Table 2.
Materials | Types of nanoagents | Advantages (+)/Disadvantages (-) | References | |
---|---|---|---|---|
Inorganic | Metallic nanomaterials | Au nanorods; Au nanostars; Au nanocages; Au nanoshell; Au nanovesicles; Au nanoflowers; Ag nanoplates; Palladium nanoplates; antimony nanoparticles |
(+) tunable physiochemical properties; chemically inert element with reasonable biocompatibility; able to carry cargoes. (–) non-biodegradability; suboptimal photothermal stability |
Chen et al., 2015b; Zhong et al., 2015
Wang et al., 2015a Zhang et al., 2013 Topete et al., 2014 Song et al., 2015a Huang et al., 2014a Homan et al., 2012 Nie et al., 2014 Li and Chen, 2015 |
Carbon-based nanomaterials | Carbon nanotubes; Graphenes; Carbon dots |
(+) able to carry cargoes; good photothermal stability. (–) non-biodegradability; heterogeneity |
Zhang et al., 2015
Lalwani et al., 2013; Sheng et al., 2013; Ge et al., 2015 |
|
Transition metal chalcogenides (TMC)-based nanomaterials |
CuS; WS2; MoS2; FeS; Bi2S3; CuSe; Co9Se8; Bi2Se3 |
(+) high photothermal conversion efficiency; good photothermal stability; low cost. (–) non-biodegradability; contain heavy metal elements |
Cheng et al., 2014a; Yin et al., 2014
Cui et al., 2015; Yang et al., 2015b Hessel et al., 2011; Liu et al., 2015e Song et al., 2015b |
|
Organic | Dyes | Porphyrin- and Cyanine-based dyes, e.g., Indocyanine green (ICG), IR780, IR825, etc. |
(+) good biocompatibility/biodegradability. (–) poor aqueous solubility, low photothermal stability, short bloodstream circulation half-life |
Sheng et al., 2014; Wang et al., 2015b Lovell et al., 2011; Song et al., 2015c Huang et al., 2014b; Chen et al., 2015a; Rong et al., 2015 |
Polymer-based nanomaterials | Polypyrrole; Polyaniline; Polydopamine; Semiconducting polymers |
(+) good biocompatibility and photothermal stability; able to carry cargoes. (–) their biodegradation behaviors remain unknown |
Yang et al., 2011; Lin et al., 2014
Yang et al., 2012; Pu et al., 2015 |