230A/R233A) plasmids
(1 �g) for 48 h as described under “Experimental procedures,” and cells were stimulated with LPS (100 ng/ml) for 6 h. The expression of IL-1� mRNA (top) and
E2 eRNA (middle) was analyzed by RT-qPCR. The proximal localization of E2 and the promoter was analyzed as described under “Experimental procedures”
(bottom). Data are expressed as means � S.D. (n � 2). C, B16 cells were transfected with PU.1 WT or PU.1 mutants, and ChIP assays were performed using
anti-H3K27ac as described under “Experimental procedures.” Purified DNAs were then analyzed by qPCR using the primers indicated. Data are presented as
percentage of enrichment with the precipitated target sequence compared with input DNA (n � 2). D, proximal localization of DNA fragments of E2 and IL-1�
promoter was analyzed in B16 cells transfected with vector or HA-PU.1 plasmids with or without JQ1 (1 �M) treatment. Cumulative values of primer sets 9 –13,
as shown in Fig. 5A, were plotted. Data are expressed as means � S.D. (n � 2).
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various transcription factors (69) and chromatin remodelers,
such as Mediator, Cohesin (70), CTCF proteins (71), and YY1
(72), it is possible that the acidic and PEST domains interact
with different factors to establish enhancer-promoter interac-
tions in a gene– and cell type–specific manner.

Ectopic expression of PU.1 also induced significant H3K27ac
in the E2 region without LPS treatment, which rendered
H3K27ac signals similar to those observed in basal bone
marrow– derived macrophages (Fig. 2B, bottom). A previous
in vitro study showed that PU.1 directly interacts with CBP
through residues 74 –122, which mainly comprise the glu-
tamine-rich domain (47). However, the study did not exam-
ine involvement of the acidic domain in the interaction. We
found that the acidic region II was also involved in H3K27ac
associated with the E2 and E1 regions (Fig. 6C). These results
suggest that E2-promoter looping and H3K27ac are medi-
ated by two different domains of PU.1. In line with these
results, E2-promoter looping was intact in B16 cells trans-
fected with 
33–74 PU.1 (lacking H3K27ac), and H3K27ac
was not compromised in cells transfected with 
2–30 (low in
E2-promoter looping). Also, the histone acetylation reader
inhibitor JQ1 had no effects on E2-promoter looping (Fig.
6D). Collectively, these results suggest that basal E2-pro-
moter looping and H3K27ac are independent events medi-
ated by two different domains of PU.1.

Figure 8. A sequence of events proposed to be involved in programming
murine IL-1� transcription through remodeling distal enhancer by the
myeloid lineage– determining transcription factor PU.1.

Figure 7. H3K27ac and NF-�B recruitment to the IL-1� enhancer and promoter regions by LPS are mutually dependent events that are
independent of eRNA transcription. A–C, B16 cells were transfected with pcDNA3 (Vector) or pcDNA3-HA-PU.1 (PU.1) for 48 h and then exposed to
drug vehicle, NF-�Bi (5 �M), or BRD2/4 inhibitor (JQ1; 1.5 �M). Cells were stimulated with LPS (100 ng/ml) for 4 h, and ChIP-qPCR assays were performed
using anti-H3K27ac (A) or anti-NF-�B (B) antibodies. C, similarly, cells were stimulated with LPS (100 ng/ml) for 6 h. Transcription of IL-1� mRNA
(top) and E2 eRNA (bottom) was analyzed by RT-qPCR. Data are expressed as means � S.D. (error bars) (n � 2; *, p 	 0.05). D, CRISPR-vector and
CRISPR-eRNA B16 cells were transfected with pcDNA3-HA-PU.1 (PU.1) and then stimulated with LPS (100 ng/ml) for 4 h. ChIP-qPCR assays were
performed using anti-H3K27ac. ChIP efficiency is represented as percentage of input DNA recovered by immunoprecipitation (N.S., not significant;
Student’s t test, n � 2). E, B16 cells were transfected with PU.1 WT or PU.1 mutants (PU.1
2–30 and PU.1
33–74) for 48 h, and cells were stimulated with LPS
(100 ng/ml) for 4 h. ChIP assays were performed using anti-H3K27ac as described under “Experimental procedures.” Purified DNAs were then analyzed
by qPCR using the primers indicated. Data are presented as percentage of enrichment with the precipitated target sequence compared with input DNA
(n � 2; *, p 	 0.05).
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PU.1 is required for LPS-induced chromatin modifications and
eRNA production

Upon stimulation, enhancers and promoters undergo vari-
ous epigenetic changes for maximal transcription: looping sta-
bilization, eRNA transcription, and histone acetylation that
allows recruitment of signal-dependent transcription factors
and cofactors. We found that LPS stimulation induced
increased E2-promoter looping (Fig. 5A), transcription of E2
eRNA (Figs. 3A and 4A), high H3K27ac levels in the E2 region
(Fig. 7A), and NF-�B recruitment to the E2 region (Fig. 7B).
Interestingly, LPS stimulation–induced H3K27ac required
NF-�B activation (Fig. 7A), and, conversely, NF-�B recruitment
required histone acetylation (Fig. 7B), suggesting that both of
these events are interdependent. NF-�B directly interacts with
the histone acetyltransferases CBP and p300 (73), which are
required for inflammatory gene transactivation (74). PU.1
induced H3K27ac without NF-�B activation (Fig. 2B). In LPS-
stimulated cells, inhibition of NF-�B was able to decrease
H3K27ac only to the levels of PU.1-induced (Fig. 7A). There-
fore, we speculate that H3K27ac is mediated by two mecha-
nisms: basal low-level acetylation by PU.1 and stimulation-de-
pendent high-level acetylation by NF-�B (Fig. 8). In addition,
we found that defects in PU.1-induced H3K27ac (
33–74 PU.1
mutant in Fig. 6C) also led to the absence of LPS-induced acety-
lation (Fig. 7A), indicating that PU.1-dependent basal acetyla-
tion is prerequisite for NF-�B-dependent (stimulation-in-
duced) H3K27ac (Fig. 8). In human monocytic cell line THP-1
cells, LPS-induced NF-�B activation also enhances looping for-
mation between enhancer (located �3,000 bp upstream of TSS)
and promoter (37). Similarly, we also detected that LPS stimu-
lation further increased E2-promoter looping in B16 cells (Fig.
5A). Therefore, we speculate that, unlike PU.1-induced basal
enhancer-promoter looping, stimulation-induced enhancer-
promoter looping requires NF-�B activation and histone acety-
lation in mouse and likely in human cells. However, further
detailed experiments are required to address the role of
enhanced or stabilized looping in gene transcription.

E2 eRNA is not involved in enhancer-promoter looping and
H3K27ac but is involved in IL-1� e/mRNA production

To date, the biological relevance of eRNA has been demon-
strated; however, the mechanisms of eRNA in transcription
have been controversial (64). Some studies have suggested that
eRNAs are involved in enhancer-promoter looping by recruit-
ing Cohesin, Mediator, and other factors to enhancers (28, 75,
76), whereas others have shown that they enhance transcrip-
tion by increasing chromatin accessibility (77) and H3K27ac
levels by directly activating the histone acetyltransferases CBP/
p300 (78) or inducing RNA polymerase II elongation through
binding to the negative elongation factor complex and releasing
paused RNA polymerase II (29). We demonstrated that the E2
eRNA played an essential role in IL-1� transcription (Figs. 3C,
4C, and 5B). Depletion of E2 eRNA by CRISPR had no effects on
the establishment of enhancer-promoter looping (Fig. 5D) and
H3K27ac (Fig. 7D), ruling out the involvement of E2 eRNA in
the establishment of enhancer-promoter looping and enhance-
ment of chromatin accessibility. Therefore, it is possible that

the E2 eRNA increases IL-1� transcription through releasing
the negative elongation factor complex from the promoter or
still unknown mechanisms. We also showed that synthesis of
both IL-1� eRNA and mRNA required NF-�B activation (Fig.
3D) and acetylation reader proteins, such as BRD2/4 (Fig. 7C).
These results are in line with previous studies shown that
NF-�B binds to cis-regulatory elements at enhancers (79) and
BRD4 binds to NF-�B (p65; acetylated at Lys-310), which is
required for its transactivation activity (80).

Overall, this study demonstrated that PU.1 induced enhanc-
er-promoter looping and H3K27ac, with distinct regions of the
activation domain. Both of these events were independently
necessary for the subsequent signal-dependent and mutually
dependent events: recruitment of NF-�B and induction of fur-
ther H3K27ac, both of which were required for eRNA produc-
tion and subsequent IL-1� mRNA transcription (Fig. 8). PU.1
has various developmental and pathogenic functions through
different domains and mechanisms (52, 81). Especially,
improper regulation of inflammatory cytokines, such as IL-1�
transcription, has been shown to be involved in endotoxin
shock, sepsis, and infection (7, 48). Identification of other epi-
genetic events and factors involved in the paradigm proposed
herein warrants further studies. Also, unraveling the role and
mechanism of PU.1 in specific gene regulation will be crucial
for understanding the multifaced developmental and patho-
physiological function of PU.1.

Experimental procedures

Materials and reagents

LPS (from E. coli O111:B4) and LTA (from S. aureus) were
purchased from List Biological Laboratories and Sigma-Al-
drich, respectively; poly(I:C) and CpG oligonucleotides were
from InvivoGen. The ERK inhibitor U0126, p38 inhibitor
SB203580, JNK inhibitor, NF-�B inhibitor, and BRD2/4 inhib-
itor (JQ1) were obtained from APExBIO Technology, Selleck
Chemicals, EMD Millipore, Calbiochem, and Cayman chemi-
cals, respectively. Antibodies for phospho-p38, phospho-ERK,
and phospho-I�B were from Cell Signaling Technology; �-ac-
tin antibody was from Rockland Inc.; and pan-histone H3 anti-
body was from Bio Vision. Antibodies raised against PU.1 C
terminus were obtained by Dr. DeKoter, and the PU.1 N termi-
nus and C/EBP� were obtained from Santa Cruz Biotechnol-
ogy, Inc. H3K27ac antibody was from Active Motif, and anti-
NF-�B (p65) was from eBioscience. Mouse PU.1 plasmids used
in this study, pcDNA3-HA-PU.1, MIG-PU.1 (WT), MIG-PU.1
(
2–30), MIG-PU.1 (
33–74), MIG-PU.1 (
75–100), MIG-
PU.1 (
1–100), MIG-PU.1 (
118 –167), and DNA binding
inactive PU.1 (pLVX-human PU.1 (R230A/R233A)) were con-
structed using standard cloning techniques. Murine transcrip-
tion factor C/EBP�-encoded plasmid (p67_pMSCV_C/EBP�–
IRES-hCD4) was donated by Dr. Thomas Graf (Center for
Genomic Regulation, Barcelona, Spain). Scrambled (product
300610; AACACGTCTATACGC) and eRNA-specific locked
nucleic acid ASO (product 300600; CAATCCTGGTTGA-
TGA) against pro-IL-1� eRNA were obtained from Exiqon.
DpnII, T4 DNA ligase, and T4 DNA ligase buffer, used for 3C
analysis, were from New England Biolabs. RNase A was from

IL-1� enhancer remodeling by PU.1

17496 J. Biol. Chem. (2019) 294(46) 17487–17500



Qiagen. Proteinase K, phenol:chloroform:isoamyl alcohol, and
protein G Dynabeads were purchased from Invitrogen. Halt
protease inhibitor mixture, cOmpleteTM EDTA-free protease
inhibitor mixture, and phosphatase inhibitor mixture (phosS-
TOP) tablets were obtained from Thermo Scientific and Roche
Applied Science.

Cell culture and transfection

B16 and RAW cells were cultured in RPMI 1640 and Dulbec-
co’s modified Eagle’s medium, respectively, supplemented with
10% fetal bovine serum (Sigma-Aldrich), 10 mM minimal essen-
tial medium nonessential amino acids, 1 mM sodium pyruvate,
100 IU/ml penicillin, and 100 �g/ml streptomycin. Plasmid
transfection was carried out using PolyJet (SignaGen Laborato-
ries) according to the manufacturer’s instructions. Briefly,
5.0 � 105 B16 cells were plated on 6-well plates and cultured 1
day prior to transfection. Cells were replaced with fresh culture
medium and transfected with plasmids for 5 h. Cells were fur-
ther cultured for 16 –18 h with an additional cell culture
medium. Cells were then replated and cultured for an addi-
tional 24 h, followed by cell treatments. For ASO transfection,
B16 cells transfected with pcDNA3-HA-PU.1 or RAW cells
were retransfected with scrambled or eRNA-specific ASO (250
pmol) for 20 –24 h using Lipofectamine RNAiMAX (Invitro-
gen) according to the manufacturer’s instructions. Cells were
then replated and stimulated with LPS (100 ng/ml) for the time
indicated.

Immunoblotting

Preparation of total cell lysates and immunoblotting were
performed as reported previously (82).

RT-qPCR

eRNA or mRNA expression was quantified via/by qPCR as
reported previously (83). qPCR analysis was performed with the
Rotor-Gene RG3000 quantitative multiplex PCR instrument
(Montreal Biotech) using PowerUPTM SYBR� Green Master Mix
(Applied Biosystems), and gene expression levels were estimated
using a 

Ct method. Data were expressed as -fold change com-
pared with the lowest detected sample value in each experiment,
unless otherwise described. For 3C assay quantification, dual-la-
beled TaqMan probe (5�-/JOETM/TCGTTCACC/ZENTM/ACC-
TTTGCACTGTGCAAC/BkFQTM/-3�; synthesized by Inte-
grated DNA Technologies) and Hot Start Taq DNA polymerase
(New England Biolabs) were used. Primer sequences used for
qPCR are listed in Table S1.

ddPCR

ddPCR was carried out using a Bio-Rad system. First, total
RNAs were reverse-transcribed using Moloney murine leuke-
mia virus reverse transcriptase (New England Biolabs) and ran-
dom hexamers. Oil droplets were then generated using
QX200TM ddPCRTM EvaGreen supermix (Bio-Rad) and drop-
let generation oil for EvaGreen (Bio-Rad) and QX200TM drop-
let generator (Bio-Rad) according to the manufacturer’s
instructions. The generated oil droplets were transferred onto a
ddPCRTM 96-well plate (Bio-Rad), and subsequently PCR was
carried out using a C1000 TouchTM thermal cycler (Bio-Rad).

EvaGreen fluorescence was acquired and analyzed using a
QX200 droplet reader (Bio-Rad) and QuantaLife software.

ChIP assay

ChIP analysis was conducted as described previously (84).
Briefly, cells transfected with plasmids were replated in 10-cm
cell culture dishes and cultured for 16 –18 h. Cells exposed with
or without LPS (100 ng/ml) for 4 h were fixed with 1% formal-
dehyde, lysed, sonicated, and immunoprecipitated with N ter-
minus PU.1 (Santa Cruz Biotechnology, Inc.), H3K27ac (Active
Motif), and NF-�B (p65; eBioscience) antibodies. DNAs were
purified after de-cross-linking by overnight heating at 65 ºC
and then subjected to qPCR analysis. Primers used for ChIP-
qPCR are listed in Table S1.

CRISPR/Cas9 plasmid construction

Genome editing using a CRISPR/Cas9 system and design-
ing guide RNA sequences was carried out as described pre-
viously (85). The oligonucleotides used to construct guide
RNAs for deleting the eRNA and PU.1-binding sites are
listed in Table S1. Annealed oligonucleotides for each
CRISPR target were inserted into the BbsI restriction site of
the guide RNA expression vector pSpCas9(BB)-2A-puro
(Addgene, catalog no. 48138).

CRISPR-eRNA and CRISPR-PU.1 cell preparation and validation

B16 cells were transfected with CRISPR constructs. CRISPR/
Cas9 constructs targeting �11,843 and �10,833 bp from the
IL-1� TSS were used to delete the eRNA encoding region
(CRISPR-eRNA cells); CRISPR/Cas9 constructs targeting
�10,833 and �9,824 bp were used to delete the PU.1-binding
sites (CRISPR-PU.1 cells). B16 cells transfected with the pSp-
Cas9 (BB) empty plasmid were used as control cells. Cells trans-
fected with these constructs were cultured for 24 h and exposed
to puromycin (2 �g/ml) for 72 h. Surviving cells were pooled,
and gene editing was validated. For CRISPR gene-editing vali-
dation, genomic DNAs were prepared, and PCR was carried out
by standard PCR protocols.

DNase I hypersensitivity assay

Nuclei preparation and DNase I digestion were carried out as
described previously (86, 87) with minor modifications. Briefly,
3.0 � 106 cells were lysed on ice in 3 ml of ice-cold lysis buffer
(10 mM Tris, pH 8.0, 10 mM NaCl, 5 mM MgCl2, 10 mM EDTA,
0.5 mM EGTA, 0.5 mM spermidine, 0.1% Nonidet P-40) supple-
mented with cOmpleteTM EDTA-free protease inhibitor mix-
ture for 10 min. Cell lysates were centrifuged at 500 � g for 10
min, and pellets were washed with 2 ml of DNase I reaction
buffer (10 mM Tris, pH 7.5, 2.5 mM MgCl2, 0.1 mM CaCl2) and
divided into two. After recentrifugation, nuclei pellets were
resuspended in DNase I reaction buffer (100 �l) containing 20
units of DNase I (Thermo Scientific). After incubating at 37 ºC
for 20 min, an equal volume of stop buffer (100 mM EDTA, 0.5%
SDS) was added. RNase A (15 �g) was then added to each sam-
ple and incubated at 54 ºC for 15 min. These samples were
further incubated together with proteinase K (30 �g) for 5 h.
DNAs were extracted by standard phenol:chloroform:isoamyl
alcohol protocols. DNA pellets were resuspended in Tris-
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EDTA buffer and quantified using a NanodropTM spectropho-
tometer. Accessibility of DNase I was analyzed by qPCR using
the primer sequences listed in Table S1.

3C assay

3C analysis was conducted as described previously (51, 88)
with minor modifications. Briefly, �5.0 � 106 B16 cells and
�1.0 � 107 RAW cells were harvested to cross-link DNA with
formaldehyde (final 1.2%) for 10 min at room temperature.
Cross-linking was then terminated by glycine (final 0.125 M) on
ice. Cells were then lysed by lysis buffer (ice-cold, 10 mM NaCl,
10 mM Tris (pH 8.0), 0.2% Nonidet P-40, and cOmpleteTM

EDTA-free protease inhibitor mixture), and nuclei pellets were
prepared by centrifugation, followed by snap freezing. Frozen
nuclei were thawed in 500 �l of the DpnII restriction enzyme
buffer containing 0.3% SDS and incubated at 37 ºC for 1 h with
shaking, followed by the addition of Triton X-100 (final con-
centration 2.0%) and further incubation for 1 h. An aliquot (10
�l) of undigested DNA was saved for determining digestion
efficiency. The remainder was exposed to 400 units of DpnII per
sample at 37 ºC with shaking. After 24 h, an aliquot (10 �l) of
digested DNA was saved for determining digestion efficiency,
and the remainder was incubated at 65 ºC for 25 min to inacti-
vate the restriction enzyme. Digested DNAs were then diluted
with 6.125 ml of 1.15� ligase buffer containing Triton X-100
(final concentration 1.0%) and exposed to 800 units of T4 DNA
ligase at 16 ºC for 72 h. After inactivating the ligase by EDTA,
DNAs were de-cross-linked by proteinase K at 65 ºC for 16 –18
h and additional fresh proteinase K treatment for 2 h. DNAs
were then purified using phenol:chloroform:isoamyl alcohol
and subsequently with chloroform. The DNA pellets were
resuspended in 10 mM Tris-HCl (pH 8.0) after washing with
70% ethanol and incubated with RNase A for 45 min at 37 ºC.
After purifying and washing DNAs, 3C library DNAs were ana-
lyzed for interactions between enhancer and promoter by Taq-
Man qPCR. The constant primer and TaqMan probe targeted
the promoter (or constant) fragment, and the test primers tar-
geted the 16 candidate fragments (Fig. 5A). These primer
sequences are listed in Table S1.

Statistical analysis

Data were analyzed using GraphPad Prism 4.0 (GraphPad
Software). The results are presented as the mean � S.D. of
two or three independent repeats. Statistical significance was
defined as p 	 0.05 (*).
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