Skip to main content
. 2019 Nov 21;11:70. doi: 10.1186/s13321-019-0396-x

Table 2.

Conditional molecular graph generation with proposed model

Dataset Target condition G-mean Unique count MolWt LogP
QM9 Training set 100,000 122.97 ± 7.61 0.14 ± 1.16
Unconditional generation 0.639 3243 123.01 ± 8.04 − 0.06 ± 1.36
MolWt = 120 0.583 2316 121.85 ± 5.11 0.02 ± 1.36
MolWt = 125 0.543 1947 125.11 ± 4.56 − 0.27 ± 1.22
MolWt = 130 0.482 1475 128.98 ± 4.27 − 0.41 ± 1.33
LogP = − 0.4 0.576 2399 122.97 ± 8.26 − 0.40 ± 0.73
LogP = 0.2 0.543 2099 122.53 ± 8.17 0.19 ± 0.75
LogP = 0.8 0.537 1989 122.17 ± 8.09 0.83 ± 0.72
ZINC Training set 100,000 357.94 ± 65.48 2.62 ± 1.36
Unconditional generation 0.888 7000 366.44 ± 51.63 2.49 ± 1.43
MolWt = 300 0.742 4090 313.12 ± 13.72 1.91 ± 1.50
MolWt = 350 0.796 5045 356.22 ± 12.66 2.24 ± 1.36
MolWt = 400 0.805 5212 400.95 ± 13.66 2.78 ± 1.30
LogP = 1.5 0.865 6470 352.33 ± 46.78 1.66 ± 0.94
LogP = 2.5 0.860 6356 366.64 ± 48.30 2.46 ± 0.92
LogP = 3.5 0.827 5658 381.96 ± 48.46 3.22 ± 0.85