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Abstract: For the sake of realism in the description of conduction from primary neural currents to scalp
potentials, we investigated the influence of skull anisotropy on the forward and inverse problems in brain
functional imaging with EEG. At present, all methods available for cortical imaging assume a spherical
geometry, or when using realistic head shapes do not consider the anisotropy of head tissues. However, to
our knowledge, no study relates the implication of this simplifying hypothesis on the spatial resolution of
EEG for source imaging.

In this paper, a method using finite elements in a realistic head geometry is implemented and validated.
The influence of erroneous conductivity values for the head tissues is presented, and results show that the
conductivities of the brain and the skull in the radial orientation are the most critical ones.

In the inverse problem, this influence has been evaluated with simulations using a distributed source
model with a comparison of two regularization techniques, with the isotropic model working on data sets
produced by a nonisotropic model. Regularization with minimum norm priors produces source images
with spurious activity, meaning that the errors in the head model totally annihilate any localization ability.
But nonlinear regularization allows the accurate recovery of simultaneous spots of activity, while the
restoration of very close active regions is profoundly disabled by errors in the head model.

We conclude that for robust cortical source imaging with EEG, a realistic head model taking anisotropy
of tissues into account should be used. Hum. Brain Mapping 6:250-269, 1998.  © 1998Wiley-Liss, Inc.
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INTRODUCTION

Among the rapidly advancing functional modalities
of cerebral imaging, electroencephalography (EEG)
together with magnetoencephalography (MEG) are
the only ones which offer millisecond responses to brain
activity. Actually, the imaging ability of these techniques
is limited by the difficulty of the inverse problem,
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which has to provide the localizations of the neural
sources inducing the measurements. This inverse prob-
lem is ill-posed in EEG or MEG due to the nonunicity
of the solution and the weak number of recorded data
compared to the data available in PET or f-MRI.

For these reasons, the first proposed and still the
most commonly used approach to the inverse problem
consists in fitting one or a few equivalent current
dipolar sources (ECD) to the potential map by nonlin-
ear estimation techniques [Sherg and Buchner, 1993].
Although this model can well describe the focal activi-
ties induced by a simple somatosensory study, it is
inadequate to represent complex neural networks or
distributed activities along cortical surfaces. In order
to overcome these difficulties, different tomographic
reconstruction techniques have been proposed which
estimate a distribution of current vectors on a regular
surface grid [Hamaldinen and llmoniemi, 1984] or a
volume grid [Pascual-Marqui et al., 1994] or cortical
surface deduced from MRI images [Dale and Sereno,
1993]. The “distributed sources” inverse problem con-
sists in solving a set of linear equations, since the
locations of the currents are imposed, but this system is
undetermined since there are many more unknowns
than the number of data. Then constraints must be
introduced in order to limit the set of admissible
solutions in a so-called regularization scheme. The
most commonly used are minimum norm estimates
(Hamalainen and limoniemi, 1994; Wang et al., 1992]
or quadratic regularizations that generate smooth dis-
tributions, not corresponding to realistic physiological
solutions. Some extensions of quadratic procedures
can sharpen these diffuse solutions during iterative
processing of quadratic inversion [Gorodnitsky et al.,
1995]. We developed a nonlinear regularization tech-
nigue S-MAP, the main originality of which is to use
functional and anatomical information not only to
constrain the positions and orientations of the currents
but also to directly guide the regularization process
along the cortical surface [Baillet and Garnero, 1997].
This method prevents smoothing of dipole amplitudes
between two adjacent cortical zones with functionally
decorrelated activities (as may happen between two
walls of a sulcus, or a sulcus and its adjacent gyrus). It
can then provide a physiologically plausible descrip-
tion of the neural sources.

The distributed source inverse problem is also very
ill-posed. The solutions are very sensitive to noise, and
most of the regularization methods consider this prob-
lem. Inverse solutions also depend on the mathemati-
cal model which links the source amplitudes to the
electrode potentials (the so-called forward problem),

where local conductivities play an essential role. Little
is known on this subject. For this reason we address
here the question of the influence of head modelling
approximations, such as the assumption of skull isotro-
pic conductivity, on the solutions of the EEG inverse
problem.

Different head models have been used, and the
complexity of the corresponding potential calculations
increases with the accuracy of the head description.
The simplest and the most commonly used is the three
or four concentric sphere model with homogeneous
conductivity values which represent the skin, the skull,
the Cerebrospinal Fluid (CSF), and the brain tissues. In
this case, analytical expressions have been derived to
calculate the scalp potentials [De Munck, 1988]. Spheri-
cal models may take into account anisotropy of the
medium by assigning constant radial and tangential
conductivities to the skull shell, but they give a poor
approximation of head shape. In order to take into
account realistic head geometry, Hamalainen and Sar-
vas [1989] used the boundary element method (BEM),
which is adequate for piecewise homogeneous isotro-
pic media. However, BEM cannot be applied when
some inhomogeneities are present (such as skull holes)
or when the medium has an anisotropic conductivity.
Indeed, anisotropy influences the scalp potential distri-
butions [Peters and de Munck, 1990]. In such a case,
the finite element method (FEM) allows one to con-
sider accurate inhomogeneous realistic models, since it
computes the Maxwell equations very locally. Differ-
ent authors have developed FEM methods [Yan et al.,
1991; Bertrand et al., 1991; Haueisen et al., 1995;
Buchner et al., 1997; Awada et al., 1997]. FEM is
difficult to implement since it requires volume meshes
of the different head tissues, which are more complex
to derive than the surface meshes used by BEM. For
this reason, FEM is less commonly used than BEM,
even though it is more accurate.

Considering this fact, the relevant questions are: is it
absolutely necessary to use FEM in order to accurately
compute the solution of the EEG inverse problem? Further-
more, under what conditions can BEM provide accurate
solutions? The most pertinent way to answer these
questions is to evaluate the role of anisotropies in the
electrical conductivities of brain tissues [Wikswo et al.,
1993] and particularly the bone anisotropy, since the
presence of the skull greatly influences the scalp
potential distribution. Such influence has been evalu-
ated in the forward and inverse dipolar problem by
Peters and de Munck [1990] with analytical methods,
and by Thevenet [1992] with FEM in a spherical head
model. FEM has also been used with a realistic head
model [Haueisen et al., 1997], but those authors only
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studied the influence of conductivity values on the
scalp distribution.

In this work, the influence of skull anisotropy is
evaluated for the forward and inverse problem, in both
a spherical and in a realistic head model. We computed
these two models in order to check whether or not the
influence of conductivities depends on head geometry.
For the inverse problem we considered the distributed
source model only, because it is certainly the most
powerful way to describe brain electrical activity and
because the distributed inverse solution is more dis-
turbed by forward model errors than the dipolar one.
To our knowledge, no such study has yet been pub-
lished. As we have seen, the solution also greatly
depends on the regularization method, which con-
strains the source space. For this reason we considered
different regularization schemes: a quadratic regular-
ization and the S-MAP method.

More precisely, for this study, FEM is implemented
and validated in the spherical case in comparison with
analytical results, and the optimum characteristics of
the numerical methods are derived. Then the influence
of skull anisotropy on scalp potential is evaluated by
comparing the distributions obtained with and with-
out anisotropy both in a spherical and in a realistic
head model. To derive the influence of the skull
isotropic conductivity approximation in the inverse
problem, the gain matrix is computed with an isotropic
forward model and a distributed source model is
reconstructed with this matrix from data simulated
with FEM and an anisotropic skull model. As for the
forward problem, spherical and realistic head models
are considered and the reconstructions are computed
with the different regularization methods mentioned
above. We have checked that each inverse method succeeds
at recovering accurately the source distribution when the
gain matrix is computed with the right anisotropic model.

The method is presented in the first section: we
review the formulation of the forward problem and
briefly present FEM (the formulation is described in
the Appendix). The construction of our head model is
then detailed. In the second section, FEM is validated
and a study of the influence of element size and
element order is presented. The influence of anisot-
ropy is discussed in the following sections with regard
to the forward problem and the inverse problem.

METHODS
Finite element method

In the EEG forward problem, the computation of the
scalp potential, assuming a source current density,

requires solving the Poisson equation in a given head
model (see Appendix, Equation 3). The head is made
of different media k which can be either isotropic or
anisotropic, each medium being characterized by a
conductivity tensor [o]. This tensor reduces to a scalar
value when the conductivity of the medium is isotropic.

When solving the Poisson equation, a singularity
appears at the dipole position which may cause numeri-
cal problems. An elegant way to avoid this singularity
is to split the potential V in two parts: where Vy, called
the “singular solution,” is the potential due to the
dipole in an infinite homogeneous medium that has
the same conductivity as that of the medium contain-
ing the dipoles. U, called the *“regular solution” or
“reduced potential,” remains finite at each point [Ber-
trand et al., 1991; Awada et al., 1997]. Awada et al.
[1997] have shown, in the two-dimensional (2D) case,
that this so-called “substraction method” leads to
better accuracy than direct computation of VV when the
current source is explicitly implemented in the model
[Haueisen et al., 1995; Buchner et al., 1997]. The
originality of our method, as detailed in the Appendix,
is the possibility for computing either the reduced
potential or the total potential in media that do not
contain sources; we show that computing the total
potential in the scalp rather than the reduced potential
improves the accuracy of the method (see Influence of
Anisotropy on the Forward Problem, below). Further-
more, the FEM formalism has been extended in order
to modelize anisotropic conductivities (see Appendix,
Equation 8).

In practice, we have implemented the forward prob-
lem on the software Flux3d developed by the Labora-
toire d’Electrotechnique de Grenoble (St. Martin
d’Heres, France), and commercialized by the Cedrat
Recherche Company (Meylan, France).

Model construction
Model geometry and mesh generation

All the models we use contain three separate media:
the scalp, the skull, and the brain. In this study, the
skull is assumed to be the only part that may have
anisotropic conductivity. Meshes of three concentric
spheres have been generated for comparison with the
analytical method. The radii of different media are
taken to be 10 cm for the scalp, 9.2 cm for the skull, and
8.7 cm for the brain. The realistic geometry-based mesh
has been generated from 56 segmented MRI pictures of
the head [Zubal et al., 1994] with 256 X 256 pixels.
These are manually segmented images, where the
different media can be separated with a single thresh-
olding. The head is split in three concentric media and
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(a)

(b)

Figure 1.
Inside view of the tetrahedric mesh of (@) the three-shells spherical model, and (b) the realistic head

model.

a three-dimensional morphologic smoothing is made
on each shape, so that they may be meshed more easily.
Some more complicated anatomical parts such as ears
and upper and lower jaw bones have been removed. A
bidirectional mesh of spline curves is obtained, start-
ing with regularly spaced contour points of MRI (20
points per image). A spline surface, derived from these
curves, accurately models the surface between two
consecutive media. Each spline surface is tesselated
with triangular elements, and the tetrahedric mesh of
each medium is derived from these boundary surface
meshes. Since the internal surface mesh of the scalp
(respectively, the skull) is the same as the external
mesh of the skull (respectively, the brain volume), the
volume meshes of the three shells are perfectly intercon-
nected. This is illustrated in Figure 1a with an internal
view of the spherical mesh, and in Figure 1b with a
view of the realistic mesh obtained by cutting the head
volume with an oblique plane. These surface meshes
are also used to define the tensor direction of the
anisotropic elements (see Model Conductivity, below).

Two types of elements are considered: linear tetrahe-
drons (first-order elements) and parabolic tetrahe-
drons (second-order elements). Linear tetrahedrons
are classical tetrahedrons with four nodes and plane
surfaces. Parabolic tetrahedrons have 10 nodes (one
more at the middle of each edge) and parabolic
surfaces. With the first type, the basis functions w;,
defined in the Appendix, are linear functions, whereas
with the second type, these are parabolic functions; the

approximation of the potential is more precise in the
second case (see FEM Validation, below). Spherical
meshes have been generated with five different ele-
ment sizes in order to study the influence of mesh size
on the solution. Table | presents the characteristics of
the different meshes that have been used. Figure 2
shows the realistic head mesh and two of the spherical
meshes. We do not use locally refined meshes. Indeed,
although the forward problem has been validated with
one dipole only, the inverse problem has been solved
with a distributed source model (see Influence of
Anisotropy on the Forward Problem, below). Local

TABLE I. Characteristics of elements of volume meshes

Number of Number of Element

Name Element size  elements nodes order
sph20_1 20 mm 8,329 1,307 1
sph20_2 20 mm 8,329 9,486 2
sph15_1 15 mm 15,141 2,366 1
sph15_2 15 mm 15,141 17,454 2
sph12_1 12 mm 26,359 4,129 1
sphl2_2 12 mm 26,359 30,452 2
sph10_1 10 mm 41,368 6,527 1
sph10_2 10 mm 41,368 62,502 2
sph8_1 8 mm 73,422 11,647 1
sph8_2 8 mm 73,422 87,907 2
head10 1 10 mm 43,742 8,400 1
head10_2 10 mm 43,742 62,563 2
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Figure 2.
Meshes used for FEM. a: Spherical mesh with the largest element size (8,329 elements) and the
smallest element size (73,422 elements). b: Realistic head mesh (total, 43,742 elements), with skin
(27,543 elements), skull (6,110 elements), and brain (10,089 elements).

refinement over every dipole location is then useless,
since electrical activity may appear in many distinct
regions of the cortex. We would thus rather use meshes
with globally decreasing element size.

All meshes were generated on the software I-DEAS
version VLi (SDRC Company, USA).

Model conductivity

Table Il gives the normalized conductivity values
used for each medium. Radial and tangential direc-
tions are used to define the anisotropic conductivity
tensor of the skull. In a the realistic model of the head,
the radial direction in a volume element of the skull is
defined as the normal to the triangular element of the
external skull surface mesh that is the nearest to this

volume element. The tangential directions are con-
tained in the surface element plane (see Fig. 3).

FEM VALIDATION
FEM has been validated in the spherical case for
different dipole locations by comparing the analytical
potential distribution V., with the FEM calculated
distribution Vimaes: The dipole may be radial or

TABLE Il. Normalized conductivities used for the models

Medium Scalp Skull Brain
Tangential conductivity 1 0.125 1
Radial conductivity 1 0.0125 1
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Figure 3.
Computation of the radial and tangential directions of the conductivity tensor at each element of the
skull mesh. a: In a spherical model. b: In a realistic head model.

tangential and its position is defined by its eccentricity,
which is the distance of the dipole from the sphere
center divided by the radius of the external surface
(eccentricity 1.0 corresponds to the external boundary
of the scalp). The dipole eccentricity varies from
0.1-0.82. In all cases, the potential reference is chosen
in such a way that the average potential on the external
surface is zero. The analytical potential distribution Vg, is
calculated using the formula given in de Munck [1988].

Two error criteria introduced for BEM [Meijs et al.,
1989], the “relative difference measure” (RDM) and the
“magnification factor” (MAG), were computed. The
RDM on asurface S is given by:

1
RDM = f Vreal B Vestimated st 72 :

s 2 2
\/J; Vreal dS \/J; VestimateddS

the MAG is given by :

Yo
2
J; Vestimated ds

_’; eral ds

The MAG gives an indication of errors in the magni-

MAGS =

tude of the potential, whereas the RDM indicates
defects in the potential distribution on the surface.
Preliminary results were calculated for both isotro-
pic and anisotropic models, using first-order (sph10_1)
and second-order (sph10_2) meshes of 10-mm element
size. Errors have been computed on the external
boundary of the scalp for radial and tangential dipoles.
We will now consider two ways of improving the
solution without increasing the number of elements.
Since the skull conductivity is very small (by a factor of
80) compared to that of the other media, the potential
collapses through it. The total potential V on the scalp
is thus considerably lower than V and U. This means
that the quantity U + V; in this medium is the
difference of two numbers of approximately the same
value and may thus have important numerical errors.
The first way to improve the solution is to compute the
total potential V in the scalp instead of the reduced
potential U, though U remains the variable computed
in the rest of the volume (i.e., the skull and brain). The
continuity between adjacent media is given by Equa-
tion (5) of the Appendix. Of course, V still remains the
interesting variable in all cases. In the regions where U
is computed, the potential is given by the sum U + V,,
whereas in the scalp, V is directly given by the FEM
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Figure 4.
Errors on the scalp potential distribution calculated with 10-mm element size meshes. Errors are
shown for first-order elements (mesh sphere, 10-1) and second-order elements (mesh sphere,
10-2), and with either U or V computed in the scalp (whereas U is computed in the remaining
volume). a: Isotropic model of the skull. b: Anisotropic model of the skull.

solution. The second way to further improve the
solution is to use parabolic tetrahedrons. Replacing the
first-order elements with second-order elements in-
creases the computation times by 20-30% only.

Figure 4 shows the results with mesh sph10_1 and
mesh sph10_2, when either U or V is computed in the
scalp, assuming isotropic (Fig. 4a) or anisotropic skulls
(Fig. 4b). Each part of Figure 4 shows the RDM and the
MAG for the radial and the tangential dipoles. Comput-
ing the total potential V in the external medium
instead of the reduced potential U significantly im-
proves the solution. This is particularly true for eccen-
tric tangential dipoles and when first-order elements
are used. Figure 4 also shows that using second-order
elements instead of first-order elements significantly
improves the solution. In general, computing V in the
scalp with second-order elements always improves the
solution. In some cases, as for eccentric radial dipoles,
the difference between the solutions obtained with U
and V in the scalp is very small, since V is not low in
this case. Figure 5a,b was obtained by computing U
and V, respectively, in the scalp. It clearly appears that
the distribution is smoother with the computation of
V. Figure 6a,b shows the errors on the scalp for
different element sizes using the optimal configuration
(parabolic elements and computation of V in the
scalp). Table 1l gives the times needed to compute a

potential distribution on the scalp on an HP C110
workstation (Hewlett Packard). Both Figures 4 and 6
show that the errors in the anisotropic model are
higher than those in the isotropic model for the
first-order elements. However, they are practically the
same with second-order elements. In the region of low
eccentricities, the curves for the radial and the tangen-
tial dipoles (e.g., the RDM of Fig. 4a) are practically
identical. However, in the domain of high eccentrici-
ties, the increase for the case of the radial dipole is
extremely fast.

In conclusion, good accuracy is obtained for the
tangential dipole with the mesh sph12_2, when the
eccentricity does not exceed 0.8. For higher eccentric-
ity, the mesh sphl0_2 is necessary to have good
accuracy. For the radial dipole, mesh sph10_2 allows
great accuracy for eccentricities lower than 0.7. For
eccentricities higher than 0.8, it was not possible to
obtain accurate results even with our finest mesh of
8-mm elements. Mean values for normalized mini-
mum and maximum radii defining the cortex volume
are 0.64 and 0.84 [De Munck, 1989; Peters and de
Munck, 1990]. Thus, most of the dipoles that are
located in the cortex will have an eccentricity lower
than 0.8. This means that 10-mm element size meshes
will be sufficient in most cases, and even 12-mm
element size meshes should be sufficient in the case of
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(a)

(b)

Figure 5.
Potential distribution calculated with (a) computation of U in the scalp and (b) computation of V in
the scalp. Note that in the second case, the distribution is more regular because numerical errors are

minimized.

tangential dipoles. But for radial dipoles, considering
that FEM requires reasonable element size meshes, the
eccentricity has to be limited to 0.7, which is a middle
value for the cortex. These results are similar to those
described elsewhere [Bertrand et al., 1991; Awada et
al., 1997].

INFLUENCE OF ANISOTROPY
ON THE FORWARD PROBLEM

In this section, the influence of the conductivity tensor
on the potential distribution of the scalp is discussed.

Variation of the magnitude of conductivity

First, the influence of conductivity values is studied
for each medium, using the analytical model in the
spherical case. This study was made with a dipole of
0.6 eccentricity, which is a value that leads to an
accurate FEM solution as shown above. Only one

conductivity value is varied at a time, and the others
remain at the values specified in Table II. The curves in
Figure 7 show the errors when the conductivity values
of scalp, brain, radial skull, and tangential skull are
varied successively. Conductivity variations are quan-
tified with the ratio of the considered value to the
middle value used for the model. RDM and MAG have
the same definition as in FEM Validation, above, by
taking V. as the potential obtained with the middle
value of the conductivity and Vgimaed @S the potential
obtained with the modified conductivity. Only tangen-
tial dipole results are shown, since results for radial
and tangential dipoles are very similar.

Figure 7 shows that the influence of the brain and of
the radial skull conductivities on the RDM is much
more important than that of other conductivities. For
brain conductivity, this result is not surprising, since
the brain contains the dipoles. This result was obtained
by Haueisen et al. [1997] in an isotropic medium. For
the radial skull conductivity, the same results were
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Figure 6.

Errors on the scalp potential distribution calculated with different element size meshes in the case of
second-order elements and with V computed in the scalp. Note that the scale used for radial and
tangential dipoles are very different. a: Isotropic skull. b: Anisotropic skull.

obtained by Zhou and van Oosterom [1992]. It should
be borne in mind that the absolute value of the errors is
very small and not visible on the potential map. It is
clear from Figure 7 that the influence of scalp conduc-
tivity on the MAG value is very important. Scalp
conductivity does not alter the form of the curves but
modifies the potential values of these curves. The
factor by which the potential increases is inversely
proportional to the conductivity, and thus the product
(conductivity multiplied by potential) remains con-
stant, implying thereby that scalp conductivity does
not cause an error on the dipole localization in the
inverse problem.

In conclusion, the two most critical values of conduc-
tivity are those of the brain and of the radial skull.

Variations of the conductivity tensor directions

In the spherical case, the conductivity tensor direc-
tions are the radial and the tangential directions of the
sphere. However, this is not the case with the realistic
geometry where the directions of the tensor have to be

determined (with some errors, obviously), as ex-
plained above. It is then necessary to determine the
influence of the tensor directions on the potential.
Study was made of the spherical case (where a refer-
ence position is given by the radial and the tangential
directions of the sphere) with mesh sph10_2 and for a
dipole of 0.6 eccentricity. In that case, FEM results
show a very good accuracy and the errors will mainly
be due to errors in tensor directions. To introduce a
direction error, a rotation is applied to the conductivity
tensor at each element in the skull. Figure 8 shows
errors in the scalp potential when the direction of the
tensor is varied. The potential distribution on the scalp
is practically as sensitive to the direction of the tensor
as it is to the conductivity magnitude. However, in this
case a significant change in the location of the maxi-
mum is visible. In fact, the same rotation of the tensor
was applied to each element, but in a head model
where directional errors are randomized, their influ-
ence is probably less important. To more specifically
estimate the errors introduced by the calculation of the
tensor directions in the head model, we calculated a

TABLE Ill. Time required for computation of a potential distribution on the scalp with an HP C110 workstation

Mesh name sph20_1 sphl5 1 sphl2. 1 sphl0_1

sph8_1

sph20_2 sphl5 2 sphl2_ 2 sphl0_2 sph8 2

Time (sec) 66 122 207 322

610 80 148 259 412 780
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Figure 7.

Error variations on the scalp potential distribution when values of the conductivity vary. The
conductivity ratio is the ratio of the considered value to the middle value used for the model.

potential distribution with the spherical model and
with a conductivity tensor calculated with exactly the
same method as that used for the realistic head model
(the tensor directions for each element are calculated
using a surface mesh). The results are compared with
those obtained by taking the radial and tangential
directions of the sphere as the tensor directions. The
errors obtained are under 0.2% (RDM < 0.002 and 1 <
MAG < 1.005) and produce no visual charge on the
potential distribution map.

We thus conclude that the errors introduced in the
calculation of the conductivity tensor due to the use of
the realistic head model have negligible effects.

Influence of skull anisotropy

Finally, the influence of skull anisotropy was studied
in the spherical and the realistic head models. In both
cases, the difference in the potential of the scalp is
calculated when the skull model is changed from
isotropic to anisotropic. The analytical model was
chosen for the spherical case, whereas FEM was used
for the realistic head model. Figure 9a shows the
results in the spherical case. It appears that the influ-
ence of skull anisotropy is stronger for radial dipoles
than for tangential dipoles. Since the magnification

0 2 4 6 8
Tensor direction error (°)

10 12

RDM MAG
0.08 1.16
0.07 + | —a— Tangential dipole 1.14 —m— Tangential dipole
0.06 + —B— Radial dipole 1.12 —&— Radial dipole
0.05 1.1+

10

0 2 4 6 8
Tensor direction error (°)

12

Figure 8.
Error variations on the scalp potential distribution when directions of the conductivity tensor are

varied.

¢ 250 ¢



¢ Marinetal.

a
RDM MAG
0.07 0.98
0.06 - —&— Tangential dipole 0.975
0.05 - —B— Radial dipole 0.97
0.04 0.965
0.03 4 0.96
0.02 1 0.955 —— Tangential dipole
—B8— Radial dipole
0.01 4 0.95
0 : + } . 0.945 ; : : :
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
Dipole eccentricity Dipole eccentricity
b RDM MAG
0.1 1.15
0.09 4 113
0.08 -
1.11
0.07 -
1.09 4
0.06 -
1.07 4
0.05 -
0.04 | 1.05
0.03 1 1.08 4
0.02 4 —&— Tangential dipole 1.01 - —=— Tangential dipole
0.01 | —B— Radial dipole 0.99 1 —g8— Radial dipole
0 + ; ‘ " 0.97 ; : + .
-0.1 0.1 0.3 0.5 0.7 -0.1 0.1 0.3 0.5 0.7
Dipole eccentricity Dipole eccentricity

Figure 9.
Errors on the scalp potential distribution due to anisotropic effects. a: Spherical case (analytical

results). b: Realistic head model (FEM results).

factor is less than 1.0, the primary effect of skull
anisotropy is to reduce the amplitude of the scalp
potential, and this effect is visible even for low-
eccentricity dipoles. When the eccentricity increases,
anisotropy leads to a greater diffusion of the potential
distribution.

Figure 9b shows the errors for the realistic head
model. We can point out some differences with the
spherical model: the influence of anisotropy with
low-eccentricity dipoles is stronger in the realistic head
model than in the spherical model. The influence on
amplitude is quite different too, since the MAG is now
greater than 1.0. Figure 10 shows the potential distribu-
tion on the head in the isotropic and the anisotropic
cases. It is clear that the potential distribution is still
more diffuse in the anisotropic case.

In conclusion, the influence of skull anisotropy is
significant for the forward problem, although the
errors generally remain lower than 10%. However, the
influence of skull anisotropy has to be evaluated for
the inverse problem in order to decide whether it has
to be taken into account or not.

INFLUENCE OF ANISOTROPY
FOR THE INVERSE PROBLEM

The inverse problem has been evaluated in a distrib-
uted source model using two different reconstruction
methods, one with quadratic regularization and the
second with a nonlinear spatial regularization (S-MAP).
We here briefly recall the principle of the two regular-
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(a)

(b)

Figure 10.
Potential distribution of (a) isotropic model and (b) anisotropic model, both with computation of V

in the scalp.

ization methods applied to the EEG/MEG inverse
problem.

The inverse problem of EEG source estimation is
ill-posed because of two main reasons.

First, the solution is not unique: very different
source configurations can give a highly satisfac-
tory fit to data. Second, the solution is not stable
with regard to small changes on data. In other words,
the solution does not continuously depend on data
values.

For a distributed source model, these two statements
are due to the bad conditioning of the linear operator
(the gain matrix) that binds source amplitudes to the
sensor array. Basically, a regularization process tends
to reduce the oscillatory behavior of the solutions of
linear equation systems with bad conditioned opera-
tors and noisy data sets. A regularized solution of the
following linear system

M=GJ+ Db,

may be expressed as follows:

J = argmin{||[M— GJ|2 + NIL(I)II},
J

Here M stands for the data set, G for the gain matrix, J
is the dipole magnitude vector, and b is a model of
additive Gaussian white noise.

L(.) is the regularization operator that may be linear
or nonlinear and describes the type of priors one has
on the shape of the solution. (A expresses the relative
importance of the a priori with regard to data attach-
ment.

Quadratic regularization is one of the most popular
techniques [Tikhonov and Arsenin, 1977]. Though this
technique introduces weak priors with operators
(weighted or not) such as identities, gradients, or
laplacians of dipole amplitudes, and is easy to imple-
ment, it tends to smear and to overestimate the spatial
extension of the active sources. Moreover, the
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so-called minimum norm techniques such as the con-
strained inverses of matrices for least-square solutions
of linear systems [Rao and Mitra, 1973] offer the same
type of oversmoothed dipole intensity patterns [Pas-
cual-Marqui et al., 1994] as those produced by the
quadratic regularization methods.

When the L(.) operator is nonlinear, it is possible to
introduce more sophisticated priors on the source
distribution such as the preservation of anatomo-
functional discontinuities that can provide relevant
information on the cognitive process. The original
S-MAP method is extensively described in Baillet and
Garnero [1997] and may be briefly exposed as follows.

L(.) is now expressed as the sum of locally defined
cost functions associated with each intensity gradient
in the dipole image. These cost functions are locally
scaled so that in some areas, high-intensity jumps are
more likely to be created than in others. For instance, it
is possible to allow intensity gradients between two
walls of a sulcus. Finally, the general shape of S-MAP
solutions is made of areas with slowly varying inten-
sity and which may be separated by strong discontinui-
ties.

These two reconstruction methods are used in three
different situations. Twelve a priori active areas have
been isolated in a three-shell head model from selec-
tive attention auditory experimental data. The corre-
sponding cortex patchwork is shown in Figure 11.

Forty-eight dipoles (four per patch) are spread per-
pendicularly over these surfaces. For simplicity, the
same number of dipoles is put on each patch, and only
configurations where all dipoles of a patch are in the
same state, illuminated or not, are chosen. The EEG
recording is simulated on a 70-electrode set with the
anisotropic model using the dipole amplitudes shown
in Figure 12.

The three different activity patterns have been simu-
lated in order to test different situations. In the first
case (Fig. 12a), the efficiency of the algorithm to
distinguish between two close and simultaneous acti-
vations with different orientations is tested. This corre-
spondes, for instance, to a simultaneous response in the
internal and upper part of the motor area, or in two
perpendicular walls of the calcarine scissure. In the
second case (Fig. 12b), the active areas are well-
separated but they have the same direction. The third
case (Fig. 12c) is the most complex and corresponds to
a distributed activity over four active areas with
different directions.

Preliminary reconstructions, carried out with the suitable
anisotropic models, show that electrical activity can be
accurately recovered in all cases with either of the two
regularization methods; this is so since no additive noise

Figure 11.
Cortex patches representing a priori active areas of the brain,
isolated owing to anatomical MRI and PET imaging in an auditory
experiment. These patches are located in temporal auditory and
motor cortex areas.

is introduced and since the problem is well-deter-
mined (the number of dipoles is smaller than the
number of data). Reconstructions presented in this
paper are made with isotropic models, whereas EEG
recording is still calculated with anisotropic models.
Thus, the errors for having neglected skull anisotropy
can be evaluated.

Spherical model

The influence of anisotropy on the inverse problem
is first estimated in a spherical model. Since the
forward problem is analytically calculated in this case,
possible errors in the inverse problem will be due to
anisotropy effects only. Resulting dipole amplitudes
are shown in Figure 13a for the quadratic regulariza-
tion method and in Figure 13b for S-MAP, each case
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Figure 12.

Three different activity patterns of dipole amplitudes used to
calculate the simulated EEG data. llluminated dipoles are repre-
sented as solid triangles. These patterns are the activity to be
recovered in the inverse problem. a: Two close patches with

respectively corresponding to the cases of Figure 12
where the real dipole amplitudes used to simulate the
EEG recording are shown. With quadratic regulariza-
tion (Fig. 13a), reconstructed electrical activity is spread
all around the cortex, and the amplitudes of the
dipoles in the active areas are strongly attenuated. The
first case is the only one where an acceptable solution
is found, although the electrical activity is weak, even
in this case. The bias introduced by the model error
(isotropic conductivities) on the inverse problem ap-
pears to be strong and it is necessary to use a more
sophisticated regularization method such as the nonlin-
ear one. Figure 13b shows the results obtained with
S-MAP. The first two cases are well-reconstructed,
though the dipole amplitudes were slightly underesti-
mated (0.8-0.9 instead of 1). This was expected, be-
cause the potential maxima are smaller in the aniso-
tropic case (see Fig. 9). Moreover, regularization tends
to minimize the dipole amplitudes, and the two effects
add together. In the last case of Figure 13b, electrical
activity is found on patches one and two, but the sum
of the two activities approximately corresponds to the
activity assigned to patch two. Parasite activity is also
found on patch 5. Although the results are better than
those obtained with quadratic regularization, the spread
of electrical activity may not be negligible in this case,
with what could be called a loss in the spatial resolu-
tion of EEG imaging due to the use of an approximate
head model.

FEM realistic head model

Resulting dipole amplitudes are shown in Figure
1l4a,b for the quadratic regularization and S-MAP,

orthogonal directions are illuminated. b: Two well-separated
patches with the same direction are illuminated. c: More complex
pattern with four patches illuminated.

respectively. As with the spherical model, quadratic
regularization cannot correctly recover the electrical
activity. The result is even worse in the first pattern of
Figure 14a (compared to the first pattern of Fig. 13a),
probably because of a more diffuse distribution caused
by anisotropy in the realistic model than in the spheri-
cal one. Figure 14b presents the S-MAP results and
shows that the electrical activity is perfectly recovered
for the second pattern only. In the first pattern, the
activity found on patch 2 corresponds to the activity
assigned to patch 1. When patch 1, or patch 2, or both
are illuminated, our algorithm always chooses patch 2.
This problem was not observed with the spherical
model and may be the solution given to the more
extended diffusion due to anisotropy with the nonsym-
metric geometry of the head. In the last pattern of
Figure 14b, patch 10 is overestimated (1.3 for 1), and
the activity on patch 4 is spread to patch 3. Activity on
patch 2 is strongly underestimated (0.5 for 1). As in the
spherical model, anisotropy has nonnegligible influ-
ence on the inverse problem with the last pattern of
Figure 14b.

In conclusion, the quadratic regularization method
is not sufficient for recover electrical activity, when
bias of skull anisotropy is introduced. S-MAP pro-
vides accurate results in the case of sparse spot activity,
but complex activity distribution is recovered with
strong parasite activity on adjacent patches, although
results are better than those obtained with quadratic
regularization. This parasite activity may have disas-
trous consequences and may be considered nonac-
ceptable in many neuropsychological imaging experi-
ments.
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Reconstructed dipole amplitudes in the spherical case. a: With the minimum norm regularization
method. b: With the nonlinear regularization method. The three patterns in a and in b correspond
respectively, to the three cases in Figure 12.
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Reconstructed dipole amplitudes in the realistic head case. a: With the minimum norm regulariza-
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correspond, respectively, to the three cases in Figure 12.
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DISCUSSION

First of all, the influence of skull anisotropy on scalp
potential distribution in spherical and realistic head
models has been studied. For this purpose, a finite
element method has been implemented, and validated
in a spherical head model by comparing the results
with the analytical ones. The optimum parameters of
the method have been estimated, and we have shown
that good accuracy can be obtained for radial and
tangential dipoles of eccentricity lower than 0.7, which
approximately corresponds to dipoles lying in the
middle of the cortex.

The influence of skull anisotropy has been evalu-
ated, when tangential conductivity is 10 times higher
than radial conductivity. The potential distribution
due to a single dipole is more diffuse with an aniso-
tropic skull. The influence of anisotropy is stronger for
more eccentric dipoles, since they are located closer to
the skull (and especially radial sources). In the spheri-
cal case, anisotropy tends to attenuate the amplitude of
the potential, whereas it overestimates it in the case of
the realistic head model. But in general, the difference
between isotropic and anisotropic cases is not dramatic
from this quantitative point of view (the RDM does not
exceed 10% in the worst case), and is of the same order
as that due to other modelization errors, e.g., the
presence of skull holes.

Nevertheless, the gain matrix derived from the
isotropic conductivity model (such as the one com-
puted with the boundary element method) introduces
bias in the inverse problem solutions. This bias has
been evaluated in a distributed source model for
which source reconstruction means solving an ill-
posed linear equation system. Since the gain matrix
does not perfectly translate the real model, the inver-
sion needs to be regularized in order to get stable
solutions, even if data are noiseless and the linear
system completely determined.

Simulated source distributions have been recon-
structed with modelling errors: data were generated
with an anisotropic model, while sources were com-
puted with the associated isotropic model gain matrix.
The solutions presented here were obtained using two
regularization methods: a quadratic regularization tech-
nique which acts as a minimum norm method, and a
nonlinear method we have developed in a previous
work [Baillet and Garnero, 1987].

The solutions found with the quadratic regulariza-
tion method are spread over the cortical surface, and
the estimated dipole amplitudes are attenuated. This
effect is essentially due to the need for strong regular-
ization induced by a wrong gain matrix and to the

constraints used for the regularization, i.e., the minimi-
zation of the dipole vector norm. The main effect is to
smooth the solutions, and even two distinct activities
of different orientations or separate locations cannot be
distinguished.

Nonlinear regularization allows one to introduce
more a priori information. Not only smoothed inten-
sity distributions, but also a larger variety of dipole
distributions, can thus be recovered. The hypothesis of
source distribution assumed in our method is that the
distribution of activity is composed of piecewise homo-
geneous patterns, which is a physiologically correct
assumption.

S-MAP can accurately recover sparse spots with
different or identical orientations, even with an isotro-
pic model. However, the dipole amplitudes cannot be
exactly estimated since anisotropic conductivity tends
to change the magnitude of the surface potential.
Moreover, as an anisotropic model produces a greater
diffusion of the scalp potential than the isotropic
model assumed for the reconstruction, the estimated
activity is spread on larger areas so that activities in
adjacent cortical regions cannot be separated. If
skull anisotropy is not taken into account in the
head model, the inverse method will thus fail to
produce a precise representation of different functional
areas along a cortical fold, or to describe the diverse
areas simultaneously involved in a complex cognitive
task, or even to accurately localize a response between
two adjacent sulci or gyri. Even with a nonlinear
regularization technique and strong a priori informa-
tion, complex activity distributions made of different
spots with similar contributions to the data cannot be
accurately estimated if anisotropy is not taken into
account.

More generally, the direct problem is far from being
accurate and gives a very simplified picture of the
head, which is in reality a highly complex structure.
Many improvements have to be introduced in the
realistic head model so that it can take into account
local conductivity inhomogeneities such as the pres-
ence of holes in the skull or the high conductivity of the
ventricles. Nevertheless, due to the uncertainties in
conductivity values, specific regularization methods
should be developed at the same time. It is thus
necessary to simultaneously develop, for the EEG
inverse problem, regularization methods less sensitive
to modelization errors with distinct origins and effects
on the data. This will be possible only if a priori
assumptions can be made on the activity pattern.
Furthermore, following the results of this study, it is
now possible to explicitly include in the inverse priors
a model of data deformation produced by simplified
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models in a real human head. This will be done
specifically in the context of the Bayesian formulation
used by S-MAP.

We are currently investigating a similar study for
MEG direct and inverse problems.
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APPENDIX
Forward problem equations

We consider the head to be composed of different
media k which can be isotropic or anisotropic, each
medium being characterized by a conductivity tensor
[oy]. The surface between the media k and k + 1 is
noted S,. The problem of a current dipole in a conduc-
tor is formulated as follows:

J=3+) =3 +[0]E =13 — [o]gradV, (1)

where J is the total current density, J; the current
density imposed by the dipole source (which is non-
zero only at the dipole location), J. the ohmic current
density, [o] the conductivity tensor at each point of the
volume, and V the scalar potential derived from the
electric field E (rotE = 0). In the quasistatic approxima-
tion which is valid in the EEG case, the current J is
determined by the equation:

divi=0 @)
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with the following boundary conditions:
Vk‘sk = Vk+1‘sk
[odgradVys, - ny = [0y 1]gradVi s, - ny,

where n, is the vector normal to the surface Sy. If we
suppose that the dipole is located in a homogeneous
isotropic medium (which is a rather good assumption
since the dipoles are in the cortex), Equation (2) in the
dipole region is written as:
div(c,gradV) = divJ;, (3a)
(o, being the scalar conductivity of this region). In
other regions (which do not contain dipoles), Equation
(2) becomes:
div([o]gradV) = 0. (3b)
A singularity appears at the dipole position which
may cause numerical problems. A classical way to

avoid this singularity is to split the potential V in two
parts as follows:

V=U+ Vs 4)

where V,, called the “singular solution,” is the poten-
tial due to the dipole in an infinite homogeneous
medium that has the same conductivity as that of the
medium containing the dipoles; U, called the “regular
solution” or “reduced potential,” remains finite at each
point. Since V; is a solution of Equation (5a), the
equations to be solved become:

in medium 1

div(o,gradU) = 0 (5a)

div([o,]JgradV)

. (5b)
= —div([o,]gradVy)

in median # 1.

The singularity in medium 1 disappears for U.

In some media that contain no dipole (n/1), we can
directly compute V, called “total potential,” since there
is no singularity. The equation to be computed in these
media is then:

div([o,]gradV) = 0 inmedian # 1 (5¢)

The potential V, induced by a dipole of moment Q,
at a point r, different from the dipole position ry, is

given by the analytical expression [Sarvas, 1987]:

Vs(r) =

4oy
Finite element formulation

Here is presented a brief overview of the method.
The problem is first considered in a well-suited form
for FEM. The integral form of the continuous problem
formulated in Equation (2) on a volume conductor ¥
can be written as [Zienkiewicz, 1977; Miller and
Henriquez, 1990]:

vwew, [ J-gradvdo=o, ©)

where W is a set of admissible functions ¥ defined on
the volume . We now consider the case of media
where U is computed. By using Equation (4), Equation
(6) becomes:

J. gradw - [o]gradu do

O
= — [, grad¥ - [olgradv d0, v ew,

The right-hand side of Equation (7) is a volume inte-
gral valid both in isotropic and in anisotropic media.
For isotropic homogeneous medium, it can easily be
transformed into a surface integral using Green’s
theorem:

N gradV¥ - [c]gradU dQ) = —J;_ WogradVs - n;  dT;

where T’ is the surface of an isotropic part of ( with
normal vector (pointing out of I'; ). For a volume
containing both isotropic and anisotropic media, two

terms appear:

J; grad¥ - [c]gradU dQ)

= - LQ_ gradV¥ - [c]gradVg dQ)

aniso

-3 [ vogradvg-n,_dr, ©)

where UQianiso 1S the fraction of volume () that has
anisotropic or inhomogeneous conductivities.
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In FEM, the continuous problem is approximated by
a discretized problem in a subset of W. In practice, the
domain () is split into elements and nodes, and a basis
function w; of is associated with each node i. These
functions can either be linear functions defined on
first-order elements or parabolic functions defined on
second-order elements. The functions ¥ are replaced
by the basis functions w; and the solution U is approxi-
mated by where U, = =N ; uw;, N being the number of
nodes, and u; the value of U at the node i [Zienkiewicz,
1977]. Equation (8) becomes a linear system of N
equations with N unknowns:

[RI[U] = [S] 9)
where [U] is a vector with components u;, [R]a N X N

matrix, and [S] a 1 X N matrix. These matrices are
calculated as follows:

Rij = L gradw; - [o]gradw; d(,

S; = —fwi gradw; - [o]gradVg d()

aniso

- E J;i WJO'grast : niiso dFiiso.

iiSO iso
Remark

For media where the total potential V is computed,
similar transformations are made and an equivalent
linear system is solved:

[RI[V] =0,

where [R] is the same matrix as in Equation (9).

These methods are similar to the “reduced and total
scalar potential methods” used to compute the mag-
netic scalar potential in magnetostatic problems [Simkin
and Trowbridge, 1979].
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