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Abstract: Spatial normalization in functional imaging can encompass various processes, including
nonlinear warping to correct for intersubject differences, linear transformations to correct for identifiable
head movements, and data detrending to remove residual motion correlated artifacts. We describe the use
of AIR to create a custom, site-specific, normal averaged brain atlas that can be used to map T2 weighted
echo-planar images and coplanar functional images directly into a Talairach-compatible space. We also
discuss extraction of characteristic descriptors from sets of linear transformation matrices describing head
movements in a functional imaging series. Scores for these descriptors, derived using principal
components analysis with singular value decomposition, can be treated as confounds associated with each
individual image in the series and systematically removed prior to voxel-by-voxel statistical analysis. Hum.
Brain Mapping 8:73–78, 1999. r 1999Wiley-Liss,Inc.
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INTRODUCTION

The ability to map functional imaging data from
different subjects into a common anatomic frame of
reference has become an indispensable aspect of analy-
sis and reporting of human brain mapping data.
Despite well-documented imperfections in fully ac-
counting for anatomic differences between subjects,
the ability of even simple linear transformations to
improve statistical power, to allow results to be gener-
alized from individuals to populations, and to facili-
tate communication of anatomic locations between
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laboratories has been established with certainty. In this
context, continued validation and improvement in
methods for mapping data into a common space is of
major importance.

For functional imaging studies that seek to make
inferences about groups or populations, the issue of
anatomic standardization arises in two fairly different
contexts. The first of these is the context of correcting
for changes in head position within each individual
subject. To a large extent, these corrections can proceed
with considerable accuracy on the assumption that the
head acts as a rigid body that is merely rotated and
translated in space. A variety of methods can be used
to estimate these movements, and the data can be
corrected posthoc to compensate for a substantial
amount of the error that such movements produce.
However, interpolation errors will generally persist
under even the best of circumstances, and movements
at certain frequencies can interact with the physics and
temporal dynamics of image acquisition protocols to
produce artifacts that are difficult to model and correct
on the basis of first principles.

The other context in which anatomic standardiza-
tion arises in functional imaging is the correction of
anatomic differences between subjects. This context is
considerably more complex because the processes that
govern brain development are not constrained by
mathematical equations or simple physical principles,
but rather are dictated by complex interactions of
genes and the environment. The notion that some
straightforward mathematical equation derived a priori
might have special validity for mapping one person’s
brain onto the brain of another is implausible in view
of our current understanding of brain development.
Indeed, even the notion that it is possible to map one
brain onto another in some uniquely appropriate
manner is unlikely. For example, it has become clear
that homologies based on sulcal and gyral landmarks
can conflict with homologies based on cytoarchitec-
tonic boundaries. Any mapping from one individual to
another is guaranteed to be only an approximation
since different criteria are often mutually contradic-
tory.

The challenge faced when attempting to analyze
functional imaging data is, therefore, largely a chal-
lenge of underconstraint with respect to anatomic
standardization. On an individual basis, rigid body
assumptions constrain the spatial transformation
model, but interactions between the underlying move-
ments and signal collection and interpolation result in
intensity variations that need to be modeled empiri-
cally. Across subjects, it is the spatial transformation
itself that can be approximated only by some math-

ematical model that is typically far more constrained
than the underlying developmental processes. New
methods for improving the modeling of these factors
requires validation that recognizes their undercon-
strained nature and provides a pragmatic sense of their
utility. We have recently described detailed validations
of automated methods for registering images both
within and across subjects [Woods et al., 1998a, b].
Here, we detail the application and extension of these
methods to the specific problem of analysis of func-
tional imaging data.

MATERIALS AND METHODS

T1 and T2 EPI image acquisition

All data were collected in accordance with protocols
approved by the UCLA Human Subject Research
Protection Committee. Ten normal subjects recruited at
UCLA as part of the Human Brain Project International
Consortium for Brain Mapping (ICBM) were identified
and used to create conventional T1 and echo-planar T2
weighted average brain atlases. Subjects were aged
18–40 years and had normal neurologic examinations.
All images were acquired on a 3 Tesla GE MRI scanner
equipped with ANMR (Willmington, MA) echo-planar
imaging (EPI) capabilities. The T1 weighted images
were acquired as 1 NEX 3D spoiled grass images with
TR 5 24 msec and TE 5 4 msec and a field of view of
250 mm by 250 mm by 150 mm. The echo-planar T2
weighted images were collected with TE 5 65 msec,
TR 5 4,000 msec 4 NEX, 128 3 128 matrix with a 20 cm
field of view and 26–27 interleaved 4 mm slices with 1
mm gaps between slices, parameters that reproduce a
protocol routinely used at our center for routine fMRI
studies. A subset of these T2 image slices is subse-
quently used for acquisition of coplanar functional
data in fMRI studies.

T1 atlas

The T1 images for each subject were manually
edited to remove the scalp, skull, and dura. These
images from different subjects were then aligned to
one another using the same general strategy that has
been previously described [Woods et al., 1998a, b]. This
strategy began with pairwise affine registration of each
subject to all other subjects and reconciliation of
internal inconsistencies among these pairs before cre-
ation of an initial affine average atlas. Three additional
intermediate linear atlases were created iteratively by
registering each of the original 10 T1 weighted images
to the current averaged atlas. Transformation matrix

r Woods et al.r

r 74 r



averaging techniques were used to assure that the size
and affine shape of the averaged atlases reflected the
average size and affine shape of the original 10 sub-
jects. Three further iterations allowed for nonlinear
warping in registration of the individual T1 weighted
images to the current intermediate averaged atlas.

The nonlinear warping methods have been de-
scribed previously [Woods et al., 1998b], but were
extended here to allow polynomial transformations as
high as eighth order (495 independent parameters).
The top of the anterior commissure and the bottom of
the posterior commissure was identified in each of the
original T1 weighted images and the coordinate loca-
tion of these two landmarks was mapped into the third
nonlinear intermediate averaged atlas using the fitted
registration parameters. The coordinate locations for
all 10 anterior commissures were then averaged to
identify the mean location of this landmark in the third
nonlinear intermediate averaged atlas. The posterior
commissures were mapped similarly. The third nonlin-
ear averaged atlas was then recreated with application
of a rigid body transformation that would place the
average anterior and posterior commissures and the
midsagittal plane into the orientation specified by
Talairach et al. [1967] and Talairach and Tournoux
[1988]. Finally, scaling factors along the three cardinal
axes were computed sufficient to match the extent of
the brain along each of these axes to the corresponding
dimension in the 1988 Talairach atlas. These scaling
factors were mathematically combined with all previ-
ous linear and nonlinear transformations and used to
resample each original T1 weighted image into a
Talairach compatible frame of reference. These resam-
pled images were then averaged to create a final T1
weighted atlas. From the standpoint of which points
were treated as homologous across subjects, this atlas
was identical to the third nonlinear intermediate aver-
aged atlas.

T2 EPI atlas

Each T2 weighted echo-planar image was registered
to the corresponding original T1 weighted image from
the same subject [Woods et al., 1993], and this transfor-
mation was combined mathematically with the trans-
formation need to map the T1 image into the final T1
atlas. All registrations of the T2 images to the T1
images were inspected manually to assure that the
geometric and susceptibility artifacts associated with
high field strength echo-planar imaging did not dis-
rupt the registration. This combined transformation
was then used to resample each original, unedited T2
weighted image into the same space as the final T1

weighted atlas. The 10 transformed T2 weighted im-
ages were then averaged together to create a final
nonlinear T2 EPI averaged atlas. Further adjustments
to the transformation parameters allowed creation of a
version of this T2 EPI averaged atlas and the T1
averaged atlas with voxel sizes and file dimensions
compatible with SPM96. This T2 EPI averaged atlas
has subsequently been routinely used at UCLA as a
template for spatial normalization of newly acquired
T2 echo-planar images using nonlinear transforma-
tions derived using AIR. After spatial normalization
and removal of motion correlated artifacts (described
in the next section), the data are of appropriate dimen-
sions for routine statistical analysis with SPM. Since
the T1 and T2 atlases are based on matched data sets,
the T1 averaged atlas also can be used for data display
within SPM96, using either sectional data from the
averaged atlas itself or 3D renderings of spatially
normalized T1 data from a representative subject
chosen at random.

Removal of motion correlated artifacts

The target atlases described above allow data from
different subjects to be mapped into a common space.
A more constrained affine spatial transformation is
also used to correct for head movements within each
individual subject using methods described previ-
ously [Woods et al., 1998a]. However, even perfect
registration does not fully eliminate motion correlated
artifacts that can confound data analysis. Within each
run of functional data, it is possible to derive a series of
linear transformations that describes the movements
from one scan to the next. Due to physical constraints
(e.g., the fact that the back of the head generally
remains in contact with the scanner bed), certain types
of rotations and translations are likely to be correlated
with one another. To develop optimal descriptors of
head movements for the purpose of estimating the
artifacts induced by such movements, we use a form of
principal components analysis to extract and quantify
eigenmovements that characterize each data acquisi-
tion. This is accomplished by defining an average
position for each run such that the matrix logarithm of
the deviation of each individual position from the
average sums across all images to a matrix of zeros.
Principal component analysis can then be applied to
the 12 elements of the matrices that describe deviations
from this average position for each individual image in
the run.

If desired, the eigenvectors produced by the PCA
can be placed back into matrix format and exponenti-
ated to derive corresponding eigenmovements, but
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more importantly, the scores associated with each
individual image for a given eigenmovement quantify
the amount of that eigenmovement present at the time
that image was acquired. If the images are registered to
one another with a six parameter rigid body spatial
transformation model, only the first six scores will be
significant and the other six will be negligibly small. In
theory, it is possible that the six eigenmovements
might correspond to traditional elemental movements
such as pitch, roll, yaw, x-translation, y-translation,
and z-translation, but in practice, they will generally
be hybrid movements incorporating various orthogo-
nal (in the matrix logarithm sense) mixtures of these
elemental movements.

To look for motion-correlated artifacts in motion-
corrected data sets, we perform principal components
analysis of the functional imaging data after motion
correction has been applied. This produces eigenim-
ages and corresponding scores for each of the original
images in the series. A strong correlation between the
scores that relate to the eigenimages and the scores that
quantify the eigenmovements is indicative of residual
motion correlated artifacts. Such correlations can be
eliminated from the data on a voxel-by-voxel basis by
treating the scores for each eigenmovement as a linear
confounds to be removed using standard linear alge-
braic techniques. For fMRI time series with large
numbers of observations across time, all six sets of
scores can be removed with limited impact on the
statistical properties of the adjusted data. For PET data
where the total number of observations per subject is
much smaller, confound removal can be restricted to
those eigenmovements that account for the greatest
amount of the total movement present in the data.
Particularly in this latter case, it is appropriate to
adjust the number of degrees of freedom in any
subsequent statistical analysis to reflect the fact that
additional parameters have been added to the data
analysis model.

Representative fMRI time series

A representative covert language task fMRI time
series was acquired with an EPI gradient echo se-
quence (TR 5 2,500 msec, TE 5 45 msec, matrix size
64 3 64, FOV 5 20 cm). The images were registered to
the first image in the series using AIR 3.0 with a rigid
body spatial transformation model. The images were
then resampled to create a motion-corrected time
series using chirp z interpolation [Rabiner et al., 1969]
within plane and linear interpolation between planes.
Chirp z interpolation is a Fourier domain analogue of
sinc interpolation. The transformation matrices were

subjected to principal components analysis for eigen-
movements using singular value decomposition of the
elements of the matrix logarithm of the deviation of
each position from the mean position. The motion-
corrected time series was subjected to principal compo-
nents analysis to create eigenimages and scores for
each individual time point in the fMRI series. Only
brain regions where data were available throughout
the entire time series were included in the PCA.

RESULTS

Figure 1 shows sections through the final T1 and T2
echo-planar atlases and illustrates the excellent level of
anatomic detail that is preserved by the high-order
polynomial warping used to create the atlases. Al-
though the individual echo-planar images showed
distortions relative to the T1 images, the amount of
mismatch was small compared to the amount of
intersubject variability routinely encountered with this
and other low-order registration methods.

Figure 2 shows the scores for the first principal
eigenmovement in the motion-corrected fMRI time
series and the scores for the first principal eigenimage
of the same motion-corrected data before removal of
any movement related confounds. Figure 3 shows the
results of two different SPM analyses conducted on
data from a single subject (top panel) and from a group
of eight subjects (bottom panel) with and without
removal of motion correlated artifacts.

DISCUSSION

With acquisitions that are nominally ‘‘T1 weighted’’
or ‘‘T2 weighted,’’ different scanners can produce data
sets that are dissimilar even to visual inspection. Given
that the sensitivity of intensity based registration
algorithms to such dissimilarity has not been well
characterized, the use of atlas templates generated
using the same scanner as the data of interest assures
that registration accuracy is optimized. Our efforts to
create the atlas described here stemmed largely from
substantial difficulties encountered when trying to
register T2 weighted anatomic images from our scan-
ner to atlases created on other scanners. The benefits of
our custommade atlas have been evident with simple
visual inspection of typical data sets. Although we
have not yet performed a detailed validation of the
anatomic accuracy of this approach with T2 weighted
echo-planar data, extensive validation with T1
weighted data has demonstrated highly accurate map-
ping of homologous landmarks to similar locations in
the atlas [Woods et al., 1998b]. An argument could be
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made in favor of always acquiring T1 weighted data
for the purpose of registration to a T1 atlas, but time
constraints during image acquisition strongly favor
the use of the T2 echo-planar images. By acquiring
images with greater brain coverage than is planned for
the fMRI data itself, the registration problem can be
more accurately constrained. The fMRI data can then
be acquired co-planar to a subset of the anatomic T2
images. On occasions when a subject moves between
the acquisition of the T2 echo-planar image and the

first fMRI image, image registration between the mean
registered fMRI image and the T2 echo-planar image
allows accurate mappings to be created.

Simple interpolative resampling of the images to
correct for movement does not remove all of the
motion-correlated artifacts, and our experience to date
indicates that motion correlated artifact is commonly
the greatest source of global variance in the motion
corrected data set. It should be noted that the global
variance as identified by principal components analy-
sis may be particularly sensitive to motion-correlated
artifacts because they are likely to occur throughout
the entirety of the image. As a result, the contribution
at any particular voxel may be small despite a very
large global contribution. We suspect that interpola-
tion artifacts are a major contributor to these errors,
but note that the mathematical form of our correction

Figure 1.
Transverse sections through the T1 (top) and T2 EPI (bottom)
atlases. Note the preservation of anatomic features despite the fact
that the images are intensity averages of 10 different subjects.

Figure 2.
Motion-correlated artifacts in a typical fMRI time series. Each
individual image in the time series is represented along the x-axis.
The values on the y-axis are principal components analysis scores.
The darker line shows scores from the first principal component of
a traditional PCA of the motion-corrected images. The lighter line
shows the first principal component from a PCA of the linear
transformations representing the head movements. The values are
highly correlated, indicating the persistence of motion-correlated
artifacts despite motion correction of the data. After adjustment of
the fMRI time series data using the scores from the first principal
component of the head movements to remove this confound, the
largest principal component of the adjusted data was correlated
with scores from the second principal component of the head
movements (r2 5 .72). Treatment of scores from the first two
principal components of the head movements as confounds
resulted in corrected image data with first principal component
that was correlated with the third principal component of the head
movements (r2 5 .76).
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is identical to the linear correction terms used by
Friston et al. [1996] for ‘‘spin-history correction’’ of
fMRI data. From a pragmatic standpoint, the source of
the error is not particularly important unless this
information can be used to provide more appropriate
corrections than those derived empirically by removal
of confounds. Our use of principal components analy-
sis to extract scores for eigenmovements offers certain
theoretical advantages over the direct use of the
unprocessed registration parameters. Since we mea-
sure deviations from a mathematically defined mean
position, we effectively define an ideal tangent space in

which nonlinear interactions among the various move-
ment descriptors are minimized. Such methods have
proved important in the broader context of morphomet-
ric analysis [Bookstein, 1996]. In addition, the opportu-
nity to omit eigenmovement scores that account for
only a small amount of total movement may be
especially useful in contexts where the number of
observations is small, as occurs for interpolation errors
in PET data. Contrary to what is expected on the
assumption that fMRI movement correlated artifacts
are due to spin-history [Friston et al., 1996], we have
not found the absolute value or the square of the
eigenmovement scores to explain much of the residual
variance in the eigenimage scores generated by PCA of
the fMRI data after linear motion confounds have been
removed. This may differ as a function of pulse
sequence and warrants a more systematic investiga-
tion in the future.

Removal of motion-correlated signals is not without
problems. In the event that motion is strongly corre-
lated with the neurocognitive tasks being investigated,
true signals may be dismissed as artifact. In this
context, a better understanding of the nature of the
motion-correlated signals might allow for more con-
strained modeling of the problem in a way that might
disentangle the confounds from the true signals. In the
absence of such information, investigators may want
to analyze their data with and without removal of
motion confounds and to make special efforts to
improve their data acquisition strategies if there is a
resulting concern that motion correction is eliminating
genuine signal. In general, removal of motion corre-
lated signal is likely to produce overly conservative
results rather than false positives. The one possible
exception is in the comparison of different groups to
one another, where systematic differences in task-
correlated motion between the groups may generate
false signals after removal of motion-correlated con-
founds [Woods, 1996]. It should be possible explicitly
to test for such systematic differences by analyzing
head motion within the fMRI time series. If such
problems are detected, new methods are being devel-
oped to take them into account statistically when
performing group comparisons [Bullmore et al., 1999].
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Figure 3.
Statistical parametric maps of analyses conducted on data from a
single subject (top panel) performing a picture-word matching task
and from a group of eight subjects (bottom panel) during an
auditory sentence-judgement task. Note the reduction of diffuse
signals and preservation of focal activations after removal of
motion-correlated signals in both data sets. For each data set, the
statistical thresholds applied were identical for the data with and
without removal of motion-correlated confounds.
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