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Mixture Model Mapping of Brain Activation
in Functional Magnetic Resonance Images
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Abstract: We report on a novel method of identifying brain regions activated by periodic experimental
design in functional magnetic resonance imaging data. This involves fitting a mixture distribution with
two components to a test statistic estimated at each voxel in an image. The two parameters of this
distribution, the proportion of nonactivated voxels, and the effect size can be estimated using maximum
likelihood methods. Standard errors of the parameters can also be estimated. The fitted distribution can be
used to derive brain activation maps and two examples are described, one involving a visual stimulation
task, the other an auditory stimulation task. The method appears to have some advantages over direct use
of the P-values corresponding to each voxel’s value of the test statistic. Hum. Brain Mapping 7:1-14,

1999.  ©1999Wiley-Liss, Inc.

Key words: finite mixture model; brain activation mapping; fMRI; alternative hypothesis

4

INTRODUCTION

There is already an extensive literature on statistical
methods for the analysis of functional magnetic reso-
nance images of the brain [e.g., Rabe-Hesketh et al.,
1997]. In general, these methods involve estimating
some measure of the experimentally determined signal
at each voxel of the image, and testing this statistic
against its null distribution. The usual approach is then
to consider a voxel “activated” by the experimental
design if its test statistic has an associated P-value
which is lower than some predetermined threshold.
Within this general framework, opinions differ as to
the most suitable model for the experimental effect;
the most appropriate way of fitting a model to time
series data that are likely to demonstrate residual, i.e.,
unmodelled, temporal autocorrelation; and how to
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choose the threshold P-value against which to judge
departure from the null hypothesis of no activation.

In this paper, we introduce an alternative approach
for identifying activation in the voxels of an image,
which involves fitting a simple finite mixture model
[Everitt and Hand, 1981] to the observed distribution
of the estimated test statistics. The mixture has two
components, one corresponding to the distribution of
the test statistic under the null hypothesis of no
activation, and the other to its distribution under the
alternative hypothesis of activation. Each component
is explicitly specified to have a particular form. The
parameters in the proposed model can be estimated by
maximum likelihood methods and their standard er-
rors obtained simply from the inverse of a Hessian
matrix. The results from fitting the model are estimates
both of the proportion of activated voxels, and of the
overall effect size, i.e., the parameter that characterizes
the activation distribution. In addition, for each voxel,
an estimated posterior probability that it is activated
can be determined. These probabilities can be used to
produce activation maps.
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FORMULATION OF A MIXTURE MODEL

Bullmore et al. [1996] showed that the magnetic
resonance (MR) signal change induced by periodic
experimental design can be modelled by the sum of a
sine wave and a cosine wave at the experimentally
determined frequency of alternation between contrast-
ing cognitive or sensorimotor conditions. The ampli-
tude of the sine wave y may be understood to measure
the magnitude of MR signal change related to neural
activation, and the amplitude of the cosine wave & to
measure hemodynamically mediated delay. From these
two amplitudes, Bullmore et al. [1996] derived a test
statistic, the fundamental power quotient (FPQ), which
they use as the basis of separating voxels into activated
and nonactivated. The statistic is given by
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where ¥ and § are estimates of v and & and & is an
estimate of the assumed common standard error of
each estimate. Under the null hypothesis of no experi-
mentally determined signal change (nonactivation),
TFPQ = 2 X FPQ has a chi-squared distribution with
two degrees of freedom. In the presence of an experi-
mental effect in a voxel (activation) there will be an
increase in amplitude of the sine wave but no corre-
sponding increase in the amplitude of the cosine wave.
In this case then, ¢ is assumed to have a normal
distribution with zero mean and unit variance, and ¢ a
normal distribution with mean greater than zero (say
W), but again with a variance of one. Consequently in
the presence of an experimental effect the test statistic,
TFPQ will have a noncentral chi-squared distribution
with noncentrality parameter A = p? and again two
degrees of freedom.

It follows, therefore, that the distribution of the test
statistic over all voxels in an image, both activated and
not activated, can be modelled by a mixture of these
two component distributions: chi-squared with two
degrees of freedom and the appropriate noncentral
chi-squared. If p denotes the proportion of nonacti-
vated voxels in an image comprising N voxels in total,
the mixture distribution can be written down more
formally as follows:

fO 1, p) = phu(x) + (1 — p)fa(x; W) )

where f; is the appropriate chi-squared (null) distribu-
tion and f, the appropriate noncentral chi-squared

TABLE I. Results from fitting the mixture model to three
simulated data sets*

p M p (SE) {1 (SE)
Data set 1 0.5 4 0.487 (0.017) 4.00 (0.052)
Data set 2 0.5 2 0.483 (0.045) 2.01 (0.095)
Data set 3 0.2 2 0.258 (0.045) 2.02 (0.074)

* Initial parameter values used in all cases were the values used to
generate the data. Each data set consisted of 1,000 observations.

(alternative) distribution. Explicitly, f, and f, are as
follows:

f(x) = ; e 7 X 3)
1 X
) =5e 1N S )

If the observed values of the test statistic are repre-
sented as Xy, Xy, ..., Xn, the log-likelihood of the data (L)
is given by:

L= E log f(x;; 1, p) ®)

The parameters p and i may be estimated in the usual
way by maximizing L, using any one of a variety of
optimization methods. The method used in the numeri-
cal examples given later is from Gay [1984] and is
implemented in S-Plus as the function nlminb. This
method maximizes L, constraining p to lie in the
interval (0,1).

Having found estimates of p and p (p and f1), an
estimated posterior probability for activation can be
assigned to each voxel using

(1 — P)fa(xi; 1, )
f(xi; 01, P)

Pr(activated|x;) =

(6)

where Xx; represents the value of the test statistic TFPQ
for voxel Pi. All voxels in the image which have an
estimated posterior probability of activation greater
than some arbitary threshold value-a value of 0.5
would appear to be an obvious choice, can then be
classified as activated.

MIXTURE MODELLING OF SIMULATED DATA

Three data sets were simulated by sampling N=1,000
observations from the distribution f(x;y,p), defined in
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Figure 1.

Observed histograms and fitted (solid line) distributions for three sets of data, each with 1,000
observations simulated from the mixture distribution defined in Equation (2). Data set 1, p = 0.5,
U =4;dataset2,p =05 =2, dataset3,p=0.2,u= 2.
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Figure 2.
Observed distribution (histogram) and fitted mixture distribution (solid line) for the statistic
TFPQ = 2 X FPQ observed at 26,535 voxels in the visual stimulation data.

Equation (2). The data sets differed in terms of the
proportion of nonactivated voxels, p, and the size of
the noncentrality parameter, A = p2 The results are
shown in Table I. Identical parameter estimates to
those shown were obtained from a number of different
starting values for the two parameters. For accurate

estimates, large sample sizes are likely to be needed-
when p is far from 0.5 and/or p is small. For imaging
data, however, this is unlikely to be a problem since the
number of voxels, N, will in general be large. The
histograms of the observations and the fitted distribu-
tions are shown in Figure 1.
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Figure 3.

Mixture model activation map of visual simulation data derived from estimated posterior
probabilities of activation for the 26,535 voxels. Threshold for the posterior probabilities = 0.5. Each
slice of data is displayed in the standard anatomical space of Talairach and Tournoux [1988].
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Figure 4.
Activation map for visual stimulation data derived from thresholding the P-values of the statistic

TFPQ at 0.05.
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Figure 5.
Activation map for visual stimulation data derived from thresholding the P-values of the statistic TFPQ at
0.01.
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Figure 6.
Perspective plots of estimated posterior probabilities of activation for four slices of the visual

stimulation data.

(Experience on simulated data sets suggested that

the number of terms necessary to accurately evaluate f,
given by Equation (4), for the values of u likely to be
encountered in practice, is at least 20.)

Standard errors of the parameters can be found
relatively simply from the inverse of the estimated
Hessian matrix (for details see Appendix). The esti-

TABLE Il. Parameter estimates for visual stimulation

fMRI data*
Starting values Final values
p f p (SE) {1 (SE)
1 0.8 3 0.9659 (0.0018)  3.467 (0.0559)
2 0.8 5 0.9659 (0.0018)  3.467 (0.0559)

* Upper limit for r in Equation (4) was set at 25.

mated standard errors for the three simulated data sets
are shown in Table I.

MIXTURE MODELLING OF FMRI DATA

Functional MRI data were acquired on a GE Signha
1.5 T system (General Electric, Milwaukee, WI) retro-
fitted with an ANMR operating console (ANMR,
Woburn, MA) at the Maudsley Hospital, London. One
hundred single-shot T3-weighted gradient echo echo-
planar images depicting blood oxygen level-depen-
dent (BOLD) contrast [Ogawa et al., 1990] were ac-
quired at each of 14 near-axial noncontiguous planes
parallel to the AC-PC line: TE = 40 msec, TR = 3 sec,
in-plane resolution = 3 mm, slice thickness = 7 mm,
interslice skip = 0.7 mm, number of signal averages = 1.

Images were acquired from a healthy male volunteer
during the following periodically designed experi-
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Figure 7.
Perspective plots of 1 - P-value for the statistic TFPQ for four slices of the visual stimulation data

ments, each of which involved a regular and repeated After motion correction [Brammer et al., 1997], the
contrast between two (A and B) contrasting sensory fMRI time series, [Y{, t = 1,2, 3, ..., 99, at each voxel
conditions: was fitted to the following sinusoidal regression model:

e Visual stimulation: A, the subject was exposed to Yi = ysin (o) + 3 cos (wt)

30 sec of 8 Hz photic stimulation; B, the subject . ,

was exposed to 30 sec of darkness. This cycle was ' sin (2wt) 43" cos (201)

repeated 5 times in thel course of a 5-_m|n experi- + 7 sin (3ot) + (30t)

ment. The subject was instructed to lie quietly in

the scanner with his eyes open. +a+Bt+p @
® Auditory-verbal stimulation: A, the subject heard

a written narrative read aloud to him for 39 sec; B, where o is the angular frequency of alternation be-
the subject heard nothing but the continuous

tween experimental conditions (2 «/60 radians in
background noise of the scanner for 39 sec. The these data), and « + Bt represents a (nuisance) linear
cycle was repeated <5 times in the course of a trend. Since the residual terms {p] are temporally
5-min experiment. The subject was instructed to autocorrelated, the model is fitted by pseudogeneral-
lie quietly in the scanner. ized least squares, modelling the residuals as a first-
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Figure 8.
Plot of 1 - P-values against posterior probabilities for all voxels of
the visual stimulation data.

order autoregressive process [Bullmore et al., 1996]. An
estimate of the standardized power at fundamental
frequency w was derived at each voxel from the
estimated coefficients ¥, 8 as in Equation (1), and
represented in a parametric FPQ map. FPQ maps were
interpolated to 21 slices and registered in the standard
space of Talairach and Tournoux [1988] as described by
Brammer et al. [1997].

For the visual stimulation data, this analysis yielded
26,535 estimates of the test statistic TFPQ at 21 near-
axial slices through the brain. The overall distribution
is illustrated by a histogram in Figure 2.

Fitting the mixture model given by Equation (2) to
these data with two different sets of starting values for
the two parameters, p and J, gives the results shown in
Table I1. The final values obtained are identical in each
case, although the number of iterations of the optimiza-
tion technique needed to reach these values differed.
The estimated standard error of p is very small and
leads to an approximate 95% confidence interval for
the parameter of (0.9623, 0.9695). The corresponding
confidence interval for the parameter p calculated
from its estimated standard error is (3.3452, 3.5788).
(The estimated covariance between the parameter
estimates was 0.000059; it must be remembered that
because of spatial correlations of the TFPQ statistic in
fMRI data, that the standard errors of the two param-
eters in the mixture are likely to be underestimated.

Correcting the resulting confidence intervals to allow
for spatial correlation will be taken up in a later paper.)
The fitted distribution is superimposed on the ob-
served histogram in Figure 2.

Using the estimated parameter values in Equation
(6), estimated posterior probabilities of activation were
calculated. Voxels having values above 0.5 were col-
ored black, against a white background of nonacti-
vated intracerebral voxels, to form a simple mixture
model map of brain activation; see Figure 3 for selected
slices. This may be compared with the corresponding
maps obtained from thresholding the P-values of the
test statistic directly at 0.05 (Fig. 4) and 0.01 (Fig. 5).
The latter is very similar to the mixture model map.

A more dramatic image of the activation can be
obtained from a perspective plot of the posterior
probabilities of activation for particular slices, as shown
in Figure 6. (Bivariate interpolation, using the method
described in Akima [1978], was used to produce these
plots.) It is of interest to compare these with perspec-
tive plots of one minus the P-value for each pixel, for
the same slices (Fig. 7); the areas of activation are now
not so immediately apparent. The explanation of the
difference is seen if 1 - P-values are plotted against
posterior probabilities for all the voxels (see Fig. 8).
The initial steepness of the graph shows that posterior
probabilities close to zero map to 1 - P-values from
0-0.9 and above.

1-P-value
0.996 0.998 1.000
! |

0.994
|

0.992
|

0.4 05 06 07 0.8 09 1.0

Posterior probabilities

Figure 9.
Plot of 1 - P-values against posterior probabilities for voxels for
which the latter is greater than 0.4 (visual stimulation data).
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Figure 10.
Mixture model activation map of auditory stimulation data derived from the estimated posterior
probabilities of activation for the 28,317 voxels, thresholded at 0.5.

By replotting Figure 8 for only those voxels with For these data, a posterior probability of 0.5 is seen to
posterior probabilities of activation above 0.4 (see be equivalent to a P-value of approximately 0.008; this
Fig. 9), the equivalence of P-values and posterior is the reason, of course, why Figures 3 and 5 are very

probabilities in the area of most interest is displayed. similar.
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Figure 11.
Perspective plots of estimated posterior probabilities of activation for four slices of the auditory

stimulation data.

Moving on to the auditory data which consisted of
28,317 estimates of TFPQ at 22 near-axial slices through
the brain, the parameter estimates and their estimated
standard errors were p = 0.997 (0.000387), (I = 4.852
(0.144563). Here the estimated proportion of activated
pixels is very small. The resulting mixture model map
for 15 slices is shown in Figure 10, and the perspective
plots of posterior probabilities of activation for the
most interesting slices in Figure 11.

For this example, the plot corresponding to Figure 9
is shown in Figure 12,

In this case, the P-value equivalent to a posterior
probability of 0.5 is approximately 0.00023.

DISCUSSION

The proposed method is novel in the context of
existing statistical methods for functional MR image

analysis because it entails explicit consideration of the
alternative distribution of a test statistic, as well as its
null distribution. The particular mixture model we
have specified in this paper is applicable to the distri-
bution of standardized power at the (fundamental)
frequency of alternation between baseline and activa-
tion conditions in a periodic experimental design.
Under the null hypothesis (of no experimentally deter-
mined effect), we have modelled the distribution of the
fundamental power quotient (FPQ), multiplied by a
factor of two, as chi-squared with two degrees of
freedom. Under the alternative hypothesis (of experi-
mentally determined signal change or “activation”),
we have modelled the distribution of 2 X FPQ as
noncentral chi-squared with two degrees of freedom.
The technique could easily be extended to other
relevant test statistics having null and alternative
distributions different from those used here. By using a

¢ 12 ¢
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Figure 12.
Plot of 1 - P-values against posterior probabilties for voxels for
which the latter is greater than 0.4 (auditory stimulation data).

mixture with more than two components, the method
could also be extended to situations where it was
believed that voxels activated in several, widely sepa-
rated regions of the brain were not distributed under a
single alternative distribution, but under two or possi-
bly more alternative distributions.

The results of fitting a mixture distribution to fMRI
data are of interest for two main reasons.

First, mixture model parameters summarize the
experimental effect over the whole image in a holistic
and unconditional way. The estimated parameters, 1 -
p and [i, have a ready interpretation in terms of the
proportion of activated voxels in the image and the
“average” size of the experimental effect over all
activated voxels. They could therefore potentially be
used as omnibus statistics to summarize the experimen-
tal response over an entire image, or to compare the
extent and/or strength of response between two groups
of images. As omnibus statistics, estimated mixture
model parameters have a number of attractive proper-
ties. They have, for example, an associated measure of
their variability, namely the standard errors estimated

from the Hessian matrix (although note previous
caveat about exaggerated precision). These can be
used to produce confidence intervals for each param-
eter. A confidence interval for p that included the value
one would be indicative of no activation. Additionally,
the values at the upper ends of the two confidence
intervals could be used to produce “conservative”
activation maps if required. To compare two groups of
images, estimated p and p values for each image could
be used to calculate group means, and then a confi-
dence interval for their difference could be calculated
from the estimated standard errors associated with
each image.

Second, the estimated posterior probabilities of acti-
vation assigned to each voxel by the mixture model
approach appear to identify activated regions far more
distinctly than the P-values associated with the test
statistic of each voxel. In Figure 6, for example, the
peaks of activation in the occipital cortex rise steeply
from a flat plateau of unactivated brain regions; this
picture contrasts dramatically with the much less
informative perspective plot of 1 - P-values for the
same data shown in Figure 7.

Both the mixture approach and the direct use of
P-values are, in essence, “thresholding” techniques,
and from plots such as those shown in Figures 8 and 9
itis possible to assess the equivalence between particu-
lar posterior probability values and P-values. So, for
example, if a posterior probability threshold of 0.5 was
used for most data sets (and in the absence of informa-
tion about the costs of identifying activated voxels as
nonactivated and vice versa, this value seems sen-
sible), it could, by applying the mixture method, be
converted into the corresponding P-value for each
particular data set. Some investigators (including the
current authors) might find this a more appealing
approach than searching for an acceptable correction
to apply to the P-values.

CONCLUSIONS

The mixture model approach described in this paper
appears to be a simple but relatively effective approach
to the problem of identifying areas of activation in
fMRI experiments, given the values of a particular
statistic estimated at each wvoxel. Activation maps
derived from the estimated posterior probabilities are
equivalent to those derived directly from the P-values
of the test statistic for some particular threshold signifi-
cance level. The advantages of the mixture approach
are that it avoids the need to consider how to correct
P-values and it provides standard errors for the esti-
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mated parameters that might be used to provide a
range of activation maps from *“generous” to “conser-
vative.”

In addition to deriving activation maps for indi-
vidual subjects, the estimated parameters that result
from the mixture model might also be useful for
comparing activation between different groups of sub-
jects, and for characterizing individual images. By
introducing different and/or more component distribu-
tions into the mixture, the approach should be capable
of modelling other aspects of fMRI data.
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APPENDIX

Calculating standard errors for the mixture
model parameters

The Hessian matrix H that leads to standard errors
for the parameter estimates in the proposed mixture
model is defined as follows:

2L 9oL

op?  IpIp
H =

2L 9L

pop  op?

where L is the log-likelihood. Substituting estimated
parameter values in the elements of H! gives the
estimated covariance matrix of the two parameters.
Standard errors are found from the square roots of the
diagonal elements.

The elements of H are obtained from the following:

N
L = > log f(x; p, W)

i=1

aL ifl(x)f (xl)fZ(X)
92'— _ ,EN‘; [f1(Xi[)f(;i)f]zz(Xa)]2
6(3126Lp il f(i) af;ﬁq) ([f(;);) af;ﬁ(i) [f:x) = R04)]
L 2(1]c ,)p) af;(:.)
z%; —e- p)z f(i.) aZ;iXI) ([f(;);)z) o 2]

The terms [9f,(x;)]7 9 and [9%F,(x;)]/ 92 needed to evaluate
each of the above are given by

af;ﬁ(i) = —pfy(x;) + % ez (XTN),
9%F,(%) (%)
aw - Mo
) [af;(x‘) 0| + 5o dON),
where
= 2rpr ik
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r
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