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Abstract

Background: Humans have adapted to widespread changes during the past 2 million years in both environmental
and lifestyle factors. This is evident in overall body alterations such as average height and brain size. Although we
can appreciate the uniqueness of our species in many aspects, molecular variations that drive such changes are far
from being fully known and explained. Comparative genomics is able to determine variations in genomic sequence
that may provide functional information to better understand species-specific adaptations. A large number of human-

which contributes to hinder progress in the field.

significant contributors to recent human evolution.

specific genomic variations have been reported but no currently available dataset comprises all of these, a problem

Results: Here we critically update high confidence human-specific genomic variants that mostly associate with
protein-coding regions and find 856 related genes. Events that create such human-specificity are mainly gene
duplications, the emergence of novel gene regions and sequence and structural alterations. Functional analysis of
these human-specific genes identifies adaptations to brain, immune and metabolic systems to be highly involved.
We further show that many of these genes may be functionally associated with neural activity and generating
the expanded human cortex in dynamic spatial and temporal contexts.

Conclusions: This comprehensive study contributes to the current knowledge by considerably updating the
number of human-specific genes following a critical bibliographic survey. Human-specific genes were functionally
assessed for the first time to such extent, thus providing unique information. Our results are consistent with
environmental changes, such as immune challenges and alterations in diet, as well as neural sophistication, as
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Background

Since humans split from the chimpanzee at around 6 mil-
lion years ago, the different species of the genus Homo
(from which modern humans are now the sole representa-
tive) have evolved very rapidly, apparently superseding all
other events of evolutionary novelty accumulation [1]. Es-
pecially prominent differences are observed in aspects
such as height, brain size and changes to our gut and
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skeleton. Environmental alterations such as diet and im-
mune challenges are thought to have played a major role
in human-specific adaptations [2, 3]. Although these
phenotypic traits, which have a whole-body effect are
more readily noticeable, one can easily assume humans
have also undergone significant change at the microscopic
scale. The question of what makes humans unique at a
molecular level is now being more broadly addressed as
new and advanced laboratory and bioinformatics tools are
enabling comparisons between species from genetic and
functional perspectives. Genetic differences between spe-
cies may have distinct mechanisms of origin, such as
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alterations in the cytogenetic architecture, local chromo-
somal rearrangements, gene family duplications, single
gene modifications, creations or losses, differences in gene
transcription levels and/or patterns and alternative spli-
cing. Functional differences can be observed in general be-
haviour or tissue and organ development and function,
and molecularly in circuits, pathways or cellular variation.

Historically, genomic comparisons in this context date
back from the 1970s, when studies comparing humans
with non-human primates at the karyotype level were
first published, revealing a very close organization of
chromosome banding and identical euchromatin [4].
Later, at the chromosome level, translocation and fission
events were reported as the first detectable differences
between humans and their closest relatives and these
were the known genomic landmarks for the origin of
Anthropoids [5, 6]. Further, using fluorescent in situ
hybridization and comparative genomic hybridization
arrays, human-specific segmental duplications and genes
displaying human-specific copy number variation were
identified [7]. The first human-chimpanzee comparative
genome map was published in 2002 and further updated
in 2005 [8]. Also in 2005 [9], the first attempt to com-
prehensively identify human-specific segmental duplica-
tions was published from comparisons with the
chimpanzee genome, revealing the extent of such alter-
ations, which account for ~2.7% of the genomic differ-
ences between these species. For comparison, at the
nucleotide level, the human and chimpanzee genomes
genomes are estimated to differ by >30 million single
substitutions (or ~ 1.2% of the human genome) [8].

Although functional differences between humans and
other primates are evident in major morphological fea-
tures such as the skeleton (e.g. jaws [10] and hands
[11]), hair (humans have thinner hair) and muscle tissue
[12], and global functions including speech [13] and lan-
guage [14], changes in the brain have presumably had
the most significant impact on the human lineage. The
size of the human brain tripled over a period of approxi-
mately 2 million years, which overlaps with the esti-
mated period of transition from Australopithecus to
Homo [15]. Comparative neuroanatomy has revealed a
specific expansion of both the neocortex, with increase
in size and neuronal interconnectivity during hominid
evolution and the right side of the human brain com-
pared to chimpanzee [16]. While this expansion is be-
lieved to be important to the emergence of human
language and other high-order cognitive functions, its
genetic basis remains largely unknown.

In these last two decades following the first discoveries
of genomic differences between humans and other spec-
ies, numerous studies have identified events that gener-
ated human-specific genetic features, such as gene
duplications, structural gene alterations and accumulation
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of significant nucleotide substitutions. Although many au-
thors have worked to identify the genes associated with
such human-specific genetic features (hereby referred to
as ‘human-specific genes’), no comprehensive and struc-
tured list is currently available and the published literature
is redundant (in the sense that the same event or gene is
many times reported in multiple studies) as well as diverse
(in the sense that authors frequently direct their work to
different aspects and subsets of genes, thus producing lim-
ited results). In summary, current knowledge on the sub-
ject is scattered and there is an inherent lack of standard,
given the diversity of studies in which one or more
human-specific gene is described. Such limitations hinder
the study of human-specific genes at a genomic scale, re-
gardless of information being publicly available. Through
an extensive bibliographic survey, we gathered, curated
and critically assessed the human-specific genes reported
in the literature to provide the most comprehensive list to
date. We further use this dataset as a platform to explore
the general impact of these human-specific genes, asses-
sing their biological impact through functional network
and pathway analyses. Finally, we investigate differential
gene expression in subpopulations of glial cells and in ac-
tive versus inactive neurons to examine whether the
human-specific genes are involved in specialized neural
functions such as cortical development or neuronal activa-
tion. Our results highlight the importance of rapid adapta-
tions in immunological, neurological and metabolomic
areas that likely contribute to human evolution and iden-
tify human-specific genes that are differentially expressed
in the brain.

Results

The generation of a high confidence structured dataset
for human-specific genes

Before describing the obtained results, it is necessary to
define our object of study. In this report we use the term
human-specific gene when referring to a gene impacted
by one or more genetic alterations, which seem to have
happened after divergence from non-human primates
(usually proposed by genomic comparison with chim-
panzee) and result in the emergence of human-specific
features. The event causing these genetic alterations may
change the gene itself or its regulatory region, as we re-
port in detail.

An extensive bibliographic survey (described within
the Materials and Methods section) of the literature
published since 2000 resulted on a selective list of 54
scientific articles describing thousands of human-specific
features. After triage and manual curation of the data we
obtained a set of 982 associated gene descriptors. A de-
scriptor was the most accurate term used by the original
author(s) to describe the gene of interest (e.g. name,
acronym, database entry number, etc). To standardize
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notation, for each gene we retrieved information from
the human genome version GRCh38. Automatic annota-
tion based on gene descriptor was carried out against
the genome and 676 of these genes were directly anno-
tated. Additionally, some gene names contained typos or
were slightly modified from their actual name and over
100 other genes had been renamed or restructured since
their first annotation. For such genes we carried out
manual curation and further annotation when possible.
In addition to these individual genes, there are 19 gene
families, comprising at least 10 members each, with re-
ported human-specific features that could not be indi-
vidually attributed to a single gene (Additional file 1
Table S1). Although these gene families were treated
separately (to avoid introducing bias given the high
number of genes they encompass), when specific genes
were described in the literature these were included in
the main dataset.

Approximately 130 of the original descriptors could
not be associated to any particular gene or gene family,
many of these representing genomic fragments as op-
posed to specific genes and others obsolete or untrace-
able gene identifiers (IDs). A total of 856 genes (or 871
gene IDs, as some names map to multiple gene IDs, e.g.
HAR1A and OR5ALI1) with reported human-specific
characteristics were curated and annotated and, to the
best of our knowledge, comprise the most complete
dataset of human-specific genomic features (Additional
file 1 Table S1). This number is considerably higher than
previously predicted or reported in the literature. For ex-
ample, the genetics domain of the Matrix of Compara-
tive Anthropogeny (MOCA), which is a repository for
available information on human features that differ from
great apes, lists only 103 genes known from literature.
From these, over 70% are represented in our dataset and
most of the remaining were either absent in the current
version of the human genome or were filtered out dur-
ing our manual curation process for lacking strong evi-
dence of human specificity at the gene level.

Associated to these genes there are many types of
human-specific genetic features and we grouped these
in broader classes according to their causative events,
also keeping the original description obtained from
the correspondent publication from which they were
retrieved. All human-specific genes were allocated in
one of the 10 following classes (in order of abun-
dance): gene amplification, human-specific gene (un-
defined feature), gene sequence alteration, gene
structure alteration, gene loss, regulatory region alter-
ation, de novo origin, new non-coding gene, lost in
chimpanzee and human accelerated region (Fig. la).
Most genes reported in these articles are protein-
coding and thus the resulting database is mainly com-
posed of such genes (588). There are also a large
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Fig. 1 a The pie chart illustrates the distribution of 845 genes with
human-specific features with regards to the underlying mechanism
from which they originated. A more specific classification is shown
in the Additional Table 1, as well as additional information for each
gene. b Functional network of metagroups defined by GeneTerm
Linker, represented with FGNet. The 23 metagroups were filtered to
allow visualization of metagroups comprising functional terms at
organism level and omitting metagroups describing broad cell-level
or molecular-level characteristics, which can be assessed from
Additional Fig. 1. The color scheme was maintained in all networks

to allow comparison

proportion of pseudogenes (186) and non-coding
RNAs (55 long ncRNAs and 27 small ncRNAs).

Regarding chromosomal distribution, the 856 genes with
human-specific features come from all 22 autosome chro-
mosomes and both sexual chromosomes. No gene was
listed from the mitochondrial chromosome. When propor-
tionally compared, the distribution of protein-coding genes
with human-specific features and the distribution of all hu-
man protein-coding genes per chromosome were relatively
similar. A few chromosomes, however, bear a significantly
higher number of human-specificity in protein-coding re-
gions. Chromosomes X and 7 seem to be particularly
enriched in proteins encoded by genes with human-specific
features (Additional file 1 Table S2).
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Although this report successfully listed hundreds of
genes, it was limited not only by the current availability
of studies regarding human-specific genes, but also by
poorly defined terminology (the term ‘human-specific’
per se is object of debate, being ambiguously used to de-
scribe different levels of specificity). The field itself is
specially limited by technical difficulties, such as the lack
of a high-quality genome for archaic hominins, complex-
ity of our gene architecture, poorly defined non-coding
elements, problems faced when defining genomic corres-
pondence between species, availability of functional data
and complications of subsequent validation of predicted
variation.

Functional analyses highlight neuronal, immunological
and metabolic features

In possession of the newly generated dataset of genes
with human-specific features, we set to investigate the
general biological impact that altering their characteris-
tics may have posed to our species. To this end we focus
on the functional analysis of each human-specific gene
searching further for overall patterns and relationships.
Functional enrichment analysis was performed by FGNet
[17] using GeneTerm Linker [18] as the underlying algo-
rithm. The resulting network represents the links and
associations between metagroups of genes and enriched
terms. In total, 295 genes (~35%) were successfully
functionally annotated by FGNet and assigned to 25
metagroups, two of which were automatically filtered
out based on silhouette width. The comprehensive net-
work of metagroups comprising 225 genes is provided as
Additional file 1 Figure S1A and the description of each
metagroup as Additional file 1 Table S3. Reported p-
values for all metagroups are lower than 0.0006 (thus
orders of magnitude lower than the threshold of 0.05)
and each metagroup has at least 10 genes. Since the full
network is highly complex, we manually selected 12
metagroups that we trust represent interesting func-
tional classes of systemic level (as opposed to broad mo-
lecular or cellular level features). This sub-network
clustered into 3 broad functional categories: neural func-
tion, immunological function and metabolic function
(Fig. 1b and Additional file 1 Figure S1B).

Although FGNet provides a broad overview of the
biological impact of human-specific genetic alterations
by clustering functional terms in metagroups and es-
tablishing relationships between such clusters, it lacks
the detail achieved by analyzing each functional class
separately. Also, the subset of genes for which Gene-
Term Linker could attribute information was only
around 35% of the total. Therefore, to examine func-
tional aspects of a higher number of human-specific
genes and at a lower scale, we turned to gene ontol-
ogy (GO) analysis. In total, 596 gene IDs were
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assigned to at least one human protein sequence, obtained
from the Ensembl database (~70% of the 871 gene IDs),
as a first step for GO annotation. Among the gene IDs for
which no protein sequence was retrieved, 187 (~ 70%) are
pseudogenes, 84 (~30%) are ncRNAs and only 4 are
currently annotated as protein-coding (despite no
correspondent protein sequences were found). We then
assigned functional attributes at the gene level, both
for the set of human-specific genes and for the entire
set of human proteins, which was used to provide ex-
pected abundances. Attributes were assigned to each
gene based on the GOSlim catalogue of ontologies for
biological processes. We calculated the percentual
abundance for each term among human-specific genes
and compared with the expected abundance based on
observations in all human proteins. Numeric and stat-
istical comparisons indicate the functional terms
which are most significantly differentially represented
among human-specific genes. Only 3 of the 70 broad
GOSlim terms assigned to the entire set of known
human proteins were completely absent among the
human-specific genes. Among the remaining terms,
11 were significantly over-represented (p-values lower
than or equal to 0.05) within human-specific genes
when compared with the entire set of human proteins
(15 other terms had p-values lower than or equal to
0.1; Fig. 2). Enriched terms were involved with neuro-
logical system, carbohydrate metabolism, structural
growth and functions at the cell level, such as cyto-
skeleton organization, motility, morphogenesis, loco-
motion, cell signaling, protein targeting, protein
modification and cellular component assembly (Fig. 2)
. Additionally, interesting terms such as reproduction
and symbiosis (encompassing mutualism through
parasitism) were highly represented among the
human-specific genes, (although their p-values were
of 0.06 and 0.1, respectively). It is worth mentioning
that the term symbiosis in this context was almost entirely
related with parasite-host relationships, (50% of the
occurrences of this umbrella term related to virus-host in-
teractions) and the term reproduction mostly refers to
male reproduction (with 40% occurrences, while the
remaining 60% are almost equally shared between female
reproduction, general development of the reproductive
system and pregnancy-related processes, which encom-
pass fertilization, embryonic and placental development
and birth). In summary, based on ontology assignments
and subsequent statistical analysis, we highlight that the
higher order categories of neural function, carbohydrate
metabolism, reproduction and parasite-host relationships
are highly correlated with human-specific gene features.
Focusing on pathways as opposed to individual cat-
egories or broad clusters of functions, we further ana-
lyzed human-specific genes using Ingenuity Pathway
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Analysis (IPA; [19]). In summary, IPA analysis used 729 out
of the 845 genes (~ 85%) and supported the importance of
neuronal (e.g. mNOS signaling in neurons, Huntington’s
disease signaling), immunological (e.g. phagosome forma-
tion, phagocytosis in macrophages) and metabolic (e.g. in-
ositol pyrophosphates biosynthesis, adipogenesis pathway,
glutamate biosynthesis and degradation) functions (Add-
itional file 1 Figure S2). Taken together multiple functional
analyses tools have converged to generally implicate neur-
onal, immunological and metabolic systems with human
evolution and species-specific characteristics.

Highly expressed human-specific genes are cell-type

enriched across different radial glial cell populations

Since the human brain has such remarkable properties,
with many cognitive traits being postulated to be unique
to our species [20], we turned to investigate the unique
expression profile of human-specific genes within glial
cell subpopulations (which ensure homeostasis and pro-
vide support and protection to neuronal cells in the
brain). The cell populations we selected as object of
study are distinctively located at the subventricular zone,
a well known center for neuronal cell production in
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primates. The expression of human-specific genes in
such location could be related with the unique enlarge-
ment and folding of the human brain, driven by neocor-
tical expansion (see [21] for further information). Using
publicly available samples retrieved from the Sequence
Read Archive (SRA) we have assessed transcript abun-
dance for the set of human embryonic radial glial cells,
outer radial glial cells, intermediate progenitor cells and
neuron cells (study SRP094417). We used FPKM (Frag-
ments Per Kilobase of transcript per Million mapped
reads) values calculated with RSEM as expression mea-
sures. A consistent number of transcripts was shown to
be expressed (at any level) across all 4 sets of samples
and these represent approximately 10% of the ~ 200,000
transcripts in the reference transcriptome. We defined
highly expressed transcripts as the top ~10% of the
expressed transcripts, i.e. the 2000 transcripts with high-
est average FPKM values for each set of samples. Highly
expressed transcripts were then mapped to their gene of
origin (on average ~ 1580 genes were characterized as
highly expressed) and compared with the set of 856
genes with human-specific features. We retrieved 23
highly expressed human-specific genes from the radial
glial cell samples, 17 from the outer radial glial cell sam-
ples, 26 from the progenitor cells samples and 24 from
the neuron cell samples. The list of transcripts related to
these human-specific genes as well as their estimated ex-
pression in each cell population is available as Additional
file 1 Table S4. From the non-redundant total of 61
genes overall, 43 (>70%) were highly expressed in a cell-
specific manner (Fig. 3). The heatmap represents expres-
sion levels for the set of transcripts associated with these
43 genes (which generate 52 transcripts) across all 4 cell
populations (Fig. 3b). We thus have uncovered sets of
human-specific genes for which all transcripts are highly
expressed in specific cells and have very low expression
across all other 3 cell types (i.e. are virtually cell-specific)
. Many of these genes have been previously implicated
with human phenotypes, including developmental delay
(e.g. ASPM [22], AFF3 [23] and MAPT [24]) and intel-
lectual disability (e.g. NEMF [25], PI4KA [26] and
KANSLI [27]).

Multiple human-specific genes are differentially

expressed upon activation in neurons derived from
induced pluripotent stem cells (iPSC)

As another example of roles human-specific genes may
perform in the brain, we carried out RNA-Seq analyses
of neurons differentiated from human iPSC before and
after cell activation (50 mM KCI for 3h) to investigate
differential expression of human-specific genes upon
neuronal activation. As a result, 798 transcripts were
shown to be differentially expressed, 407 being under-
expressed upon activation and 391 over-expressed.
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These transcripts correspond to 755 genes, 12 of which
have human-specific features (Fig. 4a, b). These 12 genes
have multiple roles and some are implicated in synaptic
function (e.g. SEPT7 [28] and CAPNI1 [29]) and neuro-
logical diseases (e.g. AFF3 [30], NLGN4X [31], CAPN1
[32] and KIAAO0319L [31]). We performed RT-qPCR to
validate the expression profile of these genes and found
4 of these to be significantly altered after 3 h KCI activa-
tion AFF3, KIAA0319L, PPIP5K2 and SLC7A6 (Fig. 4c).

Discussion

We set out to survey the scientific literature for genes
previously reported as human-specific, knowing a better
understanding of how these genes have mechanistically
impacted our evolution would be broadly beneficial for
the study of human physiology and disease. The result-
ing dataset of genes associated with human-specific vari-
ants is, to the best of our knowledge, the most detailed,
structured and comprehensive to date. Here we highlight
higher order functional areas which house a large num-
ber of human-specific genes and are likely to by
impacted by these genes and their products. Functional
assessment of more than 850 human-specific genes
emphasized the significance of brain, immune and meta-
bolic adaptations.

In hindsight these findings may not be completely un-
expected as infections, dietary alterations (coincident
with the discovery of tools and the domestication of fire
for cooking) and extraordinary brain expansion have
been well documented.

Although humans possess a great degree of plasticity for
adaptation, it is likely that the real origin of the human ad-
aptations that truly ignited human uniqueness occurred
during the time of Australopithecus and early Homo spe-
cies [33, 34]. At this time there was widespread move-
ment, the emergence of tools, an enlargement of the brain
and a decrease in masticatory apparatus relative to an in-
creasing body size. The human brain has evolved rapidly
in the past 2 million years (coincidental with the emer-
gence of Homo species) and continues to do so through
highly unstable, or rather adaptable, regions in our gen-
ome, tissue-specific and function-specific gene expression
and reorganized circuitry [35]. Nevertheless, it was very
likely a conjunction of factors that enabled human evolu-
tion to occur at such a rapid rate. For example, newly
formed regions of the human brain such as the prefrontal
cortex seem to have far higher energy requirements than
more conserved regions [36]. It may be that it was only
possible to meet such requirements through modifications
to food preparation methods that ultimately resulted in
higher energy intake [37]. This example could illustrate a
crosstalk between different aspects of human evolution
which may have resulted in emergent properties of our
species. Significant changes are also observed in local
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B
Gene Description Genomic variation
AFF3 human-specific gene duplication gene amplification
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FAM21A [human-specific gene duplication gene amplification
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Fig. 4 a The diagram represents the intersection between the set of genes with human-specific features and the set of genes that undergo
differential expression upon activation of iPSC-derived neurons with KCl for 3 h. b The 12 human-specific differentially expressed genes and their
mechanism of origin. ¢ Gene expression was investigated by RT-qPCR using RNA from the same samples of active and inactive iPSC-derived
neurons. Fold-change values were calculated relative to GAPDH expression. Statistical significance was performed using unpaired t-test (*p-value

adaptations in recent human populations to environmen-
tal and behavioral factors such as diet, infections, altitude
and temperature [38]. Emerging pathogens that specific-
ally infect humans have to some degree been impacted by
our own innovations, such as agriculture, and continue to
shape our immune evolution through host-pathogen in-
teractions [39].

Conclusions

Despite limitations, our comprehensive study contrib-
utes to the current knowledge by considerably updating
the number of human-specific genes and further empha-
sizing the importance of brain, immune and metabolic

adaptation in defining our species. It also highlights the
potential significance of considering metabolism in con-
junction with brain function to fully understand human-
specific function and disease.

Materials and methods

Database of genes with human-specific features

We have extensively scanned and curated the current lit-
erature and searched for articles describing human-
specific genetic features and its associated genes.
PubMed (www.ncbi.nlm.nih.gov/pubmed) was used as
the search platform with the criteria “Search human spe-
cific gene Filters: Publication date from 2000/01/01 to
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2017/12/31” (further expanded to 2019/12/31), which re-
sulted in over 218,000 publications. From these articles,
we selected for terms such as “human-specific”, “dupli-
cation”, “de novo”, “evolution” among other terms of
interest. Studies were also assessed regarding their rele-
vance/direct relation to the topic, design of the study,
type of publication and whether or not the publication
was peer reviewed. An initial subset of 36 highly relevant
and non-redundant studies were selected and further ex-
panded (mainly through citation relationships) to 54 ref-
erences from which data were retrieved. These articles
report human-specific genetic features, i.e. gene-related
molecular characteristics that have been reported to dif-
fer between humans and other species and are likely to
impact the associated gene (such as changes to the
sequence of a gene promoter, exon losses, gene duplica-
tions, etc). The genetic features are related to specific
genes, which are the object of study of the present work.
Gene names were listed and duplicated entries were
collapsed. Ambiguities were assessed in as much detail
as possible to clarify the specific gene authors referred
to. The initial list was mapped back to the GRCh38 ver-
sion of the human genome and remaining non-
annotated entries mainly represented genes that have
been renamed or excluded since their first annotation.
The final set of genes was categorized according to the
reported human-specific feature and grouped by bio-
types as proposed in the Ensembl glossary (publicly
available at ensembl.org/Help/Glossary).

Chromosomal distribution of human-specific protein-
coding genes

There are 596 gene IDs associated with protein-coding
genes. These were listed regarding their chromosome of
origin and the proportion of entries per chromosome
was calculated. The same was performed with the entire
set of protein-coding genes annotated in the human gen-
ome, for comparison. In parallel, we used the GeneOver-
lap library (version 1.12.0) of the R package to infer
significance of overlapping genes. The internal algorithm
for Fisher’s exact test used by this package determined
the respective p-values (which were not corrected for
multiple hypothesis).

Functional analysis of genes with human-specific features
Genes were also subject to functional analyses for the
generation of a protein-protein interaction network and
functional clusterization using the Bioconductor package
FGNet version 3.10.0 [17] and GeneTerm Linker [18] for
functional enrichment analysis. Metagroups with silhou-
ette width of less than 0 were excluded and a minimum
support of 3 genes was required for cluster validation.
Human protein sequences were obtained from
Ensembl GRCh38 [40] and genes with human-specific
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features had their respective protein sequence(s) re-
trieved. The retrieved sequences were submitted to
AgBase GoAnna version 2.0.0 [41] for GO assignment
based on sequence homology. Blastp was used as the
underlying algorithm and search parameters were an E-
value cutoff of 10e-50, BLOSUM62 as the substitution
matrix, a minimum of 80% sequence identity plus 75%
coverage and default word size and gap penalty values.
GoAnna results were submitted to AgBase GOSlim [41]
to obtain high-level summaries of functions for the given
dataset and further analyses were restricted to categories
of biological processes, which involve pathways and
activities of multiple genes. The same protocol was used
to assign GOSlim terms to the entire set of human pro-
teins obtained from Ensembl. Results report the percen-
tual of each term both in the set of human-specific
proteins and all human proteins, which was used as
background. Against this background of expected abun-
dance, significance for differential representation of
functional terms within the human-specific subset of
proteins was calculated using Fisher’s exact test (imple-
mented in the GeneOverlap library of the R package ver-
sion 1.12.0) to determine the respective p-values (which
were not corrected for multiple hypothesis).

SRA samples of radial glial cells

We retrieved fastq files from the SRA-deposited study
SRP094417, which contains 18 runs from samples of
prenatal human brain, representing data with replicates
from radial glial cells, outer radial glial, intermediate
progenitor and mature neuronal cells. Reads are paired-
end and were generated from cDNA with the Illumina
HiSeq2000 platform in 2016.

RNA-Seq of iPSC

The generation and activation of human iPSC-derived
neurons and RNA isolation, preparation and sequencing
were described in a previous report by our group [42].

RNA-Seq analysis

Both the set of iPSC and SRA-retrieved RNA-Seq
samples were treated with the same bioinformatics
pipeline, which is composed of 5 main steps: (1)
Pre-trimming quality control with FastQC version
0.11.5 (bioinformatics.babraham.ac.uk/projects/fastqc);
(2) Read trimming with Trimmomatic version 0.36
[43]; (3) Post-trimming quality control with FastQC;
(4) Alignment or pseudoalignment to reference tran-
scriptome and read counting for transcript abundance
estimation with Kallisto version 0.43.0 or STAR-
RSEM versions 2.5.2a and 1.2.30 [44-46]; (5) Meas-
urement of differential expression of transcripts with
EdgeR version 3.18.1 [47]. Each step is generally de-
scribed below.
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FastQC was used for quality control of raw reads and
a comparative round of quality control after running
Trimmomatic, to ensure overall quality was either main-
tained or increased after read trimming. The set of de-
fault parameters was used for this step. Trimmomatic
was employed for cleaning reads from sequencing arti-
facts. The set of Illumina adapters for the TruSeq
paired-end library preparation kit was used as database
for adapter trimming. Reads were scanned with a 4-base
wide sliding window and trimmed when the average
quality per base was lower than 20. Reads shorter than
40 bases after trimming were further excluded. Kallisto
and STAR-RSEM were used as different alternatives to
generate read counts. Kallisto performs pseudoalign-
ments and read counts within the same command line,
while STAR performs alignments to the reference tran-
scriptome and the result is used by RSEM to generate
read counts. Kallisto indexing tool was used to generate
an index for the FASTA formatted file of the human
transcriptome with k-mer size of 31. Reads were counted
for transcript quantification using default parameters
and a number of bootstrap samples of 100. As an alter-
native to estimate transcript abundance, STAR was used
to perform alignments between the paired-end reads
and the reference human transcriptome. An index was
built with default parameters and the alignment was per-
formed discarding multimappers and defining parame-
ters for splicing treatment. Resulting bam alignment files
were further converted to sam files using Samtools (sam-
tools.sourceforge.net) and sorted with Novosort (novo-
craft.com/products/novosort), as an intermediate step.
RSEM was used to prepare a reference file from the hu-
man transcriptome and count reads to provide transcript
abundance in the paired-end mode. EdgeR was used to
perform statistical analysis and define differentially
expressed genes. Kallisto and STAR-RSEM results were
compared to evaluate data robustness. In summary,
when results were qualitatively similar, parameters were
considered well adjusted. After assessing different
thresholds, a minimum of 5 reads per transcript before
normalization was needed to validate expression. Read
counts generated by STAR-RSEM were used for differ-
ential expression assessment. Samples were normalized
based on sample sizes and data variability was estimated
according to a negative binomial dispersion parameter.
Differential expression was reported with limits being a
p-value of less than 0.001 and false discovery rate of less
than 0.01.

Quantitative RT-PCR for differentially expressed human-
specific genes in iPSC data

Quantitative RT-PCR was used to validate expression
patterns for the subset of genes with human-specific fea-
tures shown to be differentially expressed in iPSC.
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c¢DNA synthesis was performed using the SuperScript III
First-Strand Synthesis System (ThermoFisher Scientific,
USA). Briefly, 500 ng of total RNA was used and random
hexamer primed protocol was followed. Each cDNA
sample was amplified in triplicate using SYBR Green
PCR Master Mix (ThermoFisher Scientific, USA). Pri-
mer pairs used for this analysis are described in
Additional file 1 Table S5.

Additional file

Additional file 1: Table S1. The screenshot above represents the first lines
of the table. The full version is given as an independent Supplementary Table
in s format. This file contains all 845 genes with humanspecific features
retrieved in this study (Sheet 1 - "HumanSpecific genes") and describes for
each gene its: (A) Gene name (updated to the current Ensembl description,
when necessary); (B) Ensembl ID; (C) Chromosome number; (D) Gene type
(the specific type, as described by Ensembl); (E) General gene type (a general
classification which may group multiple gene types - eg. pseudogenes
includes processed, unprocessed and transcribed pseudogenes); (F)
Mechanism of origin (specifically as described by the author of the
correspondent reference); (G) General mechanism of origin (a manually
assigned general classification which may group multiple subclasses
from column (F) - data from this column was used to generate the pie
chart presented in Figure 1a in the main manuscript) and (H) At least
one reference in which the gene is reported (the full list of references,
numbered accordingly, is given as Sheet 2 - "References"). The file also
contains information on 19 large gene families (Sheet 3 - "HumanSpecific
GeneFamilies"), described as undergoing significant expansion or
accelerated evolution across all (or many of) its members. These were not
included in the main table, mainly to prevent their high gene numbers to
introduce a functional bias in the dataset. Table S2. This table presents the
percentage of protein-coding genes in each chromosome (A), both for the
set of genes with human-specific features (B) and the entire set of human
proteins retrieved from the Ensembl database (C). A p-value is given (D),
generated with a Fisher's exact test to represent the significance of the dif-
ference between (B) and (C) per chromosome. Chromosomes X and 7 are
clearly enriched in genes with human-specific features and another four (in
green) have significantly more of such genes than expected. Table S3. This
table describes the metagroups generated by GeneTerm Linker using
FGNet. The metagroup number corresponds to numbers in Supplementary
Figures 1A and 1B (and information can be transferred to Figure 1B in the
manuscript). For each metagroup this file presents its silhouette size (a clus-
tering coefficient), significance (p-value), number of constituent genes and
constituent functional terms (or, for metagroups 1 and 6, which do not
meet inclusion cutoffs, their exclusion criteria). The last column on the right
describes functional terms in each metagroup and their annotation space,
which can be a gene ontology assignment (GO for biological process, mo-
lecular function or cellular component), a KEGG pathway or a function in-
ferred from the description of InterPro motifs or domains (IPR).Table S4.
This table presents gene expression levels (in FPKM) for transcripts related to
61 humanspecific genes which were characterized as highly expressed in at
least one subpopulation of glial cell (sequencing data retrieved from SRA).
Highly expressed transcripts were defined as the top ~10% of the expressed
transcripts (i.e. the 2,000 transcripts) with highest average FPKM values for
each set of samples under investigation. On average ~1580 genes were
characterized as highly expressed in each cell type and compared with the
set of 856 genes with human-specific features. We retrieved 23 highly
expressed human-specific genes from the radial glial cell samples, 17 from
the outer radial glial cell samples, 26 from the progenitor cells samples and
24 from the neuron cell samples, resulting in a set of 61 nonredundant
genes and 91 transcripts. Table S5. Primers designed for each of the 12
genes described in the Figure 4 of the main manuscript. Gene names and
accession numbers are also provided. Figure S1. These functional networks
describe the set of genes with human-specific features. The network out-
puts were generated with FGNet to represent the metagroups defined with
GeneTerm Linker. Individual files are provided to allow assessment of gene
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associated genes with coherent biological significance), 2 were filtered out

cance and coherence. The remaining 23 metagroups represent 225 genes
and many different functions, including neuronal, metabolic and immuno-

Supplementary Table 3. Gene names and network topology can be better
visualized when magnified. White circles denote genes shared by multiple
metagroups. Figure S2. The Ingenuity Pathway Analysis (IPA) is an add-
itional tool for functional analysis of highthroughput sequencing data. In
this figure we present results generated using IPA for the set of genes with
human-specific features. This result includes >85% of the 845 genes in the
dataset and describes these in terms of the pathways in which they func-
tion. A) The plot presents category scores. The "threshold" line (vertical line

terms of inverse logarithmic p values [-log(p-value)] derived from perform-
darker orange). The z-score is color-coded and refers to the difference be-
tween observed and predicted up/down regulation states of pathways. B)

cance (p values) and the number of genes (molecules) by which they are
composed. (PDF 2947 kb)

names and network topology. A) From a total of 25 metagroups (clusters of

for not meeting the parameters for measuring relevance, in terms of signifi-

logical. Metagroups are color-coded and their full description is given in the

in light orange, set here to 1.25) indicates the minimum significance level in

ing a Fisher's exact test. The proportion of genes in the dataset that map to
each pathway in the IPA knowledgebase is represented as the "ratio" (line in

The table shows higher-order functional classes with their respective signifi-
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