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Impact of Variability in Portal Venous 
Phase Acquisition Timing in Tumor 
Density Measurement and Treatment 
Response Assessment: Metastatic 
Colorectal Cancer as a Paradigm

INTRODUCTION

In clinical trials and daily routine, anticancer treat-
ment efficacy is appraised by the measurement 
of treatment-induced changes in the imaging  
phenotype of target cancer lesions. Response 
Evaluation Criteria in Solid Tumors version 1.1 
(RECIST 1.1) response criteria are the most 
widely used standards and classify patients as 
responders if a significant decrease in the size of 

up to five target lesions is observed. Treatment- 
induced size changes have proven robust for  
response category classification; lesion sampling,1  
acquisition protocol,2,3 and observer4 induce < 10%  
variability.2-4

Researchers have suggested moving toward alter-
native criteria such as density-based response 
evaluation criteria5-8 in new agents targeting spe-
cific molecular pathways. Due to their differing 
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mechanisms of action, treatment efficacy can be 
misclassified per RECIST 1.1. For instance, anti-
angiogenic treatments interfere with the neovas-
cularization process necessary for the diffusion of 
nutrients within tumors > 2 to 3 mm. An effective 
antiangiogenic treatment may not translate into 
tumor shrinkage but rather a stable disease (ie, 
cytostatic effect) or trigger a pseudoprogression 
(ie, due to intratumor edema or hemorrhage9).  
Tumor density, as reflected by mean tumor attenua-
tion on computed tomography (CT) scans was 
proposed, therefore, as a metric to appraise 
tumor vascularity. Choi criteria first categorized 
treatment response as a 15% treatment-induced  
decrease in tumor density during the portal  
venous phase (PVP).6-8 Then, Choi-derived clini-
cal decision support tools were developed at the 
arterial phase5-7 or designed to predict outcome 
and recurrence,10-13 subsequently outperforming 
RECIST in specific indications.7,14

Colorectal cancer (CRC) is the second lead-
ing cause of cancer death and liver metastasis 
(LM) concerns more than half of patients with 
CRC.15 The assessment of systemic treatment 
regimen efficacy relies heavily on radiographic 
response end points in patients with metastatic 
CRC if there is a curative intention after maximal 
shrinkage of metastases, and if there is pallia-
tive intention.15 We evaluated patients from the 
CRYSTAL (Cetuximab Combined With Irinotecan 
in First-Line Therapy for Metastatic Colorectal  
Cancer) study, which showed that overall survival  
of patients with advanced CRC with RAS wild-
type is improved by cetuximab,16-19 a chimeric 
monoclonal antibody that binds to and inhibits 
the epidermal growth factor receptor pathway 
(implicated in tumor progression, tumor neo-
angiogenesis, invasion, and metastasis).

From a broader perspective, analysis of source 
imaging (digital imaging and communications in 
medicine (DICOM) data from large randomized 
oncological trials such as CRYSTAL offers a rich 
resource for tailoring precision oncology care and 
research. The CRYSTAL study showed that early 
tumor shrinkage at 8 weeks after start of treatment 
was associated with an improvement in long-term 
outcome.20 A better understanding of treatment- 
induced changes in the tumor imaging phenotype 
(eg, tumor density) could further improve the early 
identification of responders to cetuximab.

Strikingly, the reproducibility of tumor density  
measurement remains unknown.14,21,22 The 
complexity and heterogeneity of the imaging 
dataset derived from the CRYSTAL multicenter 
clinical trials provided a unique opportunity to  
fill this knowledge gap using standard of care  
abdominal CT scan.

Using LM-CRC as a paradigm, we hypothesized 
that nonoptimal timing of the PVP contrast-CT 
scan acquisition might significantly alter the  
measurement of LM-CRC density and thus  
interfere with both the care of patients and 
the interpretation of clinical trial results. To test 
this hypothesis, we first proposed a three-point 
quality-control metric for PVP timing (early,  
optimal, and late: score 1, 2, and 3, respectively) 
and then we evaluated if the density of LM-CRCs 
were influenced by the PVP timing.

METHODS

Study Design Overview

Figure 1 outlines the study workflow.

Patient Image Data

Imaging data from 291 patients with LM-CRC  
were collected consecutively from the CRYSTAL  
trial (ClinicalTrials.gov identifier: NCT00154102).  
Patients’ treatment group information (folinic 
acid, fluorouracil, and irinotecan [FOLFIRI] plus 
cetuximab v FOLFIRI) and KRAS mutational sta-
tus (mutant v wild type) were known. All patients 
had pretreatment contrast-enhanced CT scans 
acquired at the PVP and a follow-up CT scan at  
a mean of 8 (standard deviation [SD], ±3.6) weeks.

CT-Scan Acquisition Protocol

Standard-of-care CT-scan acquisitions were per-
formed at the PVP after intravenous injection 
of a iodinated contrast-enhancement product 
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Fig 1. Study overview. 
First, two pairs of 
experienced radiologists 
individually performed 
a visual scoring of each 
scan’s PVP (portal 
venous phase) timing 
based on a three-point 
scoring system. Any 
scan with differing 
scores was reevaluated 
by both radiologists 
and a consensus 
score was reached. 
Using these values, a 
computer-aided scoring 
algorithm of the PVP 
timing (CASAPVP) was 
developed. Potentially 
misclassified PVP timings 
were detected by the 
CASAPVP and referred 
to the radiologists for a 
new consensus reading. 
The results of this new 
consensus reading then 
served as the reference 
standard for grading 
the accuracy of visual 
and computer scoring 
methods, as well as for 
studying the density 
variation of colorectal 
cancer with liver 
metastases due to PVP 
timing.
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(Table 1). The PVP acquisition used fixed delay 
times after contrast injection; timing was neither 
tailored to patient body habitus nor circulatory 
changes. The mean (SD) CT-imaging acquisition 
protocol observed was smooth reconstruction 
convolution Kernel, 4.9 (1.3) mm slice interval, 
5.1 (1.0) mm slice thickness, 0.72 (0.09) mm 
pixel spacing, 788 (409) ms exposure time, 242 
(99) mA, and 122 (6) kVP.

Initial Visual Scoring

We categorized the PVP timing as early, optimal, 
or late (score: 1, 2, or 3, respectively). The defini-
tion was based on the relative contrast enhance-
ment within vessels and tissues23-27 (Fig 2). Early 
PVP was defined by contrast still predominantly 
in the arterial supply as compared with the portal 
vein (score, 1; Fig 2A). Optimal PVP demonstrat-
ed peak enhancement of the liver parenchyma 
and portal vein, as well as some enhancement 
of the hepatic veins (score, 2; Fig 2B). Late PVP 
was associated with a wash out of the hepatic 
contrast enhancement and approached the 
nephrogenic phase with more enhancement of 
the renal medulla (score, 3; Fig 2C).

Initial Visual Consensus

The patient data were randomly divided between 
two pairs (2 × 2) of four trained radiologists. The 
radiologists independently read their CT scans 
and scored the PVP timing. If the two radiolo-
gists’ scores agreed, then the score was final-
ized. If the two radiologists disagreed, then a joint 
consensus reading was performed between both 
radiologists after a time interval to avoid memory 
bias. If the two radiologists from one pair could 
not reach an agreement during the consensus 
reading, then a third radiologist, from the other 
pair, was involved to reach a majority consensus 
for the score.

Computer-Aided Scoring Algorithm of the PVP 
Timing

The design of the computer-aided scoring algo-
rithm of the PVP timing (CASAPVP) is provided 
in the Appendix (online only).

Reference-Standard Consensus

The CASAPVP output was in the form of a prob-
ability map that the PVP timing was optimal (ie, 
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Table 1. CT Scan Characteristics and Content of the  
Digital Imaging and Communications in Medicine 
Headers

Characteristic No. %

Colorectal cancer

Liver metastases 291 100

Field of acquisition

Thorax 102 34

Abdomen 291 100

Pelvis 221 76

CT-scanner manufacturer

Elscint (Haifa, Israel) 11 4

GE Medical Systems (Boston, 
MA)

80 27

Philips (Amsterdam, the  
Netherlands)

32 11

Picker (Highland Heights, OH)  7 2

Siemens (Munich, Germany) 148 51

Toshiba (Tokyo, Japan) 11 4

Unknown 2 0.7

PVP timing, score

Early, 1 52 18

Optimal, 2 194 67

Late, 3 45 15

Contrast-bolus IV injection, mL

100 10 3

120 4 1

130 3 1

150 1 0.3

Unknown 273 94

Contrast product

Ultravist (370 mg iodine/mL; 
Bayer, Whippany, NJ)

8 3

Visipaque (320 mg iodine/mL) 3 1

Omnipaque (300 mg iodine/mL; 
GE Healthcare, Chicago, IL)

8 3

Iomeron (350 mg iodine/mL; 
Bracco Diagnostics, Monroe 
Township, NJ)

2 0.7

Unknown 270 93

Contrast-bolus route

IV 57 20

Oral and IV 12 4

Unknown 222 76

Fatty liver

Yes 27 9

No 264 91

Abbreviations: CT, computed tomography; IV, intravenous; PVP, 
portal venous phase.
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from 0 to 1); we defined optimal PVP timing by 
a probability > 0.5 (Fig 3). For any CASAPVP 
classification that differed from the initial visual 
consensus, a new consensus reading was per-
formed by the radiologists to determine whether 
the computer’s result was incorrect. The refer-
ence-standard PVP-timing consensus for all 
subsequent analyses resulted from (1) a visual 
consensus between a pair or trio of radiologists, 
(2) a computer-aided detection of potentially 
misclassified patients, and (3) a final visual con-
sensus by a pair or trio of radiologists for poten-
tially misclassified patients (Fig 1).

Accuracy of Scoring

The accuracy of the visual scoring and of CASA-
PVP was defined as the percentage of patients 
correctly classified using the reference-standard 
consensus as a gold standard. The CASAPVP 
was validated using the follow-up CT scans of 
the 291 patients included in our series.

Reproducibility of Scoring

The reproducibility of the three-score system 
was analyzed by κ statistic through the measure-

ment of the degree of agreement between two 
observers.

LM-CRC Density Analysis

We studied the distribution of LM-CRC density  
at early, optimal, and late PVP. To this end, each 
patient at baseline had up to five LM-CRCs se-
lected as target lesions per RECIST 1.1 and con-
toured for analysis. The mean Hounsfield unit 
(HU) LM-CRCs density reported here were cal-
culated from the mean values of all delineated 
target-lesion volumes per patient.

Statistical Methods

The degree of agreement was analyzed with the 
Cohen κ coefficient. Descriptive statistics used 
conventional metrics: mean, SD, and 95% CIs. 
The 95% CI of binary variables was calculated 
assuming a binomial distribution. The correla-
tion between density of regions of interest (ROIs) 
in different tissues in the same patient was per-
formed using Spearman rank correlations. Uni-
variate and multivariate linear regression analyses  
evaluated the association between LM-CRC 
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Fig 2. PVP (portal 
venous phase) timing 
and region of interest 
(ROI) selection. Relative 
contrast enhancement of 
soft tissues at (A) early, 
(B) optimal, and (C) late 
PVP timing. (A–C) ROIs 
were delineated in normal 
tissues (ie, aorta, portal 
vein, inferior vena cava, 
liver, spleen, and kidney), 
as illustrated in the circles 
(excluding psoas). (D, E) 
All patients had computed 
tomography acquisition 
intended at PVP, although 
we sometimes observed 
significant differences in the 
acquisition timing between 
(D) baseline (early) and (E) 
follow-up (optimal), even 
within the same patient, 
as demonstrated by the 
computed tomography 
scans in this figure.
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density and contrast enhancement of normal 
tissues. Analysis of variance (ANOVA) analyses 
were used to compare the distribution of the 
ROIs density between different groups (PVP tim-
ing, KRAS mutational status, treatment arms). 
Student t test determined if early and late PVP 
timings were significantly different from optimal 
PVP timing. Statistical analyses were performed 
using Matlab 2016a (MathWorks, Natick, MA) 
and SPSS version 23.0 (IBM, Armonk, NY).

RESULTS

DICOM Header

Contrast-product administration data (Table 1) 
were mostly not recorded in the DICOM headers 
for the contrast-bolus injection volume (94%), 
the type of contrast product (93%), and the 
contrast-bolus route (76%).

Accuracy and Reproducibility of Visual Scoring

The Cohen κ coefficient analysis (P < .001) 
showed significant interobserver agreement  
between radiologists from pair 1 (κ = 0.50) 

and pair 2 (κ = 0.66), as well as the agreement  
between each of the four radiologists and the 
reference-standard consensus (κ = 0.66, 0.75, 
0.76, and 0.77).

The mean (95% CI) accuracy of the four radiolo-
gists’ initial visual scoring of PVP timing (optimal 
v nonoptimal) was 81.7% (78.3 to 85.2). The 
respective accuracy of each radiologist was as 
follows: 72.6% (64 to 80), 82.6% (76 to 89), 
82.6% (76 to 89), and 88.9% (82 to 94). There  
was a 78% agreement between the trained  
radiologists. The 22% disagreement can be 
broken down as follows: (1) optimal versus late: 
73.2%; (2) early versus optimal: 28.3%; and 
(3) early versus late: 1.6%. Visual score agree-
ment tended to increase with practice across the 
series (reading batches 1, 2, 3, and 4: 69.4%, 
68.0%, 82.6%, and 91.7%, respectively).

Accuracy of Computer-Aided Scoring

The CASAPVP achieved an accuracy of 88.6% 
(95% CI, 84.8 to 92.4) compared with the 
reference-standard consensus and disagreed 
with the initial visual consensus in 63 patients 
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scoring output. Output in 
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(21.6%). Reevaluation of these patients led to no  
category change for 33 patients (11.3%), re-
classification for 30 patients (10.3%), and the 
subsequent reference-standard consensus. We  
further validated the accuracy of CASAPVP in 
the same patient dataset at the 8-week follow- 
up: 87.9% (95% CI, 83.7 to 91.5).

Reference-Standard Consensus

The distribution of PVP timing (early, optimal, or 
late) in the 291 patients’ baseline scans was 52, 
194, and 45, respectively. Overall, PVP timing 
was optimal in only 66.7% of CT scans.

Lesion-Density Analysis

Overall LM-CRC density distribution. The overall 
mean (±SD) LM-CRC density was 68 (±15) HU 
at baseline.

LM-CRC density distribution at different PVP  
timings. We found variability in the mean baseline  
LM-CRC densities at early, optimal, and late PVP 
timing (59.5 ± 14.9 HU, 71.4 ± 14.1 HU, and 
62.4 ± 12.5 HU, respectively; Fig 4A). The over-
all decrease in tumor density attributable to non-
optimal PVP timing was 14.8%; early PVP and 
late PVP decreased tumor density significantly by 
16.7% (t test P < .001) and 12.6% (P < .001), 
respectively. We performed a center-based anal-
ysis by pooling data using the same CT-scan  
manufacturers (Table 1). We validated our observa-
tions (Appendix Fig A1, online only) and showed 
that the tumor density was not associated with 
the manufacturer (ANOVA P = .17).

Relationship between LM-CRC density and 
vasculature enhancement. A linear regression 
showed that the mean LM-CRC density is a func-
tion of portal vein mean density (coefficient of 
determination R2 = 0.23; P < .001): LM-CRC-
density at baseline (HU) = 0.2 × PVdensity at 
baseline (HU) + 35. In this formula, LM-CRC 
density is increased by 10 HU when portal vein 
density is increased by 50 HU (Fig 4B). LM-CRC  
density was not a function of aorta mean den-
sity (R2 = 0.007; P = .17). The LM-CRC density 
prediction model was not considerably improved 
by combining the portal vein, aorta, and inferior 
vena cava (R2 = 0.25; P < .001).

Prediction of normal tissue density. The distri-
bution of the density of ROIs was significantly 
different between early versus optimal versus 
late PVP timing in all tissue types, including LM-
CRC (ANOVA analysis P < .001). The Appendix 
Figure A2 (online only) shows, at baseline, the 
peak contrast enhancement of the vasculature, 
normal tissues, and cancer tissues (LM-CRC) at 
optimal PVP timing.

The measurement of the mean density in the 
portal vein allowed a good prediction of the 
mean density (a surrogate of contrast en-
hancement) of normal homogeneous tissue  
such as the liver (R2 = 0.48), spleen (R2 = 0.75),  
and kidney (R2 = 0.61) according to univar-
iate linear regression analysis. The portal 
vein density was, indeed, strongly correlated 
(P < .001 in all cases) with the spleen, kidney, 
and liver density (ρ = 0.87, 0.81, and 0.69, 
respectively).
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Treatment-Induced Changes

We evaluated if variability in PVP timing alters 
the measurement of treatment-induced changes 
in tumor density at 8 weeks (Fig 5). The mean 
treatment-induced change in tumor density was 
−0.9 HU (±10.9).

First, we categorized the evolution of PVP tim-
ing from baseline to follow-up as (1) identical, 
(2) change from optimal to nonoptimal, or (3)  
change from nonoptimal to optimal. We observed  
that the changes in tumor density were signifi-
cantly different among the three categories 
(ANOVA P = .001).

A multivariate linear regression analysis showed 
that the change in tumor density was associated  
with change in contrast enhancement of the por-
tal vein (P < .001) and aorta (P < .001) rather 
than by treatment (P = .75) or mutational status 
(P = .40). Additionally, there were no significant 
differences between treatment groups (FOLFIRI 
± cetuximab) and between KRAS mutational 
status (ANOVA P > .78).

DISCUSSION

New anticancer agents differ from cytotoxic ther-
apy in terms of pattern of progression28-30 and 
response.31-33 Single-center trials have demon-
strated that tumor density reduction is a met-
ric of response predicting overall survival and 
progression-free survival. However, a clinically 
relevant biomarker must be reproducibly mea-
surable. Our study showed a 14.8% variability in 
tumor density measurement induced by varia-
tion in PVP-acquisition timing.

A tumor’s density is a reflection of its biology and a 
surrogate of tumor vascularity; such a biomarker  
has the potential for wide-ranging application 
across cancer therapies. However, our data 
showed that nonoptimal PVP timing confounded  
the accurate assessment of the observed LM-CRC  
density through mean decrease of 14.8%. An  
early acquisition (leaning toward the arterial 
phase) decreased observed tumor density by 
11.9 HU (16.7%), whereas a late acquisition 
(leaning toward the nephrogenic phase) de-
creased tumor density by 9 HU (12.6%). This 
is significant because it will potentially mask or 
mimic treatment effect by increasing or decreas-
ing tumor density, respectively. Therefore, caution 
should be exercised in interpreting the signif-
icance of < 9-HU variation in LM-CRC density 
across the treatment sequence.

Contrast timing is crucial for liver or abdominal 
CT imaging. Although our results are directly 
applicable only to the measurement of LM-CRC, 
they are also likely to be observed in other or-
gans and primary tumor types. In a single-center 
institution, when bolus tracking and state-of-the-
art technologies are used for tightly controlled 
contrast acquisition, we expect our software  
to detect only proper optimal PVP timing. For 
instance, Choi criteria5-7 defined treatment  
response as a 15% decrease in tumor density 
based on observations from a single institution 
(n = 40 patients with 172 metastatic gastrointes-
tinal stromal tumor lesions with mean density of 
73 HU at the PVP).

In comparison, our multicenter, precision med-
icine clinical trial series (n = 291 patients with 

ascopubs.org/journal/cci JCO™ Clinical Cancer Informatics	 7

N
o.

 o
f P

at
ie

nt
s

-40
0

10

20

30

40

-40

-20

0

20

40

-20 0 20 40

A

Ch
an

ge
 in

 L
M

-C
RC

 D
en

si
ty

 (H
U)

Optimal BL 
Nonoptimal FU

Nonoptimal BL 
Optimal FU

BL = FU

B

Change in LM-CRC Density (HU)

Fig 5. Validation of 
our observations by the 
comparison of baseline 
(BL) and follow-up (FU) 
computed tomography 
scans. (A) The mean 
treatment-induced change 
in tumor density at 8 weeks 
was −0.9 HU. (B) The 
mean change in tumor 
density when the PVP 
timing was worsened, 
the same, or better than 
baseline is shown from 
the left to the right. The 
mean density change was, 
respectively, −8.4 HU, 
−2.1 HU, and +3.3 HU. 
These data confirm our 
conclusion that change in 
PVP timing will lead to a 
mimicking or masking of 
treatment-induced change 
in tumor vascularity. HU, 
Hounsfield unit; LM-CRC, 
colorectal cancer with liver 
metastases; PVP, portal 
venous phase.

http://ascopubs.org/journal/cci


LM-CRC with mean tumor density of 68 HU at 
the PVP) found a 14.8% decrease in tumor den-
sity attributed solely to PVP timing. We subse-
quently showed the critical need to standardize 
image-acquisition protocols when tumor density 
is being used as a clinical decision support tool. 
Using both baseline and follow-up standard-of-
care CT scans, we observed that optimal PVP 
timing was achieved in 66.7% of CT scans at 
baseline, and 43% of patients at two consecutive 
time points (ie, baseline and follow-up). Finally, 
we showed that DICOM headers do not give any 
information about the contrast-enhancement 
protocol in the vast majority of cases. In that 
context, our CASAPVP appears a relevant option 
to effectively analyze the quality of thousands of 
CT scans.

The relevant, historical, contrast-enhancement 
quality metric is a 60-second delay between 
contrast-agent product injection and image  
acquisitions. This was designed to ensure a  
satisfactory contrast enhancement at the PVP23 
in normal livers34 because it was shown to be the 
most critical factor for LM detection.35 However, 
individuals’ peak hepatic enhancement timing 
cannot be assumed a priori, because it is asso-
ciated with multiple variables such as increased 
volume of contrast material (higher peak) or 
rate of injection (delayed peak with slower in-
jection), as well as the contrast-enhancement 
product itself.36 Pharmacokinetic distribution of 
the iodinated contrast agent is expected to be 
even more heterogeneous in patients with met-
astatic CRC, because their anthropomorphic 
characteristics and hemodynamic status might 
significantly change throughout the course of 
disease.

Several solutions exist to ensure optimal PVP 
timing. First, we should standardize image- 
acquisition protocols according to Quantitative 
Imaging Biomarkers Alliance guidelines.37 Sec-
ond, the change in tumor density used to classify 
patients as responders (ie, a fixed 15% threshold) 
should take into account the eventual changes in 
PVP timing. Third, Choi and morphology, attenu-
ation, size, and structure (MASS) criteria should 
be used with caution when the phase of contrast 
acquisition is nonoptimal. Finally, we proposed  
a computer-aided quality-assurance program.

We developed a CASAPVP that outperformed 
radiologists’ visual assessments of the quality  

of the PVP timing. As shown in Fig 3, this 
CASAPVP creates a probability map that can 
be immediately used in patient care and clin-
ical trials to improve therapeutic response 
assessment and the extraction of quantitative 
imaging biomarkers. The CASAPVP offers sev-
eral advantages for monitoring anticancer ther-
apeutic response: (1) it is quick to implement  
and only requires measurement of aorta and 
portal vein density; (2) its accuracy and repro-
ducibility outperform radiologists’ visual assess-
ments; (3) its probability map is objective, easy 
to use, and provides the opportunity for great 
flexibility in future patient care and clinical tri-
als; (4) it does not depend on liver attenuation 
that might be abnormally lowered by fatty liver  
infiltration (9% of our series demonstrated fatty  
liver). Specifically, certain studies or patient 
populations may require tighter control of opti-
mal PVP timing, for instance, in which case a 
tighter cutoff of 0.7 (ie, 70% probability) may 
be more appropriate. Conversely, fewer scans 
will be excluded as outliers if a loose cutoff of 
0.3 were chosen.

In the field of radiomics, our CASAPVP could 
be implemented in a capacity that allows for 
correction or normalization of the inherent 
timing-induced density variability, allowing for 
the extraction of more robust imaging metrics 
on CT scan.38-41 This would further improve the 
development of radiomic signatures associat-
ed with the identification of patients with CRC 
who have reduced survival,24 advanced stage,25 
and the presence of lymph node metastasis.26 
Additionally, it could aid in making more pre-
cise assessments of whole-tumor vascularity,  
a hallmark of cancer involved in treatment  
response,42,43 tumor invasion, metastasis, drug 
delivery, immune response, and prognosis.44 
This is particularly important given that tumor 
vascularity cannot be quantified by a sole histo-
logic marker.44

In conclusion, we have demonstrated that differ-
ential timing of PVP acquisition causes significant 
variability in observed tumor density. We defined 
a machine-learning–derived PVP-timing scoring 
system that outperformed radiologists’ visual 
assessments in terms of accuracy, reproducibility,  
and speed. Because optimal PVP-timing image- 
acquisition consistency can never be perfectly 
controlled by the traditional 60-second timing, 
because of to individual patients’ heterogeneity,  
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this work may constitute a basis for recon-
sidering what qualifies as tumor response. In 
addition, our quality-assurance model could 
improve both the extraction of tumor quantita-
tive imaging biomarkers and the monitoring of 

therapeutic response at the patient and clini-
cal trial levels.
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Computer-Aided Scoring Algorithm of the Portal Venous Phase

Based on the initial visual consensus, we developed a single time-point computer-aided scoring algorithm of the PVP timing 
(CASAPVP) that uses the comparison of Hounsfield unit (HU) densities among six regions of interest (ROIs) in normal 
tissues and vascular structures (initially seven ROIs, see below for exclusion of psoas muscle; Fig 2). Regions were chosen 
at the beginning of the study on the basis of what the radiologists predicted as the most robustly indicative of the three 
contrast scores (ie, reliably discernible enhancement between scores, nonredundant enhancement compared with other 
ROIs, easy to delineate without interfering anatomy). The ROIs were drawn inside the lumen of the aorta at the level of the 
celiac trunk, the portal trunk wherever the cross-section of lumen was greatest, the inferior vena cava below the hepatic 
vein, the liver, the spleen, the renal cortex, and the psoas muscle at the level of L3. Parenchyma-based ROIs were drawn 
with attention to include only nondiseased tissue and to exclude any vasculature.
One radiologist defined the ROIs for each patient, because the concordance correlation coefficient (CCC) of the measure-
ments of mean density within ROIs delineated individually by two radiologists in a subset of 36 patients was > 0.96 for aorta, 
spleen, kidney, portal vein, inferior vena cava, and normal liver parenchyma. Ilio-psoas ROIs (CCC = 0.77) were excluded 
from further analysis because CCC < 0.9. Using these ROIs, all 291 baseline computed tomography scans were used to train 
the CASAPVP to stratified computed tomography scans into two groups: nonoptimal PVP (scores 1 and 3) versus optimal 
PVP (score 2) on the basis of the initial visual consensus scores. Each scan was represented through a six-dimensional 
digital vector based on the six ROIs’ mean densities. By using the feature forward selection approach45 and support vector 
machine algorithm,46 the optimal ROI’s mean densities were selected and combined to construct the final score prediction 
model. The performance of the prediction model was evaluated by using the area under the curve of receiver operating 
characteristic curves. Internal validation was done by using five-fold cross-validation45 with further validation by applying 
the prediction model to the 8-week follow-up data.
We found the aorta to be the most accurate sole predictor of optimal PVP timing, at 75.9% (expressing the computer  
accuracy as percentage agreement between the software and the reference-standard consensus). Then, using an ROI  
forward search (sequentially adding the ROIs that most improve predictive performance), accuracy was improved to 88.6% 
when the portal vein was added, 89.0% with the inferior vena cava, 89.4% with the spleen, 89.4% with the liver, and 
85.9% with the kidney. The model was optimal after two ROIs (aorta plus portal vein) with only marginal improvement from 
the incorporation of further ROIs. Consequently, our CASAPVP was based on these two ROIs.

APPENDIX
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