Skip to main content
. 2019 Nov 21;19:231. doi: 10.1186/s12911-019-0974-x

Table 3.

Prediction accuracy of the neural network algorithm using the neuropsychological screening test dataset

Prediction Number of subjects Accuracy of 10 trials
(mean ± SD%)
SE(%) SP(%) PPV(%) NPV(%) AUC
Balanced dataset CI vs NC 3231: 3217 96.66 ± 0.52 96.0 96.8 97.0 95.8 0.964
MCI vs NC 3217: 3217 96.60 ± 0.45 96.0 97.4 97.6 95.6 0.967
ADD vs MCI vs NC 3235: 3217: 3217 95.49 ± 0.53
Clinic-based dataset CI vs NC 11,709: 3217 97.23 ± 0.32 97.4 95.2 98.6 91.3 0.963
MCI vs NC 6002: 3217 97.05 ± 0.38 97.5 96.4 98.1 94.8 0.968
ADD vs MCI vs NC 5707: 6002: 3217 96.34 ± 1.03

SD Standard deviation, SE Sensitivity, SP Specificity, PPV Positive predictive value, NPV Negative predictive value, AUC Area under the curve, CI Cognitive impairment, NC Normal cognition, MCI Mild cognitive impairment