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Computational Model of Progression to 
Multiple Myeloma Identifies Optimum 
Screening Strategies

INTRODUCTION

Multiple myeloma (MM) is the second most 
common hematologic malignancy in the United 
States, representing 1.8% of new cancer cases 
and 2.1% of deaths resulting from annually.1 
MM is an incurable plasma-cell malignancy.2 
Patients show abnormal levels of the paraprotein 
M protein,3 indicating a monoclonal cell popula-
tion and end-organ damage such as lytic bone 
lesions.4 Almost all patients with MM experience 
progression from a precursor condition called 
monoclonal gammopathy of undetermined sig-
nificance (MGUS), displaying only M protein 
spikes.4 The MGUS condition exists in approx-
imately 2% of the population age ≥ 50 years.5 

Men show higher age-adjusted incidence rates 
than women.6 There are also racial disparities; 
MGUS prevalence in African Americans age 40 
years is roughly equivalent to MGUS prevalence 
in non-African Americans age 50 years.7

Recent advances suggest that the rate of pro-
gression to MM can be altered by therapeu-
tic interventions.8,9 Obesity—a modifiable risk 
factor for MM—is associated with increased 
risk.10-12 Furthermore, metformin is associated 
with a reduced progression of MGUS to MM, 
potentially delaying MM by 4 years in patients 
with type 2 diabetes with MGUS.9 Reduced risk 
is also associated with regular use of aspirin.8 
Although causal relationships and molecular 
mechanisms of these associations are uncertain, 
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these findings suggest that pharmacologic and 
other interventions have the potential to reduce 
the risk of MGUS progression. It is therefore of 
particular interest to investigate the effects of 
screening for MGUS, especially in specific sub-
populations, and screening distribution across 
risk groups. The goals of screening are to detect 
MGUS early and reduce MM prevalence and 
mortality as a result of mild interventions leading 
to an MGUS to MM progression risk reduction.

Independent of intervention-based progression 
risk reduction, precursor state knowledge can 
also affect mortality and comorbidity in patient 
cohorts. Sigurdardottir et al13 found that patients 
with MM with prior knowledge of MGUS had 
improved overall survival (median, 2.8 years) 
compared with patients with MM without prior 
knowledge (median, 2.1 years), overshadowed 
by a larger extent of relative comorbidities in 
patients with prior knowledge. The authors 
concluded that earlier treatment of MM, as a 
result of prior knowledge, leads to better survival 
(potentially conflicted by lead bias). Clinical fol-
low-up in cases of accidental MGUS detection 
may be important regardless of (anticipated) risk 
type,13 and follow-up preceding the diagnosis 
of MGUS-associated malignancy may lead to 
improved survival.14 Screening for MGUS might 
have additional merit because < 10% of MM 
diagnoses currently are knowingly associated 
with preexisting MGUS.13,14 

We designed a computational model that describes 
incidence of MGUS and progression to MM, spe-
cific MGUS screening scenarios, and potential 

epidemiologic changes, implemented after detec-
tion. Our model is based on life tables and epide-
miologic data of MGUS and MM, which depend  
on genetic background, sex, and age15,16 and 
correlate with ethnicity.17 Using simulations 
and analytic results, we assessed whether a  
given reduction in progression risk after a pos-
itive MGUS screen could reduce MM preva-
lence and lead to changes in MM-specific 
mortality (or survival). Our work can be used to 
identify optimal screening strategies and can 
assess the utility of interventions targeting MM 
precursor states.

MATERIALS AND METHODS

We developed a Markov chain model (Fig 1A) in 
which healthy individuals transition to an unde-
tected MGUS stage, from which they can transi-
tion to detected MGUS if screened. An individual 
with MGUS progresses to overt MM at a certain 
rate per year; however, a positive MGUS screen-
ing result reduces the rate of progression to 
MM (Figs 1B and 1C). Individuals may die at 
any point, but mortality is greater for those with 
MM. We performed stochastic simulations and 
derived an analytic framework to assess MM 
mortality and prevalence reduction after screen-
ing (Data Supplement).

Model Inputs and Outputs

We were interested in screening outcomes in 
mixture populations composed of individuals with 
different MGUS lifetime risks. We distinguished 
non-African American and African Americans 
as low-risk (baseline) and high-risk individuals, 
respectively. From baseline, high-risk individu-
als carry an average two-fold increase in lifetime 
risk of MGUS.16,18 Calculations of the respective 
MGUS incidence rates are displayed in the Data 
Supplement. Furthermore, we used a crude birth 
rate for the total population and life tables to cal-
culate death events of healthy individuals and 
those with MGUS (high- and low-risk men and 
women), MM-specific death rates, and a fixed 
MGUS to MM progression rate for unscreened 
individuals. A screening scenario was specified 
by three parameters: age of the individual when 
receiving the first screen (a0), spacing between 
follow-up screens (Δa), and risk reduction r 
after a positive screen (Table 1). As model out-
puts, we were interested in the effects of varying 
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Fig 1. Population 
dynamics of unscreened 
and screened individuals 
with monoclonal gam-
mopathy of undetermined 
significance (MGUS) 
as well as those with 
multiple myeloma (MM). 
(A) Possible individual 
transitions from healthy 
to MGUS to MM can be 
modeled as a Markov 
chain. The transitions 
describe incidence and 
screening of MGUS and 
progression to MM. The 
four possible states are 
healthy (blue), undetected 
MGUS (pink), detected 
MGUS (pink with dashed 
outline), and MM (red). 
(B) Example time evolu-
tion of a cohort at risk for 
MGUS and subsequent 
MM without screening. 
Undetected MGUS cases 
accumulate and can lead 
to a baseline number 
of MM cases. (C) Time 
evolution of a cohort with 
screening and interven-
tion that reduces MGUS 
to MM progression. 
MGUS cases accumu-
late; individuals are 
screened and receive 
preventive treatment if 
positive for MGUS, lead-
ing to a lower number of 
MM cases (red indicates 
a few screened individu-
als who may develop MM 
nonetheless).
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screening scenarios on MM-specific mortality 
after MGUS detection and on the fraction of 
individuals with MM of all ages. We initiated all 
simulated populations according to the age dis-
tribution of the population in the United States 
according to the 2013 census,19,20 with a fixed 
fraction of healthy high-risk individuals of 20%. 
Although the fraction of African Americans in the 
United States is approximately 13%,19 we esti-
mated that the genetic diversity in the United 
States would further contribute to high risk.

Stochastic Model

We simulated the Markov chain model (Fig 1A; 
Data Supplement) by using a fixed crude birth 
rate,26 age-dependent death rates for healthy 
individuals and those with MGUS individuals,19 
and a fixed death rate for patients with MM.27 
From the baseline low-risk MGUS incidence 
adapted from Therneau et al,15 we calculated 
elevated incidence rates per life-year for spe-
cific risk groups. In our simulations, high-risk 
African Americans experience MGUS incidence 
that exponentially increases with age such that 
lifetime risk is approximately two-fold higher 
than that at baseline (low risk).16,28 Progression 
to MM was mostly constant across risk groups23 
and occurred at a rate of p = .01 per year in 

MGUS-positive but unscreened individuals.24 
Screening meant that starting at age a0, indi-
viduals were screened each year with probability  
1/Δa, such that their average time between 
screens was Δa. Positively screened individu-
als were assumed to experience progression at 
a reduced rate of r × p. Recent studies have 
estimated r = 0.61 for regular aspirin users.8 
From simulations, individual ages, MGUS status, 
MGUS screening, and MM status were recorded 
(Data Supplement). This approach allowed us to 
calculate MGUS and MM prevalence, distribu-
tion of age at diagnosis of MM, and MM-specific 
mortality. We also devised a model to calculate 
MGUS and MM prevalence and mortality analyt-
ically (Data Supplement). Using this framework, 
we calculated the fractions of individuals with 
MGUS M at a specific age for any risk group, 
the fraction of individuals with MM proportional 
to M, and the MM-specific mortality for a given 
number of years after MGUS detection.

RESULTS

Prevalence of MM When Screening for MGUS

We performed stochastic simulations of our 
agent-based model to investigate the effects of 
different conditions on MGUS and MM preva-
lence and mortality. As expected, the propor-
tions of individuals with MGUS and MM varied 
with the fraction of high-risk persons in the pop-
ulation (Data Supplement). An increasing risk 
reduction after a positive MGUS screen dras-
tically diminished the fraction of patients with 
MM while increasing the fraction of those with 
MGUS (Fig 2A). To validate our results, we com-
pared our findings with those of Birmann et al,8 
where in a cohort of 163,810 men and women, 
82 individuals were associated with the baseline 
progression risk and 44 were associated with the 
lowest progression risk measured, with a value 
of r = 0.61 in long-term aspirin users (95% CI, 
0.41 to 0.95). Birmann et al reported a reduc-
tion linked to aspirin use of 40% in patients with 
MM. On the basis of this study, we estimated a 
reduced risk in progression from MGUS to MM 
of r = 0.61 (point estimate). For this value, our 
predictions of approximately 60% lie in the CI of 
Birmann et al for r.

Changes in onset age of screening a0 and spac-
ing Δa affected MM risk reduction similarly (Fig 
2B; Data Supplement). For example, for a fixed  
r = 0.61, a0 = 45 years and Δa = 8 years reduced 
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Table 1. Important Parameters Used for Computational and Mathematic Modeling

Parameter Description Range or Value Reference

a Age 0-100 years 19

d(a) Probability of dying as 
a result of any cause at 
age a

0-1, age dependent 1,19

dMM Probability of dying as 
a result of MM (Data 
Supplement)

0.1295 per patient with 
MM per year

21,22

m(a) Incidence rate of MGUS 0-1 per person per year, 
age dependent, risk-
group dependent

15, this work

p Probability of progression 
from MGUS to MM

0-0.15 per person per 
year, depending on 
progression model, 
disease evolution

23-25, this 
work

a0 Age at first MGUS screen 20-50 years This work

Δa Interval between screens 1-15 years This work

r Reduction in 
progression, conditional 
on MGUS detection

0-1; for example, if r = 
0.5, then p = 0.5 × 0.01 
= 0.005 per patient with 
MGUS per year

8,9

Abbreviations: MGUS, monoclonal gammopathy of undetermined significance; MM, multiple 
myeloma.
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MM prevalence to 77.2%, whereas a0 = 65 years 
and Δa = 8 years reduced MM prevalence to 
78.6% relative to r = 1, respectively. Even for 
nearly complete risk reduction (r close to 0) and 
rare screening (Δa = 8 years), a0 = 45 years 
reduced cases of MM by 60% and a0 = 65 years 
by approximately 38%. Figures 2C to 2F show 
the impact of Δa and a0 on the age distribution of 
MM diagnoses, varying r. These normalized vio-
lin plots give the probability of finding an individ-
ual of a specific age with MM in our simulations. 
The bottleneck near a0 is more pronounced for 
lower r values. Hence, both the number of cases 
of MM and age at MM diagnosis are sensitive to 

changes in progression risk, screening interval, 
and screening start age.

Lead-Time Bias and Cumulative MM-Specific 
Mortality

Screening can cause lead-time bias; the sur-
vival time after a positive MGUS screening out-
come is typically longer than the survival time 
after direct clinical presentation of MM, with or 
without screening; the difference between these 
two times is the lead-time bias.29,30 Because 
lead-time bias overshadows actual survival ben-
efits of screening in clinical settings where this 
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Fig 2. Number of patients with multiple myeloma (MM), age at MM diagnosis, and variability of screening strategy. (A) When monoclonal gam-
mopathy of undetermined significance (MGUS) screening was applied, we measured the number of patients diagnosed with MGUS (dashed line, 
open circles) and MM (solid line, filled circles) relative to the r = 1 values, with respect to changing the risk reduction factor r (circles, simulations; 
lines, analytic model; Data Supplement), with a0 = 50 years and Δa = 1 year. At r = 0.61, the MM fraction dropped to < 70% of its value at r = 1 
(where screening had no effect on progression). (B) Variability in MM fraction at r = 0.61, with respect to changes in a0 and Δa (analytic approach, 
point estimates; Table S4, Data Supplement). (C, D) Distributions of age at MM diagnosis (Δa = 1 year), with varying a0 and fixed r of (C) 0.61 or (D) 
0.1. Width in these violin plots is equal to probability of MM diagnosis at that age. All point estimates were calculated from a simulation of approxi-
mately 108 individuals.
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time difference may not be directly observed, 
disease-specific mortality is a more appropri-
ate measure.31 We determined the expected 
lead-time bias by a comparison of survival in 
unscreened (control) and screened population 
simulations (Fig 3A). Median survival after MM 
diagnosis in the control group was 4 to 5 years. 
Median survival after MGUS detection (a0 = 50 
years; Δa = 1 year) was 15 years for r = 1.0 (and 
similar for r = 0.61) and 17 years for r = 0.1. 
Thus, the lead-time bias here would be 10 years.

We calculated the cumulative MM-specific mor-
tality after MGUS detection, defined as the prob-
ability that an individual would die as a result of 
MM within a predefined number of years after 
detection of MGUS at a fixed age.32 We distin-
guished death events resulting from MM and 
deaths resulting from other causes. In Figure 3B, 
we display the MM-specific mortality as well as 
competing risk for MGUS detection at ages 50, 
60, and 70 years. In younger groups, the chance 
of dying as a result of MM was comparable to 
the chance of dying as a result of other causes; 
the latter increased with age. MM-specific mor-
tality varied strongly with the risk reduction factor 
r (Fig 3C). As shown, using the analytic model 
in the Data Supplement, MM-specific mortality 
should not be affected by the screening param-
eters a0 and Δa, which only determine age- 
specific prevalences.

MGUS to MM Progression Variability and 
Evolving MGUS

Our framework allows assessment of the impact 
of variation in MGUS progression rates,23 as well 
as the impact of evolving MGUS,25 in which the 
progression rate changes over time. Variability 
in MGUS progression rate p (per individual per 
year) can lead to large variability in mortality 
10 years after MGUS detection if screening has 
no effect (r = 1.0), but this effect is reduced as 
risk reduction takes effect (r < 1; Fig 3C).

Patients with MGUS belong either to a large 
group of individuals who experience progres-
sion at a constant rate or to a small group who 
experience progression at an accelerating rate.25 
Of 359 cases of MGUS reported by Rosiñol  
et al,25 330 (92%) were nonevolving and 29 (8%) 
were evolving (Fig 3E). We approached this 
effect by assuming that for each individual, the 
rate to progress after exactly t years was given 

by the β × (1 − β)t (Fig 3; Data Supplement). We 
inferred that individuals with nonevolving MGUS 
experience progression at β = 0.007, which well 
approximates our constant progression rate of 
p = 0.01. Individuals with evolving MGUS expe-
rience progression with a 10-fold higher value  
(β = 0.07). MM-specific mortality increases con-
siderably with evolving MGUS rate (Fig 3F) and 
decreases with r (Fig 3G). In addition to pop-
ulation-based diversity, global migration could 
affect the value of screening,33 as discussed in 
the Data Supplement using data from Ghana.18 
Realistic levels of immigration of high-risk indi-
viduals are unlikely to affect US MGUS or MM 
statistics (Data Supplement).

Equal Reduction of MM Prevalence Can Serve 
As a Criterion for Optimal Screening Frequency 
Among High- and Low-Risk Populations

We sought to identify best screening distributions 
among different risk groups to minimize MM 
prevalence (Data Supplement). A fraction y of  
available screenings could be applied to high-
risk individuals and the remainder, 1 − y, to low-
risk individuals. There can exist a value of y for 
which MM prevalences are equal. If r = 1, no 
intercept exists, and all screening efforts would 
go to high-risk individuals (Fig 4A). The point 
estimate r = 0.618 also gave y = 1. Lower values 
of r could permit values of y < 1 (Fig 4B), rang-
ing from y = 71% (r = 0.0) to y = 96% (r = 0.3), 
given a0 = 50 years (Fig 4C; Data Supplement); 
y was between 81% and 93% for Δa = 1 and 
between 79% and 95% for Δa = 4 (fixed r = 0.1; 
Fig 4D; Data Supplement).

Groups With Higher Than Two-Fold Lifetime Risk 
Could Bnefit Strongly From Regular Screening

Multiple factors determine increased lifetime 
risk of MGUS, notably family history of MM.34 We 
analyzed the sensitivity of MM prevalence and 
MM-specific mortality to screening frequency 
and risk reduction. Both risk reduction and spac-
ing of screens have more pronounced effects in 
higher-risk groups, but in those groups, steeper 
increase in mortality was observed with decreas-
ing screening frequency (Fig 4E). Importantly, 
the increase in MM-specific deaths saturated 
with increasing progression rate, indicating that 
in high-risk groups, mortality reduction can be 

ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics	 5

http://ascopubs.org/journal/cci


6� ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics 

A
Unscreened MM

Annual MGUS screening, r = 1.0

Annual MGUS screening, r = 0.1

Lead
bias

60

80

100

40

20

0 20 40 60

Time Since Disease Detection (years)

Competing cause, MGUS at 50 years

Competing cause, MGUS at 60 years

Competing cause, MGUS at 70 years

MM specific, MGUS at 50 years

MM specific, MGUS at 60 years

MM specific, MGUS at 70 years

B
0.5

0.4

0.3

0.2

0.1

1 2 3 4

Time Since MGUS Diagnosis (years)
5 6 7 8 9 100

Cu
m

ul
at

iv
e 

M
M

-S
pe

ci
fic

 M
or

ta
lit

y
(p

ro
ba

bi
lit

y)

Su
rv

iv
al

 (%
)

r = 1.0 (control)

r = 0.1

r = 0.5

C

2

0.02

0

0.04

0.06

0.08

0.10

4 6 8 10

Cu
m

ul
at

iv
e 

M
M

-S
pe

ci
fic

 M
or

ta
lit

y
(p

ro
ba

bi
lit

y)

Time Since MGUS Diagnosis (years)

D 80 years60 yearsMGUS detection ages:
10

ye
ar

 M
M

−S
pe

ci
fic

 M
or

ta
lit

y
(p

ro
ba

bi
lit

y)

r = 1.00

Pr
ob

ab
ili

ty

MGUS Progression Rate per Year
0.02

0.02

0 0.04

0.04

0.06

0.06

0.08

0.08

0.10

0.10

0.0

0.1

0.2

0.3

0.4

0.5

r = 0.61 r = 0.10

E

50

0.0

0.2

0.4

0.6

0.8

1.0

10 15 20 25

Cu
m

ul
at

iv
e 

M
GU

S 
Pr

og
re

ss
io

n
(p

ro
ba

bi
lit

y)

Time Since MGUS Detection (years)

Nonevolving,  = 0.007

Evolving,  = 0.071
Evolving MGUS progression(t) = β(1-β)t

F

0 0.02 0.04 0.06 0.08 0.10

0.1

0.2

0.3

0.4

10
-Y

ea
r M

M
-S

pe
ci

fic
 M

or
ta

lit
y 

(p
ro

ba
bi

lit
y)

Evolving MGUS−Parameter 

Age at MGUS detection, 60 years

Age at MGUS detection, 80 years

G

0

0.1

0.2

0.3

0.4

10
-Y

ea
r M

M
-S

pe
ci

fic
 M

or
ta

lit
y 

(p
ro

ba
bi

lit
y)

0.02 0.04 0.06 0.08 0.10

Evolving MGUS−Parameter 

r = 1.00

r = 0.61

r = 0.10

Distribution of MGUS progression rates

Fig 3. Lead-time bias, cumulative multiple myeloma (MM) –specific mortality, and monoclonal gammopathy of undetermined significance 
(MGUS) to MM progression variability. All simulations were performed with populations of 108 healthy individuals (20% high risk). (A) Potential 
lead-time bias, comparing median survival after MM diagnosis without screening (blue: median survival, 4 years) and with screening (gold: median 
survival, 15 years; gray: median survival, 17 years after MGUS screen, respectively). Without screening, disease detection was the event of MM 
diagnosis. With screening, disease detection was diagnosis of asymptomatic MGUS. (B) Cumulative MM-specific mortality in years after MGUS 
detection was measured for the groups of 50, 60, and 70 years of age at MGUS detection (a0 = 50 years, Δa = 1, and r = 1). In older patients, death 
resulting from other cause becomes more dominant. (C) MM-specific mortality changed dramatically with r (a0 = 50 years, Δa = 1), here shown for 
individuals diagnosed with MGUS at age 60 years, sampled from simulations. (D) MM-specific mortality is influenced by variability in MGUS to MM 
progression rate23 (inset, truncated normal distribution\; mean, 0.01; standard deviation, 0.03), for different r, using the analytic model (Δa = 1; 
Data Supplement). (E) Simple evolving MGUS progression rates [β × (1 − β)t], fitted to data from Rosiñol et al25 (filled circles; nonevolving: 10% at 
10 years, 13% at 20 years follow-up; evolving: 55% at 10 years, 80% at 20 years follow-up), for which we show 95% CIs. Nonevolving MGUS con-
firms the low value of β (here 0.007; R2 = 0.996), corresponding to constant progression risk p (Table 1). Evolving MGUS led to a progression rate of 
p = .071 (R2 = 0.975). (F, G) Impacts of age at MGUS detection and progression risk reduction r on MM-specific mortality as a function of evolving 
progression rate calculated as described in Data Supplement: (F) r = 0.61 and (G) age at MGUS detection 60 years.

http://ascopubs.org/journal/cci


ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics	 7

High-risk population

Low-risk population

High-risk population

Low-risk population
50

40

30

20

10

20 40

High-Risk Screens (%)
60 80 1000

BA

Optimum

N
o.

 o
f P

at
ie

nt
s 

W
ith

 M
M

 p
er

 1
00

,0
00

50

40

30

20

10

20 40

High-Risk Screens (%)
60 80 1000

N
o.

 o
f P

at
ie

nt
s 

W
ith

 M
M

 p
er

 1
00

,0
00

0.0

0.1

0.2

0.3

1 2 3 4

100

85

95

90

80

75

70

DC

Ri
sk

 R
ed

uc
tio

n 
Fa

ct
or

 r

Op
tim

al
 P

er
ce

nt
ag

e 
of

 H
ig

h-
Ri

sk
 S

cr
ee

ns

Years Between Screens ∆a

50

55

60

65

Ag
e 

at
 F

irs
t S

cr
ee

n 
a 0

1 2 3 4

Years Between Screens ∆a

E
Two-fold lifetime risk

Three-fold lifetime risk

Four-fold lifetime risk (relative to low risk) F

160

6

5
0.5

0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

4

3

2

1

0 0.02 0.04 0.06 0.08 0.10

140

120

100

80

60

40

20

0

1 2 3 4

r  = 1.00 r  = 0.61 r  = 0.10

1 2 3 4 1 2 3 4

Screening Interval ∆a (a0 = 50 years; years) MGUS Progression (r = 0.61; per year)

Risk Reduction r

N
o.

 o
f P

at
ie

nt
s 

W
ith

 M
M

pe
r 1

00
,0

00

M
M

-S
pe

ci
fic

 D
ea

th
s 

pe
r 1

00
,0

00
10

 Y
ea

rs
 A

fte
r M

GU
S 

De
te

ct
io

n

Fig 4. Equal disease fractions as a criterion for optimal screening distribution. (A, B) Comparing multiple myeloma (MM) fractions in 
the high-risk and low-risk populations (men and women, respectively), with a0 = 50 years and Δa = 1 year, for different r. (A) For r = 0.61, 
equality could not be observed for any percentage of high-risk screens. (B) For r = 0.1, equality was observed at approximately 81% high-risk 
screens. Thus, an optimal fraction of screens was defined as the point where the fractions of patients with MM in both subpopulations were 
the same. (C) Location of the optimal fraction (scale) under variation of r and Δa (Table S5, Data Supplement), with a0 = 50 years. Changing 
r from 0 to 0.3 would lead to up to 20% change in the optimal high-risk fraction of screens. Changing Δa from 1 to 4 would lead to 1% to 3% 
change in the optimal high-risk fraction of screens. (D) For fixed r = 0.1, changes in a0 had more drastic effects than changes in Δa (Table 
S6, Data Supplement). (E) For risk groups with a lifetime risk higher than two-fold, we examined the effect of risk reduction and screening 
interval (a0 = 50 years) on the number of patients with MM (Data Supplement). (F) MM-specific deaths per 100,00 were calculated as the 
product of screened individuals with monoclonal gammopathy of undetermined significance (MGUS) at age 60 years and the 10-year  
follow-up MM-specific mortality (a0 = 50 years and Δa = 1; age at MGUS detection, 60 years). Both risk reduction and spacing of screens 
have more pronounced effects in higher-risk groups.
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achieved in subgroups of intermediate progres-
sion rates (Fig 4F).

DISCUSSION

MM remains incurable for a majority of patients, 
and decreasing mortality is of as much interest 
as decreasing its prevalence.11 All patients seem 
to experience progression to symptomatic MM 
from a premalignant, asymptomatic stage called 
MGUS.35 The fact that there are outstanding 
diagnostic tests for MGUS implies the possibil-
ity of delaying progression of MGUS to MM by 
screening and early identification.36 Because 
precise estimates of MGUS prevalence have 
changed over the past decade,5-7,37 we consid-
ered relative changes in prevalence (using as a 
baseline no effect of screening on progression 
risk reduction). We evaluated a range of possible 
screening strategies based on the consideration 
that diagnosis of MGUS permits progression 
reduction as a result of several possible interven-
tions or modifiable risk factors, including aspirin, 
metformin, or mediation such as exercise or diet 
alterations.8,9,11,12,36

The promise of early intervention in MGUS should 
be viewed with caution. Our current understand-
ing comes from retrospective observational stud-
ies. Our results, however, suggest that research 
to identify effective chemoprevention agents in 
high-risk MGUS can be justified. It will take time 
to develop a more comprehensive understand-
ing of the intricate relationship between early  
intervention utilities and potential adverse effects 
on a wider scale, related to health care costs 
and psychological burden. Patients with MGUS 
may experience psychological distress similar 
to that experienced by those with MM, and the 
identification of cancer precursor states must 
be accompanied by a discussion of the utility 
of follow-up in individual patients.38-42 Promising 
efforts that evaluate MGUS screening and con-
tinuous follow-up before clinical manifestation of 
MM are under way in a long-term, prospective, 
three-armed randomized trial (iStopMM).43 Such 
long-term efforts highlight the utility of predictive 
tools such as the one developed here.

Our approach allowed us to quantify the amount 
of risk reduction needed to result in certain 
reductions in MM-specific mortality and MM 
prevalence (measured as MM fraction). To avoid 
lead-time bias, we evaluated screening scenar-
ios in terms of mortality and MM prevalence. 

Length-time bias, in contrast, is a form of selec-
tion bias that occurs because of heterogeneity in 
the progression speed of a malignancy. This bias 
was absent in our study because we modeled 
uniform progression of the disease (ie, a high-
risk person with early incidence of MGUS expe-
rienced progression to MM equally as fast as a 
low-risk person with late MGUS incidence; the 
time spent in the MGUS state in the no-screening 
scenario was independent of age).16 Therefore, 
these common sources of bias in epidemiologic 
prevention studies did not confound our results.

Using a stochastic simulation framework and an 
analytic model, we measured MGUS and MM 
prevalence and MM-specific mortality in differ-
ent risk groups for different screening strategies 
and varying progression risk reduction after 
MGUS detection. For effective MM prevalence 
reduction, better screening results are expected 
for screening as early as possible and frequent 
follow-up. Improved chemoprevention, effec-
tively reducing progression risk, may also reduce 
MM-specific mortality. We found that this effect 
is more pronounced in individuals with evolving 
MGUS, especially in individuals with higher than 
two-fold lifetime MGUS risk.

We did not explicitly address screening toxicity, 
nor did we model smoldering MM—an inter-
mediate stage between MGUS and MM with a 
much higher rate of progression to full MM of 
approximately 30% per year—in part because 
it remains unclear whether smoldering MM is a 
requisite intermediate between MGUS and MM. 
However, our framework can be adjusted and 
expanded.

Assessments of screening and prevention in solid 
tumors (eg, prostate cancer) have been contro-
versial and lacking in evidence for screening in 
large prospective trials.44 We share the skepti-
cism of potential medicalization of asymptomatic 
conditions. However, the biology of MGUS and 
the robust laboratory tests demand careful eval-
uation of the role of screening and prevention. 
With notable similarities in the epidemiology of 
prostate cancer and MGUS (ie, most low-grade 
lesions will not proceed to lethal disease), major 
differences in technology of screening tests for 
these diseases are critical. Prostate-specific anti-
gen tests for prostate cancer are burdened by 
substantial false-positive (21% to 32% sensitiv-
ity) and false-negative rates (85% to 91% spec-
ificity).45 In contrast, serum testing for MGUS is 
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straightforward. The sensitivity of serum protein 
electrophoresis and free light chain testing for 
MGUS is close to 100%, and the specificity is 
99%.46 These differences underline the evalua-
tion of the role of screening and prevention in 
MGUS and MM. We have shown that the reduc-
tion of cases of MM and MM-specific mortality 
in high- and low-risk subpopulations can be 
achieved, but only for drastic reduction in pro-
gression risk. Until highly effective agents are 
developed, identification and follow-up of high-
risk individuals are important. Screening for 
MGUS may have significant population benefits 

by lowering the incidence of MM, provided effec-
tive and nontoxic interventions can be identified. 
Without further study of chemoprevention strat-
egies, regular screening of MGUS candidates 
should start as early as possible, with biannual 
follow-up, and focus on high-risk individuals, 
especially those with a family history of MM, 
or on groups with strong indication for evolving 
MGUS progression.
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