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Abstract: Analysis of functional magnetic resonance imaging (fMRI) data requires the application of
techniques that are able to identify small signal changes against a noisy background. Many of the most
commonly used methods cannot deal with responses which change amplitude in a fashion that cannot
easily be predicted. One technique that does hold promise in such situations is wavelet analysis, which has
been applied extensively to time-frequency analysis of nonstationary signals. Here a method is described
for using multidimensional wavelet analysis to detect activations in an experiment involving periodic
activation of the visual and auditory cortices. By manipulating the wavelet coefficients in the spatial
dimensions, activation maps can be constructed at different levels of spatial smoothing to optimize
detection of activations. The results from the current study show that when the responses are at relatively
constant amplitude, results compare well with those obtained by established methods. However, the
technique can easily be used in situations where many other methods may lose sensitivity. Hum. Brain
Mapping 6:378–382, 1998. r 1998Wiley-Liss,Inc.
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INTRODUCTION

A fundamental statistical problem in the analysis of
functional magnetic resonance imaging data is the
identification of those brain regions showing signifi-
cant hemodynamic responses to an experimental stimu-
lus. In a typical experiment involving blood oxygen
level-dependent (BOLD) contrast [Ogawa et al., 1993] and
using an magnetic resonance imaging (MRI) system with a
1.5 Tesla magnet, the local signal change during activation
might be only 1–2%. The small relative size of the change
in image intensity and the existence of possible artifacts,
particularly movement, which can produce changes of
similar magnitude, have led to intensive work in MRI
physics and statistics to optimize identification of acti-
vated brain regions.

A large number of statistical approaches have been
investigated in the quest for optimal sensitivity and
specificity in analysis of fMRI time-series [Lange, 1996;
Rabe-Hesketh et al., 1997]. In common with many
other centers, our group has made extensive use of
periodic alternation of experimental conditions (often
called ‘‘A/B designs’’) in paradigm design. Such experi-
ments lend themselves to a variety of analytic ap-
proaches, including simple t-tests between the pooled
data in the two states, correlational analysis, Kolo-
morov-Smirnov tests, and approaches based on Fourier-
based analysis at the frequency of alternation of the
experimental conditions. The last approach has the
advantage of yielding voxelwise estimates of the hemo-
dynamic delay between the stimulus and the peak
vascular response [Bullmore et al., 1996]. These meth-
ods have achieved some success in identifying acti-
vated brain regions but all suffer from the obvious
drawback that their success will be dependent on the
fidelity with which the experimental response matches
the statistical model employed for analysis. Many (but
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not all) methods of analysis assume either that the
amplitude of the response is constant throughout the
experiment [Rabe-Hesketh et al., 1997] or that it changes
in a fairly simple and predictable fashion. If this
assumption is violated, there could be a significant loss
of power to detect activation. However, there are a
number of potential analytic approaches that do not
assume a constant response amplitude or a simple model
for amplitude changes. One such method that is fre-
quently used for the analysis of nonstationary signals is
wavelet analysis. This article describes its use for the
detection of activations in fMRI experiments. We compare
the results obtained with those found with techniques
more commonly encountered in fMRI, and report some
preliminary findings on enhancing sensitivity by varying
the spatial scale on which the analysis is performed.

EXPERIMENTAL PROCEDURES

Image Acquisition

Gradient echo echoplanar brain images were ob-
tained on a 1.5 Tesla GE Signa system retrofitted with
an Avdanced NMR operating console. A quadrature
birdcage headcoil was used for radio-frequency (RF)
transmission and reception. At each of 10 5-mm slices
with an interslice gap of 0.5 mm, or 14 7.0-mm slices
with an interslice gap of 0.7 mm, 100 T2*-weighted images
(TE 40 msec, TR 3 sec) with an in-plane resolution of 3 mm
were obtained depicting BOLD contrast. Slice orientation
was near-axial. An inversion recovery echo planar imag-
ing (EPI) data set was also acquired at 43 near-axial
3-mm-thick planes parallel to the AC/PC plane: TE 80
msec, TI 180 msec, TR 16 sec, in-plane resolution 1.5 mm, 8
signal averages.

Experimental design

The experiments reported here were designed to
produce auditory and visual responses in the superior
temporal gyrus and occipital cortex, respectively. They
used an AB design in which there were alternating
presentations of control (A) or active (B) conditions.
The total duration of each experiment was 5 min,
during which a total of 100 images was acquired at
3-sec intervals . An auditory/visual costimulation
paradigm was employed. The visual stimulus was 30
sec of pattern-flash photic stimulation (8 Hz) via
lightproof goggles (condition B) and 30 sec of darkness
(condition A). The auditory stimulus was exposure to a
prerecorded voice reading a passage from a book (39
sec, condition B), alternating with listening to a blank
tape (39 sec, condition A).

Image preprocessing

Prior to estimation of responses, motion-related
effects in fMRI data sets were estimated and corrected
by three-dimensional (3D) realignment, followed by
regression of each realigned time series on the vector of
estimated rotations and translations at each voxel
[Brammer et al., 1997].

Wavelet analysis

Wavelet transformation operates by computing in-
ner products between a signal (f(x)) and analysis
functions derived by rescaling and translation from a
wavelet function, often referred to as the ‘‘mother wave-
let.’’ The formulation below is that given by Unser [1996]:

Ca,b(x) 5 a21/2 C1(x2b)

a 2
where c is the ‘‘mother wavelet’’ and a and b are
rescaling and translation parameters, respectively. The
attractiveness of wavelet transformation in the context
of time-series analysis stems from the fact that it
preserves both temporal and frequency information. It
can thus respond to changes in response amplitude at
different time points within a number of frequency
bands, which can be used to advantage in analyzing
responses of varying amplitude in fMRI experiments.

There are a large number of different types of
mother wavelet and various types of wavelet transfor-
mation. In this article, the biorthogonal wavelet bases
described by Daubechies [1988] are applied to analysis
of fMRI data, using an efficient implementation of the
nonredundant wavelet transform involving dyadic
(a 5 2j, b 5 k.2j) rescaling of the mother wavelet [Mallat,
1989]. Wavelet analysis of a signal with 2j data points will
thus produce j detail levels of output, one for each
rescaling of the mother wavelet. Analysis was performed
on slices of fMRI data with two spatial and one time
dimension (x, y, and t). The three-dimensional extension of
the algorithm of Mallat [1989]was implemented as de-
scribed by Press et al. [1992]. The orthogonality of the
wavelet bases of Daubechies [1988] allows wavelet trans-
formation to be used to implement spatial or temporal
band-pass filtering of the input data. By setting the
coefficients of the finer detail levels in the spatial dimen-
sions to zero and performing the inverse wavelet trans-
form, spatially smoothed versions of the data set can be
reconstructed. These are then analyzed using a strategy
aimed at identifying clusters of statistically significant
wavelet coefficients in the t dimension at detail levels
appropriate to the experimental design frequency. This
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was accomplished by the method outlined by Hilton et al.
[1996], which involves initial computation of an estimate
of the noise standard deviation by the method of Donoho
and Johnstone [1994]. Such an estimate can be obtained
from the median absolute value (MAV) of the wavelet
coefficients at the finest length scale.

ŝ 5 MAV/0.6745

The existence of clusters of significant wavelet coeffi-
cients is then tested at the detail level(s) of interest by
computing the cumulative sum process of the squared
coefficients.

Bz 1 in2 5
1

sÎ2n
o
k51

i

(dj(k)2 2 dj
2 )

In this formulation, dj(1) .... dj(n) are the wavelet coeffi-
cients at some detail level (j) of interest and 1 # i # n.

Hilton et al. [1996] suggested using the supremum
functional

K 5 1#i#n
max 0 B

z 1 in2 0
which is a Kolomogorov-Smirnov (KS) test statistic, and
thresholding at the appropriate P level for significance.

Pseudogeneralized least squares
and correlational analysis

In addition to using wavelet analysis to identify acti-
vated brain regions, two other analytical techniques were
employed for comparative purposes. These were pseudo-
generalized least squares analysis (PGLS) using sinusoidal
regression [Bullmore et al., 1996] and estimation of cross-
correlation with the boxcar input function with a correc-
tion for hemodynamic delay [Bandettini et al., 1993]. These
techniques have been used in our own and other laborato-
ries and have been shown to perform well in identifying
responses to periodic boxcar (A/B) input functions of the
type employed in this study.

In PGLS sinusoidal regression, the time series is
fitted to a model of the form

Y(t) 5 gsin(vt) 1 d cos(vt) 1 ǵ sin(2vt) 1 d́ cos(2vt)

1 g̋ sin(3vt) 1 d̋ cos(3vt) 1 a 1 bt 1 rt

The power of the response at any voxel at the fre-
quency of alternation of the A/B conditions is given by
g2 1 d2. The standard error of the power is

Î2(SE(g))4 1 2(SE(d))4

The fundamental power quotient (FPQ) is computed at
each voxel by dividing the power by its standard error.
In addition to the ‘‘observed’’ FPQ, 10 estimates of the
FPQ are computed at each voxel after random permu-
tation of the time series. Critical FPQ values for any
desired level of significance can be obtained from the
distribution of ‘‘randomized’’ FPQs computed over the
whole image [Bullmore et al., 1996].

In correlational analysis, the correlation coefficient
(r) is computed at each voxel and significance assessed
using the known distributional characteristics of r with
appropriate degrees of freedom [Bandettini et al., 1993].

RESULTS

Distribution of responses between detail levels
and choice of wavelet basis

Dyadic wavelet transformation of a 100-point time
series produces information at seven detail levels (see
above). In a preliminary series of experiments, analysis
of the data from a visual-auditory costimulation experi-
ment was carried out by PGLS sinusoidal regression.
Areas in the temporal and occipital cortices that were
activated by auditory and visual stimulation, respec-
tively, were identified and the mean time series in each
region computed and subjected to wavelet analysis.
The KS statistic was computed by the method of Hilton
et al. [1996] for each the seven detail levels in the
‘‘auditory’’ and ‘‘visual’’ mean time series. In both
cases, the peak KS statistic was found at detail level 4,
as would be predicted from the experimental design
frequency. We will therefore concentrate on the results
of analysis at this detail level when describing the
results of wavelet analysis of whole images. Dau-
bechies [1988] defined a number of wavelets with
different numbers of coefficients. These differ in com-
pactness and smoothness and might be expected to
have somewhat different properties in the context of
fMRI analysis. After extensive investigations, we found
that the sensitivity to detect activations increased with
the number of coefficients in the wavelet up to but not
beyond 12 coefficients. The 12-wavelet set of Daubechies
[1988] was therefore used for subsequent analysis.

Comparison of PGLS, correlational,
and wavelet analysis

One of the primary aims of this study was to
establish whether wavelet analysis could detect activa-
tions following visual and auditory stimulation with a
sensitivity at least comparable to that of established
methods. Prior to analysis, the data in each axial slice
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were smoothed using a two-dimensional Gaussian
filter (FWHM, 7 mm). Analysis was then carried out by
PGLS sinusoidal regression, wavelet analysis at detail
level 4 using the 12-coefficient set of Daubechies [1988],
and correlational analysis, all with a voxelwise type I
error rate of 0.0005. All three methods detected bilat-
eral activations in the superior temporal activations
following auditory stimulation, and occipital cortical
activation following visual stimulation. There were no
significant areas of activation outside of these regions,
which are precisely those that would be predicted from
previous imaging data in our own and other laborato-
ries. In comparative terms, wavelet analysis appeared
the most sensitive, detecting the largest number of acti-
vated voxels. However, in the current experiment, where
the response amplitude was relatively constant, the results
with the other methods were very similar. Thus, PGLS and
correlational analysis detected 95% and 88%, respectively,
of the voxels identified as activated by wavelet analysis.
The relative results with PGLS and correlational analysis
accord with the predictions of Bullmore et al. [1996] that
the former should be more sensitive.

Spatial ‘‘scale-space’’ mapping using wavelets

We have utilized the spatial smoothing possibilities
offered by 3D wavelet transformation of each axial
slice of fMRI data to attempt a preliminary spatial
scale-space mapping of visual and auditory activa-
tions. This was accomplished by carrying out a forward
dyadic 3D wavelet transform of the data from each
axial slice using the 12-coefficient set of Daubechies
[1988] and then setting the wavelet coefficients of one
or more of the detail levels in the two spatial dimen-
sions to zero before carrying out the reverse transform,
using the method of Hilton et al. [1996] to compute

Figure 1.
Wavelet analysis of auditory and visual activations following increasing
levels of spatial smoothing. Shown are four images of the slice with the
strongest responses to auditory/visual stimulation. The activation maps
were obtained after setting the wavelet coefficients of increasing
numbers (0, 1, 2, and 3) of the finest spatial detail levels to zero,
following 3D (x, y, and t) wavelet transformation using the 12-coefficient
basis of Daubechies [1988]. This is broadly equivalent to smoothing the
images over local neighborhoods of 1 3 1, 2 3 2, 4 3 4, and 8 3 8
voxels, respectively (top to bottom). The transform was then reversed,
and clusters of significant wavelet coefficients at the detail level
characteristic of the auditory and visual responses were identified by
one-dimensional wavelet transformation in the t dimension and compu-
tation of KS statistics, as descibed in the text. The absolute magnitudes
of the KS statistics computed at each voxel are shown by the color scale
(blue, lowest; red, highest).
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voxelwise KS statistics. Figure 1 shows a series of
activation maps in the visual-auditory costimulation
experiment computed by setting progressively larger
numbers of spatial detail levels to zero (and thus
removing more and more high-frequency spatial com-
ponents) before carrying out analysis in the time
dimension. It can be seen that in the larger areas of
activation, e.g., in the occipital cortex, sensitivity to
detect activations grows with progressive smoothing up
to the maximum used in this study, where the finest three
detail levels are set to zero. However, more focal activa-
tions, particularly those in the superior temporal gyrus,
show peak responses, with intermediate levels of spatial
smoothing.

DISCUSSION AND CONCLUSIONS

Wavelet analysis offers a number of clear attractions
in the context of detecting fMRI activations. It is
well-suited to the detection of transient events in time
series and adapts well to periodic signals of decreasing
or increasing amplitude. Analysis of such signals by
more common models which assume constant ampli-
tude responses throughout an experiment will entail
loss of power and possible failure to detect activations.
However, before using wavelet analysis to detect
activations under such circumstances, we have sought
to validate it using experimental paradigms which
produce at least approximately constant amplitude
responses in 5-min experiments. Thus, in the present
series of experiments, we employed an alternating
A/B periodic design to invoke auditory and visual
responses and compared the ability of wavelet analysis
to detect activations with that of sinusoidal regression
analysis (which has been extensively validated on
single subjects [Bullmore et al., 1996] and groups
[Brammer et al., 1997] in our own laboratory and
elsewhere), and with cross-correlation with the input
(boxcar) function [Bandettini et al., 1993]. The areas of
activation detected using all three methods at a voxel-
wise type I error rate of 0.0005 were very similar.
However, sinusoidal regression and wavelet analysis
appeared to be more sensitive than correlational analy-
sis. This is encouraging, and provides a preliminary
comparative validation of the statistical approach sug-
gested by Hilton et al. [1996] for identifying significant
clusters of wavelet coefficients.

It is also possible to make use of wavelet transforma-
tion in the two spatial dimensions of each slice of fMRI
data to perform spatial smoothing. Starting at the
finest spatial detail levels, setting the coefficients of
each detail level to zero before reversing the transfor-
mation will effectively halve the spatial resolution in

that dimension. We have shown that this technique can
be used to find the optimal spatial detail levels for
detection of activations. The technique described here
is a very simple implementation of this idea. One could
treat the two spatial dimensions separately, rather than
smoothing each to the same extent, and obtain smoothing
with differential x and y characteristics, thus applying
additional geometric constraints in determining optimal
local smoothness. Use of redundant wavelet transforma-
tions would also permit the optimal spatial frequency
bands to be identified with more precision.

This report can only give a brief sketch of the potential
of wavelet transformation, and we have restricted our
initial analysis to situations which give the best direct
comparisons with more established analytic techniques.
We now have abundant evidence that, in conditions where
responses change significantly in amplitude during experi-
ments, wavelet analysis can detect activations that might
well be missed by many more commonly used methods.
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