Skip to main content
. 2019 Nov 15;10:1418. doi: 10.3389/fphys.2019.01418

TABLE 5.

List of the putative metabolites identified in plasma of broilers from S. Pullorum challenged group supplemented with organic acids in drinking water and challenged control.

Metabolites Retention time m/z Quasi-molecular ion Formula Fold changea P-valueb VIPc Pathway
L-Arginine 0.5462 285.09477 M + K C9H18N4O4 1.70 0.011 3.08 Arginine and proline metabolism
L-Glutamate 5-semialdehyde 0.5747667 154.0483 M + Na C5H9NO3 1.68 0.023 2.93
L-Leucine 1.4784167 132.10267 M + H C6H13NO2 0.76 0.043 2.36 Valine, leucine, and isoleucine degradation
Piperideine 0.4826167 84.08092 M + H C5H9N 0.56 0.007 3.05 Tropane, piperidine, and pyridine alkaloid biosynthesis
Hypoxanthine 1.05125 137.04652 M + H C5H4N4O 0.45 0.043 2.35 Purine metabolism
Homomethionine 0.5761667 198.03702 M + Cl C6H13NO2S 1.80 0.007 2.57 Glucosinolate biosynthesis
7-Dehydrocholesterol 10.149967 367.33758 M + H-H2O C27H44O 1.83 0.015 3.53 Steroid biosynthesis
4Alpha-methylzymosterol-4-carboxylate 10.149967 425.34433 M + H-H2O C29H46O3 1.66 0.015 3.17
Zymosterol 10.2214 385.34834 M + H C27H44O 1.18 0.043 1.55
(25R)-3-oxocholest-4-en-26-oate 8.7412667 397.31077 M + H-H2O C27H42O3 3.61 0.023 4.19 Steroid degradation
7Alpha-hydroxy-3-oxo-4-cholestenoate 8.1583333 431.31674 M + H C27H42O4 2.94 0.029 5.18 Primary bile acid biosynthesis
7Alpha-hydroxycholest-4-en-3-one 9.6449167 439.32085 M + H, M + K, M + Na C27H44O2 1.26 0.029 2.20
Cortol 10.755033 391.24835 M + Na C21H36O5 0.80 0.043 1.67 Steroid hormone biosynthesis
Sphingosine 1-phosphate 8.4426667 380.25699 M + H, M + Na, M + H-H2O C18H38NO5P 0.78 0.0005 2.18 Sphingolipid metabolism
Sphinganine 1-phosphate 8.6205333 382.27338 M + H C18H40NO5P 0.87 0.015 1.48
Delta-tocotrienol 8.7412667 397.31077 M + H C27H40O2 3.61 0.023 4.19 Ubiquinone and other terpenoid-quinone biosynthesis
Alpha-tocopherol 10.149967 448.41767 M + NH4 C29H50O2 2.50 0.019 4.89
Vitamin K1 epoxide 10.72645 467.35299 M + H C31H46O3 1.24 0.019 2.08
dl-Alpha-tocopherol nicotinate 9.6449167 536.40842 M + H, M + NH4 C35H53NO3 1.21 0.043 1.53 Vitamin digestion and absorption
Riboflavin 9.0477167 399.12519 M + Na C17H20N4O6 1.14 0.029 1.41 Riboflavin metabolism
Pyridoxamine 0.4969 191.07807 M + Na C8H12N2O2 0.63 0.015 2.72 Vitamin B6 metabolism
Ascorbate 0.6604833 159.02885 M + H-H2O C6H8O6 0.64 0.029 1.98 Biosynthesis of phosphotransferase system (PTS)
(S)-4-hydroxymandelate 0.9397667 203.01312 M + Cl C8H8O4 0.54 0.043 2.68 Monobactam biosynthesis
N1-acetyl-tabtoxinine-beta-lactam 0.5747667 248.12484 M + NH4 C9H14N2O5 0.28 0.007 4.17
10-Deoxymethynolide 5.8888333 314.23462 M + NH4 C17H28O4 0.18 0.002 5.73 Biosynthesis of 12-, 14-, and 16-membered macrolides
6-Deoxyerythronolide B 4.2386833 425.22779 M + K C21H38O6 0.07 0.002 4.39
6’-Oxo-G418 3.6479167 517.24607 M + Na C20H38N4O10 0.48 0.023 3.33 Biosynthesis of antibiotics
4-Ketocyclophosphamide 5.5045167 296.99203 M + Na C7H13Cl2N2O3P 1.81 0.007 1.82 Drug metabolism—cytochrome P450
Taxa-4(20),11(12)-dien-5alpha-acetoxy-10beta-ol 7.667566667 329.2500459 M + H-H2O C22H34O3 2.18 0.015 3.63 Biosynthesis of secondary metabolites
O-methylandrocymbine 0.617633333 403.2199726 M + NH4 C22H27NO5 1.60 0.043 2.94
Deoxyloganin 8.947716667 357.1533463 M + H-H2O C17H26O9 1.40 0.009 2.45
Terpendole K 8.379083333 500.2800663 M + H-H2O C32H39NO5 1.35 0.043 2.36
(4R)-Carvone 8.6491 133.1018374 M + H-H2O C10H14O 0.44 0.002 3.03
6-Oxocineole 0.603333333 191.1047494 M + Na C10H16O2 0.73 0.023 2.25
1D-myo-inositol 1,3,4,5-tetrakisphosphate 0.525466667 482.9294166 M + H-H2O C6H16O18P4 1.77 0.001 3.69 Inositol phosphate metabolism
Phytic acid 0.525466667 642.8625113 M + H-H2O C6H18O24P6 1.19 0.019 1.71
(Z)-3-Ureidoacrylate 0.88765 113.0336012 M + H-H2O C4H6N2O3 0.67 0.029 2.68 Pyrimidine metabolism
Uridine 1.4098 243.0614018 M-H C9H12N2O6 0.30 0.003 3.79
dUMP 0.939766667 307.0337737 M-H C9H13N2O8P 0.45 0.015 2.86

aFold change in the S. Pullorum challenged group supplemented with organic acids in drinking water compared with the challenged control. bVIP (variable importance in the projection) values were obtained from PLS-DA models. cP-values were calculated from Kruskal–Wallis test.