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abstract

PURPOSE In an upcoming clinical trial at the Moffitt Cancer Center for women with stage 2/3 estrogen
receptor–positive breast cancer, treatment with an aromatase inhibitor and a PD-L1 checkpoint inhibitor
combination will be investigated to lower a preoperative endocrine prognostic index (PEPI) that correlates with
relapse-free survival. PEPI is fundamentally a static index, measured at the end of neoadjuvant therapy before
surgery. We have developed a mathematical model of the essential components of the PEPI score to identify
successful combination therapy regimens that minimize tumor burden and metastatic potential, on the basis of
time-dependent trade-offs in the system.

METHODS We considered two molecular traits, CCR7 and PD-L1, which correlate with treatment response and
increased metastatic risk. We used a matrix game model with the four phenotypic strategies to examine the
frequency-dependent interactions of cancer cells. This game was embedded in an ecological model of tumor
population-growth dynamics. The resulting model predicts evolutionary and ecological dynamics that track with
changes in the PEPI score.

RESULTSWe considered various treatment regimens on the basis of combinations of the two therapies with drug
holidays. By considering the trade off between tumor burden and metastatic potential, the optimal therapy plan
was a 1-month kick start of the immune checkpoint inhibitor followed by 5 months of continuous combination
therapy. Relative to a protocol giving both therapeutics together from the start, this delayed regimen resulted in
transient suboptimal tumor regression while maintaining a phenotypic constitution that is more amenable to fast
tumor regression for the final 5 months of therapy.

CONCLUSION The mathematical model provides a useful abstraction of clinical intuition, enabling hypothesis
generation and testing of clinical assumptions.
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INTRODUCTION

Evolving alongside vacillating populations of patho-
gens, the components of the human immune system
mirror the changing and hostile environments of our
past. Although they are capable of defending against
pathogens and dysfunctional cells, selection events
result in trade-offs among protective responses, au-
toimmunity, and host fecundity, shaping the diverse
cellular and molecular composition of the immune
system. Immune regulation protects healthy tissue
during a powerful immune response.

In tumors, cancer cells often evolve strategies to
dysregulate, co-opt, or suppress the immune sys-
tem. Therapies that block such immune evasion
mechanisms, using antibodies that target immune
checkpoints (eg, cytotoxic T lymphocyte antigen-4
[CTLA-4] and programmed death-1 [PD-1]) have
been introduced to enhance antitumor cytotoxic

T-cell responses by inhibiting immune regulatory
functions.1 The efficacy of immune checkpoint
blockade (ICB) therapy was first confirmed in overall
survival of patients with advanced melanoma treated
with the anti–CTLA-4 monoclonal antibody ipilimu-
mab.2,3 Subsequently anti–PD-L1 therapy was in-
cluded as a broadly applicable tool for the treatment
of cancer.4-6 PD-1 is a checkpoint protein expressed
by cytotoxic immune cells (ie, T cells and natural
killer cells) and its ligand PD-L1 is often expressed
on cancer cells, leading to immune evasion. Using
ICB to block either CTLA-4 or PD-L1 has led to
durable responses in some patients, albeit with only
a fraction of patients responding, possibly due to
other immune-evasion mechanisms.6,7 Therefore,
therapeutic approaches using combinations of ICB
and targeted therapies or radiotherapies that stim-
ulate various steps of the cancer-immunity cycle
need to be explored.
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Combination TherapyWith Immune Checkpoint Inhibitors

Chemotherapy and radiation are widely used and readily
combined with ICB therapies.7 Radiation improves re-
sponses to ICB in mice given anti–CTLA-4.8,9 There also
seems to be an additional abscopal effect (ie, tumor
shrinkage in unirradiated areas).10 Mathematical models
illustrate the potential synergies with immune checkpoint
inhibitors.11,12 Similarly, genotoxic chemotherapies com-
bine favorably with ICB therapies by improving the dis-
criminatory function of the immune system to evoke
immunogenic pattern recognition receptor signaling.13,14

Radfar et al15 conducted a study of an approach termed
“chemocentric chemoimmunotherapy” with potential ap-
plication in the treatment of all cancer types. The technique
uses activated CD4+ T cells to chemosensitize the tumor
before chemotherapy administration. Their results support
those of other recent studies reporting improved response
rates and survival with salvage chemotherapy in patients
who previously received cancer vaccination aimed at de-
veloping an immune response.16-20

Furthermore, multiple classes of targeted therapies in
combination with ICB show promising results (eg, CDK4/6
inhibitors used in hormone receptor–positive breast can-
cer).21-23 Preclinical experimental data show synergism
between targeted therapy with a BRAF inhibitor and
anti–PD-L1 therapies that counteract subsequent immune
escape via expression of PD-L1 that would typically occur in
tumors of patients with metastatic melanoma.24,25

There are currently more than 400 ongoing trials of ICB in
combination with other modalities. Although combination
therapies have tremendous clinical potential, designing
combination trials requires a deep understanding of the
underlying biologic mechanisms at play in two complex and
interacting systems: the tumor and the immune system.
Challenges magnify when confronting the myriad possible
dose levels and timing schedules. The clinical options
become legion, even though they all have the same goal
of eradicating the tumor while preventing the emergence of
resistance. Mathematical modeling permits exploration of
the many options as well as integrating knowledge and
assumptions from the clinic and research bench. The goal
of our modeling here is to generate testable hypotheses.26

Mathematical models have been used to study tumor-
immune dynamics and system stability in a variety of
cancer types.27-31

Neoadjuvant Therapy in Estrogen Receptor–Positive

Breast Cancer

In a recently approved clinical trial at the Moffitt Cancer
Center (Tampa, FL), women with stage 2 or 3 breast cancer
with estrogen receptor–positive (ER+) tumors will receive
neoadjuvant combination therapy: an aromatase inhibitor
(AI; primarily anastrozole) and checkpoint inhibitor against
PD-L1 (durvalumab). AIs are an orally available class of
drugs used in the treatment of postmenopausal patients

with ER+ breast cancer. AI therapy suppresses estrogen
production by blocking the aromatase enzyme, a key step
in estrogen production. ER+ breast cancer cells depend
on estrogen for proliferation. By reducing the amount of
hormone available to tumor cells, AI therapy blocks the
growth of the tumor, resulting in tumor cell death. Re-
sponse rates to AI therapy are relatively high (50% to 70%)
in the neoadjuvant setting, but there still remains a large
population of patients, especially with advanced disease,
that does not respond. Alternative therapies are needed,
as are biomarkers to predict response.32 The addition of
checkpoint inhibitors to AI drug regimens appears
promising.33-35 Therefore, a key goal of this article is to
provide insights on how best to deliver this combination
therapy.

Mathematical Modeling of Immune Checkpoint Inhibitors

Here, we describe a mathematical framework we de-
veloped to better understand the effect of combining AI
therapy with the checkpoint inhibitor anti–PD-L1 in post-
menopausal ER+ breast cancer. Specifically, we based our
model on the Moffitt clinical trial, which began accruing
patients in mid-2018. The trial has a short-term outcome
metric: the preoperative endocrine prognostic index (PEPI)
measured at the end of 6 months of neoadjuvant therapy.36

The PEPI score accounts for tumor size, presence of cancer
cells in the lymph nodes, Ki-67 levels (a marker for pro-
liferation), and hormone receptor status. The PEPI score
provides a prognostic indicator for relapse-free survival and
is measured at the time of surgery, after neoadjuvant
therapy. The mathematical model developed here mimics
two essential indicators of the PEPI score: lymphatic
metastatic potential and tumor size. We used an evolu-
tionary game theory (EGT) approach to (1) evaluate the
success of diverse combination therapies of AI and
checkpoint inhibitors that aim to minimize tumor burden
and metastatic potential, and (2) identify the time-
dependent trade-offs between tumor burden and meta-
static potential within the PEPI score.

We consider CC-chemokine receptor 7 (CCR7) and PD-L1
as two relevant and measurable molecular traits of the
cancer cell that play a role in therapy resistance. Fur-
thermore, PD-L1 and CCR7 are positively correlated with
metastatic risk, especially to the lymphatics.37-39 Similar to
the PD-1/PD-L1 axis, CCR7 and its ligands (CCL19 and
CCL21) help govern the balance between immune acti-
vation and immune regulation. Lymphocyte trafficking is
a highly regulated process guided by chemokine gradients
and integrins. CCR7 is a chemokine receptor traditionally
expressed by immune cells and is required for leukocyte
homing to lymph nodes. Along with other chemokine re-
ceptors, CCR7 expression in cancer cells is highly corre-
lated with lymph node involvement andmetastasis in breast
cancer.37-39 In addition, CCR7 activation induces pro-
liferation and inhibits apoptosis in immune cells and cancer
cells.40-42 In a small study that examined gene expression in
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89 patients receiving letrozole, CCR7 expression was ele-
vated in nonresponders compared with responders. As
seen in Figure 1, CCR7 expression increased in all patients
(blue) and to a greater degree in nonresponders (red).32 In
our model, we used CCR7 expression as a marker of
metastatic potential with increased risk of lymph node
invasion. Furthermore, we see positive CCR7 expression as
conferring resistance to the aromatase inhibitor.

Using CCR7 and PD-L1 tumor phenotypes in the mathe-
matical model, we incorporated key elements of therapy
resistance strategies influence the PEPI score (ie, tumor size
and risk of lymph metastasis). The model provides the
evolutionary trajectories of these cancer cell phenotypes and
how they affect the total cancer cell population over time. To
combine the evolutionary dynamics with the population
dynamics, we embedded an EGTmodel of cell-type–specific
interactions in a model of population dynamics. Thus, we
integrated the replicator dynamics (ie, changes in strategy
frequencies) with the population dynamics. The model
serves as a platform to aid clinical intuition in designing
combinations of hormone therapy and immunotherapy.

METHODS

EGT provides a framework for modeling frequency-
dependent selection where the fitness value of a trait to
an individual depends on the trait values of others. A payoff
matrix defines the fitness returns to an individual (row
strategy) from interacting with another individual or the

population at large (column strategy).43-45 It is now well
established that cancer progression is an evolutionary and
ecological process46,47 in which evolutionary forces (eg,
genetic drift with heritable mutations, natural selection)
drive changes in the cancer cells’ heritable phenotypes
along a fitness landscape.48,49 EGT has been used for
modeling cancer treatment, including models of prostate
cancer tumor interactions with stroma,50,51 adaptive ther-
apy,50 metronomic chemotherapy,52 competitive release,53

and the evolutionary double bind.54

Our EGT model sees tumor cells as “players” with two
independent phenotypic axes: CCR7 and PD-L1 expres-
sion. Each cell of type i (i = 1, 2, 3, 4) competes according
to equation 1, where x!¼ x1, x2, x3, x4T is the vector of the
corresponding frequency of the four phenotypes: x1 �
CCR7�/PD-L1�; x2 � CCR7�/PD-L1+; x3 � CCR7+/PD-L1�;
and x4 � CCR7+/PD-L1+. The fraction of cells expressing
CCR7 and PD-L1 can be found by x3 + x4 and x2 + x4,
respectively. The evolution of average trait values within the
tumor population can be tracked on a two-dimensional plane
(Fig 2A).

The phenotypic interactions for each therapy are shown in
Figure 2B and 2C. T cells kill tumor cells at rate kT, but
PD-L1 expression removes this term and provides a benefit,
b2, to neighboring PD-L1-negative (PD-L1�) cells. AI targets
CCR7� cells (d1) and the checkpoint inhibitor promotes
T-cell killing of PD-L1+ cells (d2kT).
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FIG 1. Expression changes during continuous administration of aromatase inhibitor (AI) therapies. (A, B) A representative image (A) before and (B) after
neoadjuvant AI therapy shows a non responder (30% to 50% of patients) to the current standard of care. (C) Expression data from biopsy specimens obtained
from 89 postmenopausal women with estrogen receptor–positive breast cancer receiving neoadjuvant letrozole32 were analyzed. CCR7 was identified in
a group of genes that showed the greatest expression pattern changes during treatment with AI. Gene ontology analysis via AmiGO (amigo.geneontology.org)
revealed that this subset of differentially expressed genes was enriched for immune function, including CCR7 as a marker of potential metastatic escape.
Relative changes of CCR7 expression increased under AI therapy in all patients, but to a greater degree for nonresponders.
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The costs and benefits attributed to each phenotype are
mathematically represented in a payoff matrix (Fig 2D). The
fitness of each phenotype subpopulation is given by
equation 3: a function of phenotype prevalence weighted
by the payoff matrix. The subscript 1 is associated with AI
therapy, subscript 2 is associated with checkpoint inhibitor
therapy, and the parameters are summarized as follows:

• kT: kill rate by immune cells (T cells); kT � 0
• d1: AI kill rate; d1 � 0
• d2: checkpoint inhibitor–binding blocking rate;
1 � d2 � 0

• c1: inherent cost of developing increased CCR7 ex-
pression; c1 � 0

• c2: inherent cost of developing PD-L1 expression; c2� 0
• b2: cheater benefit a PD-L1� cell gains by being near
a PD-L1+ cell; b2 � 0

The total volume, vi(t), for each ith phenotype increases
by growth rate, λ, offset by the various costs and benefits in
the fitness function. In this way, the population dynamics
[vi(t)] are dependent on absolute fitness, whereas the

evolutionary dynamics [xi(t)] depend on relative fitness. The
total change in volume of the tumor is given by the sum of
phenotype volume changes: V̇ ¼ �

i
v̇ i .

ẋ i ¼ ðfi � Æf æÞxi

v̇ i ¼ ðλþ fiÞvi

fi ¼ ðA x!Þi

Æf æ ¼ �
4

i¼1

xi fi

RESULTS

Figure 3 shows the model predicted treatment responses to
(1) no treatment (black, exponential growth); (2) AI con-
tinuous treatment only (blue); (3) checkpoint inhibitor
continuous treatment only (red); and (4) both AI and
checkpoint inhibitor continuous treatment (purple). Selec-
tion pressure by immune cells is always present (kT = 0.4)
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Note: (kT, d1, d2, c1, c2, b2) > 0
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FIG 2. Schematic of the mathematical model. (A) The tumor population consists of phenotypes varying on two axes: CCR7 (increasing from left to right) and
PD-L1 (increasing from top to bottom). (B) Aromatase inhibitor (AI) therapy targets CCR7� phenotypes with kill rate of d1; these may evolve CCR7 expression
due to selection. T cells kill both types at rate kT. (C) Checkpoint inhibitor therapy boosts the immune response against tumor cells expressing PD-L1. In
addition, PD-L1� cells benefit from being near PD-L1+ cells, known as a “cheater” population. (D) The two-dimensional phenotypic space is modeled using
a four-player gamewith subscript 1 indicating the CCR7 axis and subscript 2 indicating the PD-L1 axis. Killing terms (see red lines in 2B and 2C) for kT, d1, and
d2 are added to PD-L1�, CCR7�, and PD-L1+ rows, respectively. Cost terms (c1, c2) are added to CCR7+ and PD-L1+ rows, respectively. The cheater benefit,
b2, is added to PD-L1� interactions (row) with PD-L1+ cells (column). Note that all costs (c1, c2, kT, d1, d2) and benefits (b2) in payoff matrix A are constrained
to non-negative values.
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but is not sufficient to cause tumor regression by itself. The
costs to develop resistance are small (c1 = c2 = 0.1), as is the
cheater benefit that a PD-L1� cell derives from being near
a PD-L1+ cell, chosen as b2 = 0.1. The costs to both CCR7
and PD-L1 expression outweigh the cheating benefit of
residing near a PD-L1+ cell in the presence of the AI drug:
[�(c1 + c2) . b2 -kT (1� d2) � d1]. We assume low CCR7
expression (x3 + x4) and PD-L1 expression (x2 + x4) at the
start of treatment. We use the simplifying assumption that
x!0 = [(1�f1)(1�f2), f1(1�f2), f2(1�f1), f1f2] where f1 the
initial fraction of CCR7 expression (x3 + x4) and f2 is initial
fraction of PD-L1 expression (x2 + x4).

As seen in Figure 3A, administering standard-of-care
neoadjuvant AI treatment continuously for 6 months results
in significant tumor regression (blue), which is improved by
the addition of continuous administration of checkpoint
inhibitor therapy (purple). However, the underlying phe-
notypic dynamics often represent very different outcomes
even when tumor regression is similar. This is shown in
Figure 3B, plotting the outcomes of phenotypic evolution on
the CCR7–PD-L1 plane. The background is color coded
according to metastatic risk of each point in phenotype
space (eq 5). The risk function is chosen such that p1 + p2 =
1 (here, p1 = p2 = 0.5), which has the convenient property
that m 2 [0, 1] for every point in the simplex.

m ¼ ðx3 þ x4Þp1 þ ðx2 þ x4Þp2

Importantly, this function increases with CCR7 expression
and with PD-L1 expression. Although the exact functional
relationship between metastatic risk and expression of these

markers is unknown, an increasing linear function is used as
a first approximation, consistent with previous findings
linking each expression axis to metastasis.37-39 Therefore, an
ideal therapy would keep the CCR7 and PD-L1 expression
low, residing in the top left corner of the graph in Figure 3B
for all of simulation time (x1 = 1) and giving a score of m = 0.

From these results, it is apparent there is a trade-off be-
tween tumor regression (Fig 3A) and metastatic risk
(Fig 3B). Any therapy that results in both low CCR7 and PD-
L1 expression will be associated with the lowest likelihood of
developing metastatic disease. In Figure 3B, the check-
point inhibitor treatment shows the best (lowest) metastatic
potential score. This optimal solution comes with an im-
portant caveat: It is also associated with the worst tumor
regression, second only to untreated growth (Fig 3A). The
highest tumor regression is associated with the continuous
combination treatment (purple), which results in a relatively
high metastatic risk in the top right corner of Figure 3B.

Phenotypic Evolution Under Mono- and

Combination Therapy

To assess long-term outcomes, an evolutionarily stable
strategy can be directly calculated from the payoff table
(Fig 2D), which indicates which phenotype will eventu-
ally dominant the tumor population. Each evolution-
arily stable strategy shown shaded in Figure 4 holds for
specific conditions (ie, inequalities).55 Without treatment, the
CCR7�/PD-L1+ (Fig 4A, red) dominates if the cost of de-
veloping the PD-L1 strategy is less than immune-cell kill
rate in the absence of the immune escape mechanism
(c2 , kT), otherwise the negative-negative phenotype
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FIG 3. Trade-off between metastatic risk and tumor regression. (A) Tumor regression is shown for no treatment (black), continuous aromatase
inhibitor (AI; blue), continuous checkpoint inhibitor (red), and combined therapy (purple). (B) Trajectories on themetastatic risk simplex (white to
black for increased risk) are also shown for the four scenarios. Treatments may be associated with optimal metastatic risk and worse regression
(checkpoint inhibitor) or with optimal regression but worse metastatic risk (AI with checkpoint inhibitor). Baseline parameter values are as follow:
c1 = c2 = b2 = f2 = 0.1; λ = 0.5; k = 0.4; d1 = 1.1; d2 = 0.95.
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wins. Under continuous AI treatment, the CCR7+/PD-L1+

phenotype wins (Fig 4B, purple) if the cost of developing
CCR7 expression is less than the kill rate due to AI drug
therapy (c1 , d1) and the costs to CCR7/PD-L1 expression
outweigh the cheating benefit of residing near a PD-L1+ cell
in the presence of the AI drug [�(c1 +c2). b2 -kT (1�d2)�
d1]. Under continuous checkpoint inhibitor treatment, the
CCR7�/PD-L1� phenotype wins (Fig 4C, blue) if the costs to
CCR7/PD-L1 expression are positive (c1 . 0; c2 . 0),
otherwise neutral dynamics play out. Under continuous
combination treatment, the CCR7+/PD-L1� phenotype wins
(Fig 4D, gold) if the cost to PD-L1 outweighs the difference
between PD-L1 expressing and non-expressing cells during
checkpoint inhibitor treatment [c2 . kT(1-d2)]. Interest-
ingly, each of the four treatment scenarios results in a dif-
ferent dominant phenotype. This implies that the underlying

phenotypic evolution may be controllable to any desired
CCR7/PD-L1 expression by choosing which treatments to
apply in sequence.

Transient Dynamics: A Virtual PEPI Score

To fully explore the trade-off between tumor regression and
metastatic risk, it is useful to visualize these dueling axes
of the trade-off between metastatic risk and tumor re-
gression, as shown in Figure 5. All therapies begin with an
identical initial condition (black dot) and track tumor
volume (vertical axis) and time-weighted average meta-
static risk (horizontal axis) for 6 months of neoadjuvant
therapy. Here, the optimal therapy would direct the curve
toward the origin.

The model’s true utility comes when describing the tran-
sient dynamics of the underlying PEPI indicators. In
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FIG 4. Evolutionary dynamics under continuous treatment. Underlying phenotypic dynamics (xi[t], bottom; eq 1) are shown under (A) no
treatment, (B) aromatase inhibitor (AI) treatment, (C) checkpoint inhibitor treatment, and (D) both therapies. Interestingly, the emerging
dominant phenotype for each treatment is different. (c1 = c2 = b2 = f1 = 0.1; f2 = 0.2; λ = 0.5; kT = 0.4; d1 = 1.1; d2 = 0.95).
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Figure 5A, the trajectory of monotherapies and combination
therapies is shown for no treatment (black) and five dif-
ferent treatment regimens. Intermittent checkpoint in-
hibitor schedules were not analyzed owing to anti–PD-L1
having a long effective half-life in patients. The optimal
metastatic risk score (horizontal axis) is associated with
checkpoint inhibitor monotherapy (red dot), but this is the
second worst tumor regression (vertical axis). The current
standard of care (ie, AI; blue dot) decreases tumor volume
compared with no treatment (black dot) but is the worst
outcome for metastatic risk. Continuous AI and checkpoint
inhibitor therapy results in a better overall outcome than the
standard of care by lowering both tumor regression and
metastatic risk.

Delayed treatment strategies are tested in Figure 5B. The
legend shows the delay time (months) of one drug with
respect to continuous (6-month) administration of the
other; the zero entry indicates continuous treatment of
both. The model predicts that the global optimum tumor
regression is achieved through continuous checkpoint
inhibitor therapy coupled with 1-month delayed AI.
This results in a temporary increase in tumor volume for
the first month. However, fast regression for the final
5 months of neoadjuvant therapy leads to the smallest
tumor burden at time of surgery. These results are rel-
atively robust to changes in parameters, provided the
inequalities described in the section headed “Pheno-
typic Evolution Under Mono- and Combination Therapy”
remain true. These inequalities determine the long-term

dominant phenotypes, and variations in parameters
show that continuous checkpoint inhibitor and 1-month
delayed AI remains optimal in most circumstances
(Appendix Fig A1; Appendix Tables A1 and A2), except
for the cases of large costs or low initial expression of
CCR7 or PD-L1.

DISCUSSION

The PEPI score is used to predict prognosis after neo-
adjuvant therapy, and combines tumor size, Ki-67 pro-
liferation index, hormone status, and lymph node
involvement. The PEPI score aims to optimize all four, yet
gives no information about transient scores or which of the
four factors to prioritize. The purpose of this study was to
highlight the inherent trade-off between two of these in-
dicators: metastatic risk and tumor regression. Our results
suggest that 1 month of delayed AI therapy combined with
continuous checkpoint inhibitors leads to optimal tumor
regression. However, we can imagine scenarios where
other factors might be prioritized. A patient with a large,
aggressive, invasive tumor may opt to receive a stronger
dose of combination therapy, lowering the tumor volume
(Fig 5, vertical axis) at the expense of increased metastatic
risk (Fig 5, lateral axis). On the other hand, because
neoadjuvant therapy is followed by surgery at the end of the
6-month therapy, in some instances, it is wise to optimize
lowering a patient’s metastatic risk rather than decreasing
tumor burden. In other scenarios, surgery may not be
plausible. The two axes need to be considered concurrently as
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FIG 5. Mono- and combination therapies. Dynamics for two essential components of the PEPI score (metastatic risk and tumor volume) are shown for (A)
continuous or sequential administration and (B) delayed administration treatment schedules. Parameter values are as follows: c1 = c2 = b2 = f2 = 0.1; λ = 0.5;
kT = 0.4; d1 = 1.1; d2 = 0.95. AI, aromatase inhibitor.
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they are coupled; a higher metastatic score with a small tumor
is likely less dangerous than the samewith a large tumor at the
end of neoadjuvant therapy. Interestingly, using a simple
minimization of distance to the origin (Fig 5) resulted in the
same optimal treatment of 1-month delayed AI under a variety
of parameters tested (Table 1).

We are often inclined to define the success of a therapy as
the eradication of the tumor. Neoadjuvant therapies are
followed by surgical removal of the primary tumor, altering
the desired treatment outcome. Clinicians are tasked with
creating or maintaining an operable tumor volume with the
primary goal of delaying or even preventing postsurgical
recurrence. This setting allows for more nuanced ap-
proaches. We no longer have to maximize tumor-cell killing
at the risk of driving drug resistance or increasing meta-
static potential. We can begin to optimize metrics such as
long-lasting systemic immune memory and selection for

less aggressive phenotypes if recurrence does arise. As
treatment options become more diverse and more so-
phisticated, so too will our applications of such treatments
and, therefore, the need for applying more integrated ap-
proaches like the one we developed here.

Optimizing multiple output variables (eg, regression and
metastasis) is not a straightforward task, but mathematical
models are a powerful abstraction of clinical intuition,
enabling hypothesis generation and testing of clinical as-
sumptions. Especially when developed in collaboration with
clinicians, such models provide clarity and power despite
their simplicity and built-in assumptions, emphasizing their
ability to define novel therapeutic regimens. Here, we have
found that combination therapy is likely to be better than
either monotherapy for reducing both tumor burden and
metastatic risk. Furthermore, introducing a 1-month delay
for AI can strengthen the outcome.
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FIG A1. Parameter sensitivity analysis. Baseline parameters are b2 = 0.1; c1 = 0.1; c2 = 0.1; f1 = 0.1; f1 = 0.1; kT = 0.4; λ = 0.5; d1 = 1.1; d2 = 0.95, unless
otherwise noted.
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FIG A1. (Continued).

TABLE A1 Optimal Tumor Regression
Parameter Value 0.05 0.15 0.25 0.35

Varied b2 (1,0) (1,0) (1,0) (1,0)

Varied c1 (1,0) (1,0) (0,0) (0,0)

Varied c2 (1,0) (1,0) (0,0) (0,0)

Varied f1 (0,0) (1,0) (1,0) (1,0)

Varied f2 (0,0) (1,0) (1,0) (1,0)

NOTE. Each ordered pair represents the optimal strategy (months
delayed aromatase inhibitor, months delayed anti–PD-L1), such that
(0,0) represents no delay, continuous treatment of both. Here, optimum
is measured minimum tumor burden: min(v) at the end of neoadjuvant
therapy. This table represents outcomes for Figure A1. Baseline parameters
are b2 = 0.1; c1 = 0.1; c2 = 0.1; f1 = 0.1; f2 = 0.1; kT = 0.4; λ = 0.5; d1 =
1.1; d2 = 0.95, unless otherwise noted. Most common optimal strategy
(1,0) is shown in red.
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TABLE A2 Optimal Tumor Regression and Metastasis
Parameter Value 0.05 0.15 0.25 0.35

Varied b2 (1,0) (1,0) (1,0) (1,0)

Varied c1 (1,0) (1,0) (1,0) (1,0)

Varied c2 (1,0) (1,0) (1,0) (1,0)

Varied f1 (1,0) (1,0) (2,0) (2,0)

Varied f2 (1,0) (1,0) (2,0) (2,0)

NOTE. Each ordered pair represents the optimal strategy (months
delayed aromatase inhibitor, months delayed anti–PD-L1), such that (0,0)
represents no delay, continuous treatment of both. Here, optimum is
measured as distance from the origin: min(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þm2
p

) at the end of
neoadjuvant therapy. This table represents outcomes for Figure A1.
Baseline parameters are b2 = 0.1; c1 = 0.1; c2 = 0.1; f1 = 0.1; f2 = 0.
1; kT = 0.4; λ = 0.5; d1 = 1.1; d2 = 0.95, unless otherwise noted.
Most common optimal strategy (1,0) shown in red.
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