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a b s t r a c t 

In recent years, endomicroscopy has become increasingly used for diagnostic purposes and interventional 

guidance. It can provide intraoperative aids for real-time tissue characterization and can help to per- 

form visual investigations aimed for example to discover epithelial cancers. Due to physical constraints 

on the acquisition process, endomicroscopy images, still today have a low number of informative pixels 

which hampers their quality. Post-processing techniques, such as Super-Resolution (SR), are a potential 

solution to increase the quality of these images. SR techniques are often supervised, requiring aligned 

pairs of low-resolution (LR) and high-resolution (HR) images patches to train a model. However, in our 

domain, the lack of HR images hinders the collection of such pairs and makes supervised training un- 

suitable. For this reason, we propose an unsupervised SR framework based on an adversarial deep neural 

network with a physically-inspired cycle consistency, designed to impose some acquisition properties on 

the super-resolved images. Our framework can exploit HR images, regardless of the domain where they 

are coming from, to transfer the quality of the HR images to the initial LR images. This property can be 

particularly useful in all situations where pairs of LR/HR are not available during the training. Our quan- 

titative analysis, validated using a database of 238 endomicroscopy video sequences from 143 patients, 

shows the ability of the pipeline to produce convincing super-resolved images. A Mean Opinion Score 

(MOS) study also confirms this quantitative image quality assessment. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

According to a recent report by the World Health Organization,

ancer is the second leading cause of death after cardiovascular

isease and was responsible for 8.8 million deaths in 2015. Early

etection, such as the ability to detect precancerous lesions, plays

n important role in reducing cancer incidence and related mor-

ality ( Torre et al., 2016 ). Optical endomicroscopy, based for exam-

le on confocal microscopy, optical coherence tomography or spec-

roscopy, has the ability to perform optical biopsies and identify

arly pathology in tissues or organs including the colon, oesoph-

gus, pancreas, brain, liver and cervix ( Ravì et al., 2017; Nguyen

t al., 2015 ). Although in the last years, progress has been made

o build reliable optical endomicroscopy devices ( Neumann et al.,

010 ), the need to operate at micron scale through the use of en-

oscopes, fibre bundles, laparoscopes, and needles, limits the final
∗ Corresponding author. 
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esolution of the images. Further hardware improvements are dif-

cult to achieve and one possibility to improve the image quality

s to post-process the images using SR techniques. 

Recent methods for SR are based on training example-based

odels that learn how to improve image resolution by exploit-

ng a database of aligned pairs of LR and HR images ( Ledig et al.,

017; Ravì et al., 2018 ). Nonetheless, due to the lack of HR endomi-

roscopy images, these pairs are not typically available in this do-

ain. An option is to generate these pairs synthetically, but achiev-

ng this in a sufficiently realistic manner is only feasible when the

cquisition process is extremely well defined. In most of the cases,

he acquisition process is only known approximately and super-

ised methods may thus not be applicable. 

For this reason, we designed a deep learning architecture

rained in an unsupervised manner where the aforementioned

ne-to-one alignment between LR and HR is not required anymore.

e formalize our framework so that LR images from an initial in-

ut domain I LR could be transformed into images of any target do-

ain T HR . The target domain can be the same or different from
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Example of aligned-paired and unpaired patches used for training super-resolution neural networks. 
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the initial one. An example of the difference between initial and

target domain with paired and unpaired patches is shown in Fig. 1 .

To train the model using unpaired patches and avoid that the net-

work learns to produce HR images with no direct relationship with

the input images, a cycle consistency block is included in our ar-

chitecture. This block imposes some physical acquisition properties

so that the obtained HR images faithfully represent the initial LR

images. 

More specifically, during the training procedure, we make use

of an adversarial network, a class of artificial intelligence algo-

rithms which train two separate models that challenge each other

in a zero-sum game. The first model is a SR network that learns

how to improve the resolution of the images, and the second is a

discriminative network DS that, looking at the target domain, tries

to distinguish images generated by the SR network from the real

T HR images. The aim of SR is to learn how to fool the DS network

and this leads to a generation of super-resolved images. 

Adversarial training can learn how to produce outputs with the

same distribution as the target domain. However, the target do-

main distribution could be sampled by simply mapping the input

images to any random permutation of images in the target do-

main. Therefore, in this context and without specific constraints,

an adversarial loss, alone, cannot guarantee that the learned func-

tion maps an input to a desired corresponding super-resolved im-

age. Thus, following the idea proposed by Zhu et al. (2017) in

the context of style transfer, we add in the adversarial train-

ing a further cycle block that imposes a consistency between the

HR images and the initial LR images. In contrast to the work

in Zhu et al. (2017) where the reverse mapping between the target

and the source domain is also learned, in this work, this consis-

tency is obtained by constraining the super-resolved T HR image to

have similar physical acquisition properties to the initial I LR image.

As explained in more detail in Section 3.3 , the raw signal of

pCLE images is acquired from tens of thousands of fibres irregu-

larly placed in a bundle. Moreover, the LR images are reconstructed

using a Delaunay-based linear interpolation that interpolates pixels

from the centres of the fibres to a regular grid. Starting from the

super-resolved pCLE images created by our framework, the pro-

posed physical constraints impose that the values obtained by in-

verting the aforementioned interpolation are similar to the raw

signal acquired from the fibres for the corresponding LR image. 

To the best of our knowledge, this paper is the first to propose

an adversarial network that takes advantage of the knowledge of

the physical acquisition process by imposing a cycle consistency to

perform unsupervised SR of medical images. In our experiment, we

show that the proposed framework does not require paired aligned

patches for the training. This is an important property in all the

domains where HR images are not available. The rest of the paper

is organized as follows: Section 2 presents the state-of-the-art for

unsupervised SR methods. Section 3 presents the proposed training
ethodology based on an adversarial training with cycle consis-

ency. Section 4 presents the results obtained using a quantitative

mage quality assessment and a Mean Opinion Score (MOS) study

nd Section 5 summarizes the contribution of this research. 

. Related work 

With the recent outbreak of deep learning, example-based

uper-resolution (EBSR) has led to a dramatic leap in SR perfor-

ance. These approaches are mainly based on a supervised train-

ng procedure where a database of aligned pairs of LR and HR im-

ges is required to create the model. Being supervised, these SR

ethods are restricted to specific training data, where the LR im-

ges are usually predetermined from their HR counterparts. How-

ver, in many contexts, such as in endomicroscopy, HR images

re not available due to physical constraints and therefore these

aired aligned images cannot be generated. A first attempt to

rain an EBSR network for endomicroscopy was proposed by Ravì

t al. (2018) where a video-registration technique is used to es-

imate the HR images from a sequence of LR images. A pipeline

or generation of synthetic data is finally presented to produce

he desired aligned pairs. Although models trained with gener-

ted synthetic data can obtain convincing SR images, the domain

ap between synthetic LR images and original pCLE images raises

uestions about their reliability for clinical use. For this reason,

e believe that unsupervised super-resolution techniques would

e more suitable in these cases. In ( Ayasso et al., 2012 ) is pre-

ented an unsupervised method for image SR based on a Varia-

ional Bayesian (VB) algorithm that combines a Bayesian technique

ith a Markovian model. The main issue with this approach is

he difficulty to hand-craft a good perceptual loss function and

he final images tend to be blurred. Rather than designing a suit-

ble similarity loss function, Goodfellow et al. (2014) proposed a

eneral framework called Generative Adversarial Network (GAN)

here the perceptual loss function is trained directly using a dis-

riminative network. This allows the method to automatically ver-

fy if a generated sample is similar to a real one from the target

omain. In particular, the adversarial process uses two models: i)

 generative model G , and ii) a discriminative model D that are

rained to play a zero-sum game. Following this general frame-

ork, Ledig et al. (2017) proposed a single image super-resolution

rchitecture called SRGAN. Although this approach is unsupervised,

art of its loss is still supervised. In fact, a content loss term based

n a per-pixel loss between the output and ground-truth images

s used there. This term requires again alignment between LR and

R thereby limiting its applicability in our context. Another draw-

ack of SRGAN is its difficulty to train, often generating SR im-

ges that are too sharp or have artefacts. To reduce these draw-

acks, Bao et al. (2017) proposed to combine a VB approach with

AN. They show that an asymmetric loss function obtained using
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Fig. 2. Pipeline used for training the proposed adversarial network with cycle con- 

sistency. Each component of the pipeline is identified by a different colour. (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
 cross-entropy loss for the discriminative network and a mean

iscrepancy objective for the generative network, make the GAN

raining more stable. Similarly to this idea, an Adversarial Vari-

tional Bayes was proposed by Mescheder et al. (2017) where a

ariational Autoencoder (VAE) is trained using an auxiliary dis-

riminative network. Contrary to the previous case, this approach

rovides a more clear theoretical justification. However, the prob-

em of using paired LR/HR has not been resolved by any of the

pproaches described so far. One of the first approaches that for-

alize the possibility to translate images from a source domain X

o a target domain Y in the absence of paired examples was pro-

osed by Zhu et al. (2017) and is called CycleGAN. Using an ad-

ersarial training the goal of this method is to learn a mapping

 : X → Y such that the distribution of images from G ( X ) is indis-

inguishable from the distribution Y . Since this mapping is highly

nder-constrained, the authors also introduced an inverse mapping

 : Y → X and a cycle consistency loss to ensure F ( G ( X )) ≈ X . Thanks

o this two-step consistency, the need for paired images is elim-

nated. Varying the input-output domain, this framework can be

sed to perform artistic style transformation ( Johnson et al., 2016 )

where, for example, horses can be converted into zebras) or, as in

ur case, transfer the resolution from one domain to another. 

Some other interesting approaches were proposed by Shocher 

t al. (2017) and Bulat et al. (2018) . Here the authors ques-

ion that the predetermined LR images obtained from standard

i-cubic down-sampling rarely look like the real LR images.

n Shocher et al. (2017) the authors introduce a method called

ero-Shot SR, that does not rely on prior training. To do so they

xploit the internal recurrence of information inside a single im-

ge and train a small image-specific CNN at test time. This facili-

ates self-training SR for biological data, old photos, noisy images,

nd other images where the acquisition process is unknown. 

Following the CycleGAN concept of Zhu et al. (2017) , we pro-

ose an unsupervised framework that uses unpaired images and is

esigned to overcome the limitations that standard SR approaches

ave when aligned pairs of LR/HR images are required. 

. Materials and methods 

.1. Database 

To validate our solution, we used the database proposed

y André et al. (2011) containing 238 anonymized probe-based

onfocal Laser Endomicroscopy (pCLE) video sequences from 143

atients captured on the colon and oesophagus regions. This

atabase does not provide the real ground truth of the HR im-

ges and only estimated 

̂ HR , computed using a time-consuming

ideo-registration technique on the LR images are available. Video-

egistration may generate ̂ HR that are not perfectly aligned with

he LR and might display further reconstruction artefacts. We de-

ne this set of data as DB orig . A second version of this database

alled DB syn and based on the simulated framework proposed

n Ravì et al. (2018) is also used in our experiments. In this case,

he LR images are synthetically generated from the ̂ HR and this re-

ults in paired images perfectly aligned. More specifically, the sim-

lated framework extract fibre signals fs directly from the ̂ HR im-

ge, by averaging the ̂ HR pixel values within the region defined by

he Voronoi cell computed from the centre of the fibre’s position.

oreover, to replicate realistic noise patterns on the simulated LR

mages, additive and multiplicative Gaussian noise is added to each

bre signal fs obtaining a noisy fibre signal nfs . Finally, Delaunay-

ased linear interpolation is performed thereby leading to the final

imulated LR images. 

Fig. 3 shows some example of images extracted from both the

wo versions of the database. In both these scenarios, the database

as divided randomly into three subsets: a train set (70%), a vali-
ation set (15%), and a test set (15%). The number of images that

elong to each clinical setting is maintained equal in each of these

et. 

We provide the results from two different case studies: CS 1 
here the images that belong to the same video are only dis-

ributed within one of the subsets (train, test or validation) and

S 2 where, additionally, the images from the same patient are only

istributed within one of these subsets. CS 1 allows us to under-

tand if the system is capable of super-resolve new visual patterns

hat have never been seen before. Given the size of our dataset,

S 2 allows for coarser but less prone-to-bias evaluation that mim-

cs a more realistic scenario where the effectiveness of the system

o transfer the inter-patient super-resolution capability to new pa-

ients is analysed. In our experimental section, we show that these

wo scenarios demonstrate similar trends. 

Following the same pre-processed steps proposed in Ravì

t al. (2018) , the intensity values are first normalized to have mean

ero and variance one, then the pixels values were scaled of every

rame individually in the range [0–1] and finally, non-overlapping

atches of 64 × 64 pixels were extracted only from the pCLE field

f view of the train and validation set. The patches in the valida-

ion set were used to monitor the loss and avoid overfitting. Test

mages with size 512 × 512 were processed at full-size to com-

ute the final results. We highlight that the proposed SR frame-

ork does not have the aim to increase the number of pixels, but

ather to improve the quality of the LR images that are initially

versampled with an average of 7 interpolated pixels for each in-

ormative fibre-pixel. The choice to initially oversample is made by

he manufacturer to ensure that the image space is discretised in

 sufficiently fine manner to map the fibre graph onto a square

ixel grid without too much distortion. In conclusion, in our sys-

em, the output images have the same size as the input images but

isplay refined content. The full-size processing of the test images

s possible since the inference network is fully convolutional and

o specific image size is required as input. 

.2. Adversarial training 

The pipeline used for training our framework is presented in

ig. 2 and is divided into different sub-sections, each coded by a

pecific colour. 

We formalize our training as an adversarial min-max problem

here two networks, a discriminative network defined as DS γ (red

ub-sequence in Fig. 2 ), and a super-resolution network defined as

R (grey sub-sequence in Fig. 2 ) are trained concurrently. More
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Fig. 3. Example of images contained in the two proposed versions of the database. Both the two versions share the same ̂ HR images. The LR in DB orig are images acquired on 

human tissues and they are not always aligned with the related ̂ HR . The LR in DB syn are instead generated synthetically and are always aligned with the corresponding ̂ HR . 
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specifically, the first network DS γ is trained solving: 

max 
γ

E x ∼p 
I LR 

[
log 

(
1 − DS γ

(
SR θ (x ) 

))]
+ E y ∼p 

T HR 

[
logDS γ (y ) 

]
, (1)

where p I LR and p T HR are respectively the patch distributions on

the input and target domain, DS γ ( ∗) estimates the probability that

a patch comes from the target domain, whereas SR θ ( x ) is the

predicted super-resolved patch obtained from x . The meaning of

Eq. (1) is that the discriminator has to maximize how to discrimi-

nate predicted super-resolved images from real T HR patches. 

The second network SR θ , is trained instead through the mini-

mization of a composite loss function loss t obtained solving: 

min 

θ
E x ∼p 

I LR 

[
loss t 

(
x, SR θ (x ) 

)]
(2)

The proposed loss t , defined in Eq. (3) , is a combination of three

terms: l Vec that models the physical acquisition characteristics of

the predicted super-resolved patch, l Adv that models the adversarial

loss function and l Reg used to regularize the network training. The

details of each term are provided later in this section. 

loss t = l Vec + l Adv + l Reg (3)

Both SR θ and DS γ are concurrently trained using the back-

propagation algorithm that gradually adjusts the parameters θ and

γ through a stochastic gradient descent for the former and a

stochastic gradient ascent for the latter. 

3.3. Input domain and cycle consistency 

3.3.1. Input domain 

The green blocks in Fig. 2 represent the data structures re-

quired as input for the proposed pipeline. The most obvious input

is the reconstructed I LR that is used by the SR θ network to infer

the super-resolved patch SR θ ( I LR ). 

In the pCLE imaging, image acquisition is achieved by illumi-

nating one fibre at a time. Each fibre acts as an individual pinhole

and a scan point for fibre confocality. The information from all the

fibres is then collected in a vector that we refer to as a vectorized

image V ( I LR ) and represents the main input block in our pipeline.

I LR images are reconstructed interpolating the values in V ( I LR ) from

the centres of the fibre positions to the points of a regular grid.
herefore the fibre positions are the other key input block required

y our pipeline. 

.3.2. Cycle consistency 

Starting from a generated high-resolution pCLE image SR θ ( I LR ),

e can obtain a low-resolution representation of it, by a process

eferred to as Voronoi vectorization 

̂ V (SR θ (I LR )) which is equiv-

lent to the down-sampling for standard images. The details of

he Voronoi vectorization used in our framework are described in

ig. 4 . Here, the first step is to compute the Voronoi diagram from

he fibre positions. The result is a partition of the plane where for

ach fibre there is a corresponding region, called Voronoi cell, con-

isting of all points closer to this fibre than to any other fibre. The

ext step is to average the pixels in the SR θ ( I LR ) patch that be-

ongs to the same Voronoi cell, imitating the point spread function

f the fibre acquisition process. All the elements in the vector are

hen normalized in the range [0, 1]. This normalization makes the

raining faster and reduces the chances of getting stuck in local op-

ima. Since each patch may have a different number of fibres, the

ectorization can produce vectors of different sizes. Therefore as

 final step, a 0-padding is introduced so that each vector always

as a fixed number of elements. We define this fixed number as N F 

hat is equal to the maximum number of fibres in a single patch.

n our database, N F is 682 which is commensurate with the ratio

etween the patch size (64 × 64) and the average factor (7) used

o oversample each informative fibre-pixel. 

The vectorized V ( I LR ) and the Voronoi vectorization 

̂ V (SR θ (I LR ))

re used in our pipeline to create the cycle consistency (blocks

oloured in cyan in Fig. 2 ). These blocks are used to impose the

equirements for the predicted super-resolved images SR θ ( I LR ) to

ave the same physical acquisition properties as the initial I LR im-

ges. Without this cycle consistency, the network could simply pro-

uce arbitrary images in the target domain with no relationship to

he structures contained in the input image, because our frame-

ork relies on unpaired patches. To avoid this, we force the V ( I LR )

nd 

̂ V (SR θ (I LR )) to be similar using the l Vec term in the proposed

oss function. 

 Vec = 

1 

N F 

N F ∑ 

i =1 

[ 
V (I LR ) i − ̂ V (SR θ (I LR )) i 

] 
2 (4)
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Fig. 4. Voronoi vectorization used in our pipeline to constrain the predicted super-resolved patches. 
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In contrast to CycleGan ( Zhu et al., 2017 ), our cycle consistency

lock is not a trainable network, but rather is used to constrain the

R θ network to generate images with the same physical acquisition

roperties as the initial I LR images. 

.4. Super-resolution network 

We decided to use the layout for the SR network proposed

n Ledig et al. (2017) . SR θ is aimed at producing images that are

imilar to the one in the target domain by trying to fool the dis-

riminator network. This is achieved through the term l Adv in the

roposed loss function defined as follows: 

 Adv = −logDS γ (SR θ (I LR )) , (5)

here DS γ ( SR θ ( I LR )) is the probability that the predicted

mage SR θ ( I LR ) is classified as a real T HR . As proposed

y Goodfellow et al. (2014) we minimize −logDS γ (SR θ (I LR ))

nstead of log[1 − DS γ (SR θ (I LR ))] for better gradient behaviour. 

In the inference phase, only SR θ is used for processing the I LR 

mages. 

.5. Regularization 

The blocks displayed in orange in Fig. 2 are used to regularize

he network training. This regularization is required since the

oronoi vectorization of each patch is normalized to the range

0–1] and this may result in an expansion of its histogram range.

o restore the correct histogram distribution, we impose that

he mean values in each row and each column of the patch are

dentical between the initial I LR and the obtained T HR . This is

chieved in our framework through the l Reg term of loss t : 

 Reg = 

1 

H 

H ∑ 

y =1 

[
1 

W 

W ∑ 

x =1 

SR θ (I LR 
xy ) −

1 

W 

W ∑ 

x =1 

I LR 
xy 

]
2 

+ 

1 

W 

W ∑ 

x =1 

[
1 

H 

H ∑ 

y =1 

SR θ (I LR 
xy ) −

1 

H 

H ∑ 

y =1 

I LR 
xy 

]
2 (6) 

.6. Training domain 

In our pipeline we considered four different target domains to

ransfer the super-resolution to the initial LR images: i) T HR 
nat where

he HR patches are extracted from natural images (grey-scaled im-

ges from the Sun2012 database ( Xiao et al., 2010 )), ii) T HR 
orig 

con-

aining the HR patches obtained by the video-registration tech-

ique on the LR images, iii) T HR 
syn containing paired HR patches

btained using the video-registration technique while the LR are

ynthetically aligned, and iv) T HR 
res where the HR patches are ob-

ained by down-sampling large portions of the LR images by a fac-

or of four. Inspired by the work proposed in Shocher et al. (2017) ,
he idea behind this last target domain is based on the fact that

atches in the images have recurrences at a different scale and

own-sampling large LR images may increase the high-frequency

esponses in the generated down-sampled HR patches. 

.7. Training details and parameters 

In our implementation, Eq. (1) is solved by minimizing the

ross-entropy of the number of samples correctly discriminated

y DS . As proposed by Arjovsky and Bottou (2017) we add white

oise to the inputs of the DS γ network to stabilize the adversar-

al training. We trained our networks on an NVIDIA GTX TITAN-

 GPU card with 12GB of memory. The training procedure con-

erges after 50–80 thousand iterations of random mini-batch with

4 patches. For the optimization of the stochastic gradient descent,

e use Adam with β1 = 0 . 9 , β2 = 0 . 999 and ε = 10e −8. The net-

orks were trained with a learning rate of 10e −4. 

. Experiments 

Due to the lack of real ground truth in our database, the val-

dation of our experiments is based on complementary quantita-

ive and qualitative analysis. The quantitative analysis, presented

n Section 4.1 , uses four different metrics to evaluate the obtained

mages. The qualitative analysis is instead based on a MOS study

arried out by clinicians and medical imaging experts that gave nu-

erical indications of the perceived quality of the super-resolved

mages. 

.1. Quantitative analysis 

The four metrics used in our quantitative analysis are:

) a Structural Similarity matrix (SSIM) proposed by Wang

t al. (2004) that evaluates the similarity between SR θ ( I LR ) and̂ R , ii) � GC F ̂ HR 
that quantifies the improvement on the global

ontrast factor (a reference-free metric for measuring image con-

rast Matkovic et al., 2005 ) that the super-resolved image yields

ith respect to ̂ HR , iii) �GCF I LR that is the improvement of the

lobal contrast factor that the super-resolved image yields with re-

pect to the initial I LR , and iv) a composite score Tot cs obtained by

ormalizing the value of SSIM and � GC F ̂ HR 
in the range [0,1] and

veraging the obtained results. The formula used to compute Tot cs 

s described by Eq. (7) . 

o t cs = 

SSI M ̂ HR −0 . 6 

0 . 4 
+ 

� GC F ̂ HR +0 . 5 

1 . 8 

2 

(7) 

This composite score leads to a more robust evaluation of the

esults since, SSIM alone is not reliable when the ground truth is

nly estimated, while the GCF can be improved by merely adding

andom high frequency to the images. 
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Table 1 

Quantitative analysis results obtained by our approach when trained with different target domains on case 

study CS 1 and CS 2 . 

T HR 
syn T HR 

orig 
T HR 

res T HR 
nat 

CS 1 SSIM ̂ HR 0.90 ± 0.03 0.91 ± 0.03 0.87 ± 0.04 0.86 ± 0.03 

� GC F ̂ HR 0.01 ± 0.29 0.38 ± 0.27 −0.13 ± 0.40 0.66 ± 0.31 

�GCF I LR −0.28 ± 0.19 0.09 ± 0.19 −0.42 ± 0.31 0.38 ± 0.26 

Tot cs 0.52 0.63 0.44 0.64 

CS 2 SSIM ̂ HR 0.91 ± 0.03 0.91 ± 0.03 0.87 ± 0.03 0.86 ± 0.04 

� GC F ̂ HR −0.10 ± 0.36 0.24 ± 0.35 −0.26 ± 0.40 0.51 ± 0.40 

�GCF I LR −0.33 ± 0.21 0.01 ± 0.18 −0.49 ± 0.28 0.28 ± 0.25 

Tot cs 0.49 0.59 0.41 0.61 

Table 2 

Quantitative analysis results of the proposed approach against state-of-the-art methods on the database DB orig for case study 

CS 1 and CS 2 . 

Proposed Ravì et al. (2018) Villena et al. (2013) Wiener Contrast-enhancement 

CS 1 SSIM ̂ HR 0.86 ± 0.03 0.88 ± 0.05 0.86 ± 0.05 0.83 ± 0.08 0.62 ± 0.08 

� GC F ̂ HR 0.66 ± 0.31 0.42 ± 0.24 0.27 ± 0.23 −0.00 ± 0.37 1.34 ± 0.36 

� GC F I LR 0.38 ± 0.26 0.13 ± 0.13 −0.02 ± 0.07 −0.29 ± 0.27 1.06 ± 0.25 

Tot cs 0.64 0.61 0.54 0.42 0.53 

CS 2 SSIM ̂ HR 0.86 ± 0.04 0.89 ± 0.04 0.88 ± 0.04 0.85 ± 0.06 0.63 ± 0.06 

� GC F ̂ HR 0.51 ± 0.40 0.38 ± 0.29 0.21 ± 0.29 −0.15 ± 0.44 1.32 ± 0.34 

� GC F I LR 0.28 ± 0.25 0.15 ± 0.09 −0.02 ± 0.09 −0.38 ± 0.31 1.09 ± 0.18 

Tot cs 0.61 0.60 0.54 0.41 0.54 

Fig. 5. Example of visual results obtained by the proposed approaches when trained with different target domains. From left to right we have: Input, training with T HR 
syn , 

training with T HR 
orig 

, training with T HR 
res , training with T HR 

nat and ̂ HR . 
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Our first experiment is aimed at finding the best target domain

for improving the pCLE images. The results computed on DB orig for

both the case studies are reported in Table 1 . As we can see, the

network trained with natural images ( T HR 
nat ) obtains the best Tot cs 

score. From these results, we can also deduct that using synthetic

images for the training is worse than using images from the orig-

inal domain. This is probably due to the fact that synthetic im-

ages may have a non-negligible domain gap with the real images.

With this result, we can state that paired patches are not anymore

a requirement for our framework. Finally, downsampling LR images

to create patches with higher frequency content does not seem to

provide good results and the high-frequency signals are not recov-
red. These qualitative indications can be seen on reconstructed

mages reported in Fig. 5 . 

Looking at the different case studies, the aforementioned con-

iderations are consistent along both the cases, although CS 2 shows

lightly lower performances with respect to CS 1 probably due to

he fact that it has a coarser split of its dataset. 

To further validate our framework, we compare our best ap-

roach (the network trained with the target domain T HR 
nat ), against

ome state-of-the-art single image super-resolution methodolo-

ies. These results are presented in Table 2 for the database

B orig and in Table 3 for the database DB syn . In these experi-

ents we consider three different approaches: i) the unsupervised
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Table 3 

Quantitative analysis results of the proposed approach against state-of-the-art methods on the database DB syn for case study 

CS 1 and CS 2 . 

Proposed Ravì et al. (2018) Villena et al. (2013) Wiener Contrast-enhancement 

CS 1 SSIM ̂ HR 0.90 ± 0.03 0.93 ± 0.03 0.89 ± 0.05 0.88 ± 0.06 0.66 ± 0.08 

� GC F ̂ HR 0.60 ± 0.22 0.45 ± 0.25 0.13 ± 0.11 −0.21 ± 0.21 1.03 ± 0.32 

� GC F I LR 0.47 ± 0.26 0.32 ± 0.32 0.00 ± 0.00 −0.34 ± 0.19 0.90 ± 0.26 

Tot cs 0.68 0.68 0.54 0.43 0.50 

CS 2 SSIM ̂ HR 0.91 ± 0.03 v0.92 ± 0.03 0.90 ± 0.04 0.89 ± 0.06 0.65 ± 0.07 

� GC F ̂ HR 0.50 ± 0.25 0.52 ± 0.20 0.11 ± 0.05 −0.28 ± 0.22 1.08 ± 0.20 

� GC F I LR 0.39 ± 0.23 0.41 ± 0.23 −0.00 ± 0.00 −0.38 ± 0.21 0.97 ± 0.18 

Tot cs 0.66 0.68 0.54 0.42 0.50 

Fig. 6. Mean and standard deviation of the participants’ replies to each of the four MOS questions for the evaluation of the results obtained by contrast-enhancement 

(baseline), Ravì et al. (2018) , and proposed approach trained using two different target domains ( T HR 
nat and T HR 

orig 
). These results were obtained on the test images of DB orig for 

the case study CS 1 . 
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iener deconvolution tuned on the train set, ii) the unsupervised

ariational Bayesian inference approach with sparse and non-

parse priors ( Villena et al., 2013 ), and the supervised EBSR pro-

osed by Ravì et al. (2018) . Finally, a contrast-enhancement ap-

roach obtained by sharpening the input was also used as a base-

ine. 

In the dataset DB orig , although the sharpening algorithm pro-

uces the best contrast improvements, our approach obtains the

ighest SSIM and, according to Tot cs , the overall performance out-

erforms all the other approaches. 

Differently from the results obtained with DB orig , with the

atabase DB syn , our approach is not able to overcome the results

btained by Ravì et al. (2018) . This is probably due to the fact

hat the supervised training in Ravì et al. (2018) exploits principles

hat are similar to the ones used to generate the synthetic images

n DB syn . Therefore, the results obtained by this approach in the

atabase DB syn are obtained in a purely simulated scenario where

he model is trained on data with no domain gap with the test

et. Consequently, the supervised approach in Ravì et al. (2018) has

n advantage with respect to our unsupervised one in this setting.

hat is interesting to see nonetheless, is that our unsupervised

ramework can achieve almost similar performance to the super-

ised one of ( Ravì et al., 2018 ) despite the evaluation being intrin-

ically favourable for this last solution. 

Also in these two experiments, close results are obtained be-

ween CS 1 and CS 2 confirming that the system is able to super-

esolve images for both the considered cases (i.e. when the images

ontain new visual structures or when they are extracted from new

atients). 

The statistical significances of the improvements discussed in

his section were assessed with a paired t -test and the p -values

re all less than 0.0 0 01. 

.2. Semi-quantitative analysis (MOS) 

To perform the MOS, we asked 10 trained individuals to evalu-

te, on average, 20 images each, randomly selected from the test
et of DB orig on the case study CS 1 . At each step, the SR images ob-

ained with two different configurations of the proposed approach,

ith Ravì et al. (2018) , and with a contrast-enhancement approach

hat sharpens the input (baseline), were shown to the user in a

andom order to reduce any possible bias on the evaluation of the

mages. The two configurations used for our approach were the

ne based on training our model with the two best target domains

i.e. T HR 
nat and T HR 

orig 
). The input and the ̂ HR were also displayed on

he screen as references for the participants. For each of the four

mages, the user assigned a score between 1 (strongly disagree) to

 (strongly agree) on the following questions: 

• Q1: Is the image artefact-free? 
• Q2: Can you see an improvement in contrast with respect to the

input? 
• Q3: Can you see an improvement in the details with respect to the

input? 
• Q4: Would you prefer seeing the new image over the input? 

To make sure that the questions were consistently interpreted,

ach participant received a short training before starting the study.

he results on the MOS presented in Fig. 6 show that, between

he two different configurations used on our approach, the model

rained with natural images T HR 
nat provides a better trade-off of arte-

acts, contrast and details with respect to the training using the

arget domain T HR 
orig 

. The results show also that the proposed ap-

roach and Ravì et al. (2018) provide complementary features. In

act, although the details (question Q3) and the contrast (ques-

ion Q2) in both the settings of our approach seem to be worse

han Ravì et al. (2018) , our solution provides better scores for the

bsence of artefacts (question Q1), which is an important char-

cteristic in clinical applications. Regarding the final preference

question Q4), our solution trained using natural images ( T HR 
nat )

hows the best results with respect to all the other approaches,

onfirming the validity of our solution to perform super-resolution

n pCLE images. The approach that sharpens the images is, instead,
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Fig. 7. Example of visual results obtained by our approach in comparison with other state-of-the-art approaches. From left to right we have: Input image, proposed output, 

output from Ravì et al. (2018) , output from Villena et al. (2013) and ̂ HR . 
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the one that provides the lowest scores for Q2, Q3 and Q4, proba-

bly because it enhances the noise. 

Visual results for some of these images are shown in Fig. 7 ,

confirming these findings. More specifically, although the output

proposed by Ravì et al. (2018) shows better contrast and higher

sharpness images, the corresponding algorithm also behaves much

worse in term of artefacts generation. In fact, as we can see in

Fig. 7 , it often enhances noise and makes up details that are not

visible neither in the input nor in the estimated HR images and

this can eventually lead to a wrong clinical interpretation of the

images. In Fig. 7 we have marked with a white circle some of the

regions where these issues are more evident. From a clinical point

of view, we believe that the reliability of SR images in terms of de-

tails is a more important feature than having high contrast or high

sharpness created by artefacts. According to these visual consider-

ations and the MOS findings, we can conclude that our solution

provides a more convincing representation for super-resolved pCLE

images with respect to the other state-of-the-art approaches. 

5. Discussion and conclusions 

Obtaining medical images that accurately visualize structures

of tissues is still today an open challenge. One of the main is-

sue that researchers are trying to address here, is to improve the

image resolution. In endomicroscopy, low image resolution is of-

ten dependent on the intrinsic limitations of the acquisition sys-

tems. Current solutions propose SR methods to post-process the

final images as an alternative to the more difficult hardware en-

hancements. Clinical impacts and benefits in the use of SR meth-

ods include: i) better localization of tissue structures, ii) improv-

ing the image contrast and iii) improving the Signal to Noise Ratio

(SNR) ( Greenspan, 2008 ). However, often the validation of these

benefits in terms of clinical outcome is not straightforward. An

attempt for this was proposed in Kennedy et al. (2006) , where

Positron Emission Tomography (PET) scans on phantom and pa-

tients were used to prove that smaller visual features were lo-

calized and better visualized using SR techniques than without.

Another similar study conducted in Kennedy et al. (2007) shows

that using SR techniques produces better contrast ratios and

better target-to-background ratios than the standard reconstruc-

tions. Plenge et al. (2012) designed, instead, an experimental

framework to show that the SR reconstructions are more advan-

tageous in terms of the SNR with respect to the direct HR acqui-

sition. Finally, Sano et al. (2017) proposed a novel measurement

algorithm for joint space distance on X-ray images generated by

a SR method. The results exhibit higher accuracy in the measured

distances when SR images were used. 
The studies above show that SR methods can improve the clin-

cal outcomes and can open the door for better diagnosis. In our

ase, however, the lack of a real ground truth can raise some scep-

icism on the validation of the results since is not simple to show

hat SR approaches don’t emphasize or make up details that are

ot real. Our extensive quantitative and qualitative analysis, based

lso on expert’s evaluations, are developed to show the reliabil-

ty of the obtained SR images and the reduced presence of arte-

acts even in the absence of real ground truth. More specifically,

hese results validated using two versions of a database contain-

ng 238 endomicroscopy video sequences captured from 143 pa-

ients demonstrate the ability of the pipeline to produce convinc-

ng super-resolved images. 

In conclusion, in our study, we report a super-resolution frame-

ork for endomicroscopy images based on an unsupervised adver-

arial deep neural network that takes advantage of the knowledge

f the physical acquisition process to impose a cycle consistency.

he proposed framework results to be particularly useful in all sit-

ations where there is a lack of HR images and pairs of LR/HR im-

ges are not available for the supervised training. 

To the best of our knowledge, we are the first to propose an

nsupervised super-resolution approach for medical images. Fur-

her clinical studies could validate the relevance of the proposed

ramework to specific clinical applications for super-resolution. 
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