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Leveraging Single-Cell RNA Sequencing

Experiments to Model Intratumor Heterogeneity
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PURPOSE Many cancers can be treated with targeted therapy. Almost inevitably, tumors develop resistance to
targeted therapy, either from pre-existence or by evolving new genotypes and traits. Intratumor heterogeneity
serves as a reservoir for resistance, which often occurs as a result of the selection of minor cellular subclones. On
the level of gene expression, clonal heterogeneity can only be revealed using high-dimensional single-cell
methods. We propose using a general diversity index (GDI) to quantify heterogeneity on multiple scales and
relate it to disease evolution.

MATERIALS AND METHODS We focused on individual patient samples that were probed with single-cell RNA
(scRNA) sequencing to describe heterogeneity. We developed a pipeline to analyze single-cell data via sample
normalization, clustering, and mathematical interpretation using a generalized diversity measure, as well as to
exemplify the utility of this platform using single-cell data.

RESULTS We focused on three sources of patient scRNA sequencing data: two healthy bone marrow (BM)
donors, two patients with acute myeloid leukemia—each sampled before and after BM transplantation, four
samples of presorted lineages—and six patients with lung carcinoma with multiregion sampling. While healthy/
normal samples scored low in diversity overall, GDI further quantified the ways in which these samples differed.
Whereas a widely used Shannon diversity index sometimes reveals fewer differences, GDI exhibits differences in
the number of potential key drivers or clonal richness. Comparison of pre— and post-BM transplantation acute
myeloid leukemia samples did not reveal differences in heterogeneity, although biological differences can exist.

CONCLUSION GDI can quantify cellular heterogeneity changes across a wide spectrum, even when standard
measures, such as the Shannon index, do not. Our approach can be widely applied to quantify heterogeneity
across samples and conditions.

Clin Cancer Inform. © 2019 by American Society of Clinical Oncology
Licensed under the Creative Commons Attribution 4.0 License @@

INTRODUCTION

In many cancers, there still exists a critical need to
understand the mechanisms of the evolution of ther-
apy resistance. For example, acute myeloid leukemia
(AML) is an aggressive hematologic malignancy the
hallmark of which is the proliferation of immature
myeloid cells in the bone marrow and life-threatening
ineffective hematopoiesis.! AML is the most common

(IDH2) of all patients with AML and their targeted
therapies are generally well tolerated compared with
their chemotherapeutic counterparts.” However,
midostaurin—and even more potent FLT3 inhibitors in
clinical trialB—does not fully eradicate disease, which
leads to refractory or relapsed AML in most patients.®
Complete response rate for enasidenib in relapse/
refractory IDH2 mutated AML is less than 20%. Ad-

adult leukemia, with an incidence of approximately
20,000 cases per year and a 5-year survival of only
26% .22 Diagnosis of AML requires greater than 20% of
myeloid immature cells (myeloblasts) in peripheral
blood or bone marrow. Median survival of untreated
AML is measured in weeks.* Several AML targeted
therapies have been recently approved—for example,
midostaurin for patients with FLT3 mutated disease
and enasidenib for those with mutations in IDH2.56
These mutations occur at rates of 25% (FLT3) and 5%

ditional refinements in patient selection are required to
realize mutationally directed therapy.® Little is known
regarding the emerging resistance mechanism and
whether targeted therapies—single or combination—
against AML alone can ever be successful.

Conventional dogma postulates that therapeutic re-
sistance occurs via the acquisition of mutations that
result in clonal evolution. Emerging data suggest
that these mutations are either subclonally present
or present at frequencies detectable using digital
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polymerase chain reaction or ultradeep sequencing tech-
nologies at diagnosis or before progression. Low-level
somatic mutations are also detected in preleukemic
states.!%!3 Somatic mutations are often present years before
the diagnosis of therapy-related myeloid neoplasms.#15 Of
interest, these mutations are commonly associated with
disease progression and transformation.'® The presence of
such low-frequency genetic markers suggests that high
levels of intratumor heterogeneity (ITH) persist over long
periods of time and that preexisting ITH is a primary driver
of future therapy resistance, whereas variation in tran-
scription over time shapes the disease phenotype. A
clinically relevant summary metric by which to describe ITH
on the transcriptional level has not been developed.

Single-cell RNA (scRNA) sequencing technologies can
present a cost-effective method with which to identify
transcriptomic heterogeneity and directly measure ITH.
Proof-of-concept studies have been performed in AML
using DROP sequencing that yields potentially cost-
effective single-cell annotations of thousands of tran-
scripts per cell.} In triple-negative breast cancer, inter-
cellular heterogeneity of gene expression programs within
tumors is variable and correlates with genomic clonality.'® A
study in chronic myeloid leukemia demonstrated that
scRNA sequencing was capable of segregating patients
with discordant responses to targeted tyrosine kinase in-
hibitor therapy.!® These data provide a rationale by which to
explore ITH in scRNA sequencing data and to determine
whether defined measures of ITH can be predictive of
progression, eventually leveraging this process to mitigate
progression and relapse.

The goal of the current study was to quantify ITH in cancer
such that it has maximal predictive value, in particular in
hematologic malignancies. To this end, we present a plat-
form that uses a generalized diversity index that charac-
terizes cell population heterogeneity across a spectrum of
scales (orders of diversity).?° These scales range from clonal
richness (low order of diversity reveals the number of distinct
subpopulations), to more classic measures, such as
Shannon or Simpson indices (intermediate order of di-
versity), to the number of most abundant cell types that can
possibly act as key drivers of heterogeneity before trans-
formation or perturbation by therapy (high order of diversity).

MATERIALS AND METHODS

We created a computational and modeling approach to
develop a robust statistical picture of the persistent and
emerging variability in scRNA sequencing data chiefly on
the basis of on DROP sequencing technologies; the 10x
Genomics platform offered a variety of data sets linked to
disease and treatment dynamics.?* We specifically used
the data sets of two healthy/control bone marrow mono-
nuclear cell samples (BMMCs) and two individuals with
AML BMMCs sampled pre- and post-bone marrow
transplantation (BMT) to develop and test our ITH pipeline.
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First, we ran publicly available FASTQ-format files—a
typical output from a DROP sequencing experiment—
through the cellranger count pipeline and then through the
Cell Ranger aggr pipeline to pool the samples together for
comparison during cluster analysis, interrogated through
the 10x Genomics Loupe Cell Browser (Data Supplement).
To test the robustness and validity of our diversity metrics
and the ITH pipeline, we extended our analysis to include
additional publicly available data sets for other hemato-
poietic cell types (CD34*, CD14*, CD19*, and CD4%),2! as
well as matched normal-tumor lung cancer samples from
six patients,?? for which we used the same approaches and
pipelines. To calculate summary metrics—outlined in
Figure 1—first the transcript expression data were clus-
tered into groups of cells with similar transcript expressions
(Cell Ranger aggr). We next quantified the distance be-
tween each of the clusters to determine if clusters sepa-
rated on the basis of healthy or disease status (healthy v
AML). A Euclidean distance was calculated between mean
expression values for each gene of each cluster to establish
a distance metric (Fig 2).

Second, we sought to characterize across-sample differ-
ences by calculating the Kolmogorov-Smirnov (KS) dis-
tance® of the cell count distributions in each cluster. This
was done to compare samples or pooled samples of the
same condition—for example, disease versus healthy—in
terms of the cellular distribution over the identified clusters
(Figs 3A-3G).

Third, we calculated an ecological diversity index®* using
the cellular frequencies over clusters across a range of
order of diversity (Figs 3H and 3I). To assess the robustness
of our diversity metric, we performed downsampling of the
original data sets and found the relative change in diversity
index across a range of order of diversity to determine the
sensitivity of our diversity metric (Fig 4).

Last, we applied our ITH pipeline and diversity metric to two
additional data sets—a hematopoietic cell-type data set that
compared CD34* cells with CD4*, CD14*, and CD19* cell
populations,? as well as a lung cancer data set with matched
normal-tumor tissue sites taken from six different patients
with lung cancer? (Fig 5 and Data Supplement). Additional
specific details of our methods, such as cells per sample, are
described in the Data Supplement and are available online
(including all code used to generate our results).?®

RESULTS AND DISCUSSION

We established a proof of concept that we can generate
clinically relevant summary metrics of ITH by analyzing
publicly available scRNA sequencing data.?'?? Within
BMMC samples from diagnosed AML and healthy control
groups, we sought to establish how to summarize both
inter- and intrasample ITH. First, we clustered the tran-
script expression of two healthy individuals and two patients
with AML, each sampled twice, once before and once after
allogenic BMT.
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A Schematic for Quantifying Diversity of an Individual Malignant Sample
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FIG 1. Schematic of our single-cell RNA sequencing—based approach. (A) Workflow for calculating a generalized diversity index for a single sample.

After sequencing and library preparation, normalization to reduce the number of false negatives or false positives is applied—for example, using the
10x Genomics platform. Clustering can then be applied (Loupe Cell browser or other platforms; Data Supplement), from which we can calculate
diversity. (B) A similar approach can be used when multiple samples are compared. Data normalization and clustering now have to be implemented
considering all samples (Data Supplement), and diversity scoring can inform a ranking of intratumor heterogeneity across samples. Single dots in the
t-distributed stochastic neighbor embedding (tSNE) plots represent single cells, which might either be marked according to their cluster classification
or according to their sample of origin.

As verification, we sought to distinguish between healthy
and AML samples on the basis of the mean expression
values across cells and across clusters (Fig 2A). With 23
clusters identified (Figs 2B and 2C), a network of clusters
emerged, displayed as an undirected graph where the
distance between mean unique molecular identifier counts
determines the thickness and length of the edges (Fig 2D).
The size of the node was chosen to indicate he total
number of cells in the cluster. We colored each node
according to the condition—health, pre-BMT AML, or post-
BMT AML—that was in the majority (breakdown of actual
proportions per cluster shown in Fig 2E). This indicated that
the large clusters with mostly healthy cells are most similar
in average gene expression, whereas the large clusters with
mostly AML cells cluster separately (to the right). Post-BMT
cells clustered more closely to the healthy samples than to
pre-BMT AML samples. This result supports the idea that
these patients were potentially still transitioning but closer
to a healthy phenotype; however, some AML-dominant
clusters still grouped near the healthy/post-BMT super
cluster. On the basis of this bulk measure alone, one may
not be able to easily distinguish between healthy and
diseased cells. Therefore, other quantifications and metrics
to describe gene expression differences may better dis-
criminate between patients with different clinical pre-
sentations and staging.

JCO Clinical Cancer Informatics

To determine metrics that are better at discriminating
between healthy and disease AML, we analyzed and
summarized inter- and intraheterogeneity in two different
ways. First, we considered the grouping of cells into clusters
of similar gene expression in each sample. To this end, we
used KS distance, which compares two discrete probability
mass functions (the fraction of cells per cluster; Fig 3A). We
identified similar distributions within the same condition
and different distributions between conditions, with post-
BMT being a notable exception (Figs 3B-3D). KS distance
between the two healthy samples was 0.139 and 0.174
between the two pre-BMT AML samples, but between the
two post-BMT samples it was 0.551. As we had clustered all
six samples together, we could also compare them pooled
by condition, which revealed that conditions distribute
differently across the identified cellular subpopulations in
high-dimensional gene expression space (Figs 3E-3G).

Second, we calculated a general diversity index (GDI) for
each condition (healthy, pre-BMT AML, and post-BMT
AML). The mathematical definition of GDI, 9D, is shown
in Figure 3H. We established segregation of the different
clinical conditions according to this ecology-based diversity
index.?* Pre-BMT AML samples had a consistently higher
diversity index compared with the healthy sample. This
held true across the entire order of diversity range, g
(Fig 31). Of interest, on this level, post-BMT samples also
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FIG 2. Mean cellular gene expression across clusters within patients can separate disease conditions to some degree. Here, we built a network on
the basis of mean differences in overall expression. (A) We calculated the geometric mean of unique molecular identifier (UMI) counts across
samples and genes for each cluster. Then, a Euclidean distance was calculated between clusters. Here, we used publicly available single-cell RNA
sequencing data®: two healthy donor bone marrow mononuclear cell samples (BMMCs) and BMMCs from two patients with acute myeloid
leukemia (AML) pre—bone marrow transplant (BMT) and post-BMT. These six samples were then clustered using 10x Genomics Loupe Cell
browser (for alternative clustering methods see the Data Supplement), for which we show the (B) sample-based and (C) cluster-based t-distributed
stochastic neighbor embedding (tSNE) plots from the Loupe browser. Each dot represents a single cell, which is colored either according to sample
of origin or its assigned cluster. (D) Cluster-based differences in mean gene expression over UMI counts gave rise to a clustering of the clusters.
Nodes in the resulting graph were colored on the basis of the dominant cell type from each condition present in each cluster (gray for healthy,
orange for AML pre-BMT, and purple for AML post-BMT), and the distance between nodes was chosen inversely proportional to the difference in
mean gene expression level. (E) Individual distributions of cells from a specific condition in each cluster are shown.

scored unanimously higher in GDI. This could indicate that
post-BMT settings may require a certain amount of time
after transplantation to evolve toward a healthy spectrum of
intraleukemic diversity. In addition, in a comparison of the
individual samples within each condition (Figs 4A-4C),
post-BMT samples were most different from each other.

To interrogate the robustness of GDI further and to establish
confidence in the metric, we downsampled the data set,
then reclustered and calculated the 9D spectrum (Figs 4D-41).

4 © 2019 by American Society of Clinical Oncology

During downsampling, we analyzed each sample in-
dividually by randomly removing 50% of the cells, then
calculating the number of clusters identified for that in-
dividual’s transcript expression, and finally calculating the
diversity index for specific g values of interest, including
g =102 g =107 g = 1, which relates to the Shannon
index; g = 2, which defines the inverse of the Simpson
index; g = 10; and g = 102 Distributions shown were
obtained from 1,000 runs of independent downsampling.
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Intriguingly, these distributions showed that with removing
one half of the cells, diversity scores did not change more
than one or two units in either direction. Compared with the
diversity spectrum shown in Figure 3l, this suggests that if
healthy diversity spectra were shifted up by two units (10%
of the maximum) and AML samples diversity spectra were
shifted down by two units, there would still be visible
separation between the healthy and AML conditions.

To further validate our metric, we implemented on our
approach with two other data sets. One data set described
different hematopoietic cellular subtypes—CD34*, CD4",
CD14*, and CD19*.2! CD34" is a hematopoietic progenitor
cell marker and represents a polyclonal population that
includes many different subtypes—hematopoietic stem
cells, multipotent progenitor cells, common myeloid pro-
genitor cells, common lymphoid progenitor cells, mega-
karyocytes erythroid progenitor cells, and granulocytes
macrophage progenitor cells—all of which express CD34.
2628 The CD34" polyclonal population contrasts with the
CD4*, CD14*, and CD19* populations, which represent
more homogenous cellular populations (helper T cells,
monocytes, and B cells, respectively). This clonality pattern
was recovered by GDI (Fig bA), where the CD34* pop-
ulation had a considerably higher diversity score across the
spectrum. Of interest, lower g values seem to separate
differentiated cells more robustly.

Finally, we quantified ITH using lung cancer scRNA se-
quencing samples.??> We analyzed six different patients,
each with up to three different tumor sites—core, middle,
and edge—and a patient-matched adjacent normal lung
tissue sample. Using our GDI metric, we see that the di-
versity spectrum of the normal lung tissue was much lower
than any of the tumor site diversity scores (pooled condi-
tions; Fig 5B). Of interest, more clear separation of con-
ditions was achieved at high orders of diversity g, which
indicated differences in the number of driver clones at
different sites within the tumors. These additional data sets
further support the ability of a quantified diversity metric to
discriminate between healthy and diseases states, which
can be applied in a clinical setting.

In conclusion, scRNA sequencing efforts have helped
greatly to uncover population structures and mapping to
specific cellular population patterns.?® Although these
methods can also elucidate tumorigenesis® and immune
profiles,®! as well as detect and track genomic profiles of
clones,®>33 the overall utility of scRNA sequencing for
cancer progression survival metrics has been elusive.3

Here, we demonstrate the potential utility of two scRNA
sequencing-based scores of cellular heterogeneities using
a GDI that may be elevated in disease. Remarkably, using
previously published data, without additional processing,
our quantification of intratumor heterogeneity was able to
accurately distinguish AML from healthy individuals as well
as from post-transplantation conditions. These data sug-
gest that ITH can be estimated using diversity-based
summary statistics and that these summary statistics can
be leveraged to predict clinical outcome.

The aim of the current study was to optimize and identify
a clinically relevant summary index for ITH in the context of
AML, for which targeted single-cell genome sequencing
was also able to sensitively uncover complex clonal evo-
lution.*? We anticipate that our intraleukemic heterogeneity
(ILH) metric will be prognostic for leukemia-free survival
and potentially overall survival, even after correcting for
known clinical prognostic variables. We have also dem-
onstrated how this metric can also be used to effectively
describe heterogeneity in other malignancies, including
such solid tumors as lung carcinomas.

From a clinical perspective, in terms of tumor heterogeneity
and the emergence of resistance clones during targeted
therapy,3>3° we expect our metric can discriminate patients
clinically. We hypothesize that these heterogeneity metrics
would be elevated independently—at least a priori—in
potentially highly resistant patients. The advantage of the
more general metric used here is that it allows us to look
across many orders of diversity and potentially pick a de-
sired range of heterogeneity quantification. For example,
one might be interested especially in lower g values, where
a higher diversity score may indicate an individual (sample)
more at risk for resistance evolution as it shows high
standing variation. In contrast, differences at high q values
point to key differences in the number of important driver
clones, which might uncover distinct vulnerabilities that
can be targeted in combination or adaptively.

Diversity measures have long received attention in ecology
and evolution.2>*” Here, we measured diversity—and thus
tumor heterogeneity—using a general definition of non-
spatial diversity®® in the form of 9D quantity (Figs 3H-3l).
This approach considers all possible orders of diversity g,
but also allows for the comparison of disease stages
according to a specific diversity index (fixed choice of q),
which emerge as special cases of 9D. Species (clonal)
richness of a sample is given by g = 0. The Shannon index
(log scale) can be found when g approaches 1. The

FIG 3. Cluster-based diversity scoring reveals strong differences between healthy individuals and patients with cancer. In our analysis, using data from Zheng
et al,>! we evaluated our ability to score significant differences in cluster diversity across healthy and acute myeloid leukemia (AML) samples pre— and
post—bone marrow transplant (BMT). (A) As a first indicator of between-sample or between-condition differences, we used the Kolmogorov-Smirnov (KS)
distance for discrete probability mass functions. (B and C) Little difference was found in the KS distance within condition differences, except in (D) post-BMT
samples. (E-G) Between-condition differences were larger when comparing pooled samples across conditions. (H) We calculated a general diversity index
(GDI) D to quantify diversity across orders of diversity g. (1) For all orders of diversity measure, patients with AML (pre- and post-BMT) had a higher diversity
index compared with healthy individuals (two samples per condition), which suggests that GDI can be used as a metric for stratification.

6 © 2019 by American Society of Clinical Oncology
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FIG 4. Patients with acute myeloid leukemia (AML) have consistently higher diversity compared with healthy individuals. Individual diversity spectrums were
reported for (A) healthy, (B) AML pre-bone marrow transplantation (BMT), and (C) AML post-BMT samples (each line is from one sample). Cell-gene

matrices were downsampled to 50% of the cells 1,000 times, and 9D scores were calculated using the full pipeline (see Data Supplement) for specific values

ofg=0.01,0.1, 1, 2, 10, and 100. Distributions of relative °D changes for (D and G) healthy, (E and H) AML, and (F and I) post-BMT AML samples showed
that, in general, lower g values lead to less change in measured diversity. Across all cases, the diversity score did not change by more than two units (relative
change is measured by dividing the entire distribution by the distribution mean). For sample sizes, see the Data Supplement.
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FIG 5. Higher diversity indicates higher clonality in normal tissues and solid tumors. (A) Additional available data from Zheng et al?! for CD34* cells, CD4*
helper T cells, CD14" monocytes, and CD19* B cells were run through pipeline S (Data Supplement), and the continuum of diversity was calculated for each
population. The naturally polyclonal population (CD34*) shows the highest diversity score. Each of the other differentiated immune cell compartments are
more homogeneous across orders of diversity. (B) In solid tumors, location matters. Normal tumor matched lung carcinoma samples were obtained from
publicly available data for six patients with lung cancer? (individual patients; Data Supplement). The diversity metric across g demonstrates an increase in
diversity within tumors across different tumor locations.

Simpson index, which approximates the probability that any
two cells are identical, emerges from the case of g = 2. Both
the Shannon and Simpson indexes have been used in
mathematical and statistical models of cancer evolutionary
dynamics to quantify tumor heterogeneity as it potentially
changes during tumor growth, with disease progression, or
during treatment.3®#! Shannon entropy-based statistics
have also been used to quantify single-cell heterogeneity to
deliver insights into emerging or disappearing clones during
transitions between clinical conditions.*?

scRNA sequencing experiments provide a snapshot of the
cell population on the level of gene expression and can
characterize how transcriptomes of individual cells compare
with the bulk. In contrast to mass cytometry, DROP se-
quencing is fast and extremely high throughput. Other single-
cell technologies, such as flow cytometry, can be used to
generate single-cell data for a relatively small subset of po-
tential markers that distinguish between normal and disease.
This requires that the researcher or clinician know what these
markers are in advance. Among a variety of outcomes that
may be distinguished by our metric, one can be the study for
segregating samples on the basis of on disease severity, for
which additional follow-up knowledge will be needed.

Further extending our results to the potential impact in
a clinical setting in leukemias, ILH is a known reservoir for
tumor resistance and clinical refractoriness to targeted
therapies.® Clinical responses have been modest to current
targeted therapies for the treatment of AML. Specific means
to change ILH can be of particular appeal in such cases,
as they might help render tumors less aggressive and
hinder their ability to rapidly evolve resistance. In particular,

8 © 2019 by American Society of Clinical Oncology

hypomethylating agents—cytosine analogs that irreversibly
bind to DNA methyltransferase, an enzyme that is required
for methylation of CpG-rich DNA—have the potential to
diminish ILH.*® Transcriptome changes upon treatment
with hypomethylating agent therapy have not been ana-
lyzed at single-cell resolution. Our analyses in the current
study provide a quantitative basis by which to understand
and reliably track these changes.

Clear separation of diversity metrics by condition, as we show
it, might not be expected in general. A weakness of our ap-
proach is that it does not consider any meaning of the as-
sociated phenotypes or genotypes; therefore, as it stands, our
method cannot be transferred to improve the predictive power
of existing bulk signatures. Hence, existing survival data are
unlikely to be useful to prove that GDI is predictive of survival,
and novel databases that uniquely connect high-throughput
single-cell experiments with clinical outcomes are needed.

However, once the appropriate cohorts are established,
changes in an individual's diversity score could indicate
unigue features of disease progression. In the context of
adaptive therapy,***® which aims at tumor burden control
rather than difficult tumor eradication, it might be critical to
identify the appropriate scale of diversity that best predicts
outcomes. One could speculate that there is an optimal
window of diversity that should be maintained—Ilow di-
versity could indicate fast disease progression and high
diversity could mean that the tumor could adapt to the
treatment schedule too quickly. The concept we have in-
troduced here is sufficiently flexible in its ability to quantify
optimally predictive windows of diversity that should be
maintained during adaptive therapy.
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