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Applied Informatics Decision Support Tool 
for Mortality Predictions in Patients With 
Cancer

INTRODUCTION

With the growing nuances of cancer manage-
ment, the calculus of data integration and clin-
ical intuition over time complicates physicians’ 
decision-making capacities. Considering each new 
treatment line, especially within the context of 
noncurative-intent treatments, clinicians must 
account for potentially incremental benefits of a 
treatment against comprehensive mortality risk,  
given such factors as performance status,  
previous treatments, aggregate toxicities, and 
patients’ evolving goals of care across their 
disease trajectory. Factually, physicians over-
estimate prognosis in cancer,1,2 and patient 
preferences are sensitive to these estimates.3-5 
Organizations, including the National Quality 
Forum and ASCO, have identified chemotherapy 

administration to patients with no clinical benefit 
as the most pervasive and superfluous practice 
in oncology.6,7 Indeed, unqualified treatment  
of progressive disease increases symptom bur-
den, aggregate adverse events, and costly inter-
ventions that have little morbidity or mortality 
benefit.8-11

Mortality prediction is a keystone of clinical deci-
sion making. Table 1 lists key studies on mor-
tality prediction in cancer.12,13 These studies fall 
under two broad categories. Studies A1-A11 
predicted mortality using detailed patient infor-
mation in relatively small patient cohorts. Stud-
ies B1-B3 used the large-scale SEER registry 
database with clinical characteristics at the time 
of diagnoses and treatments. Reported areas 
under the curve (AUC) range from 0.71 to 0.87. 
In recent years, some prediction models have 
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been made accessible as online tools, which has 
allowed the results from prognostic research to 
be readily available for use at the point of care. 
Although such tools offer potential convenience 
to users, the underlying data and models limit 
the potential for higher prediction quality while 
maintaining interpretability. Most tools are based 
on cancer registry cohorts and are limited to a 
small number of characteristics at the time of 
diagnosis, overlooking critical information from 
clinical trajectories with implications for patients’ 
prognoses. Even with more detailed data sets, 
a tool interface requires learning accurate mod-
els with few variable inputs. Black-box models, 
such as artificial neural networks (B1) or gradi-
ent boosted trees that rely on large numbers of 
predictors, would not be suitable for such inter-
active tools. Furthermore, those methods offer 
little explanation to physicians regarding why 
such predictions were made. These practical 
points highlight critical concerns that explain the 
limited use of available prognostic tools in daily 
clinical workflows.

In our study, we used patient electronic health 
record (EHR) data from a tertiary cancer cen-
ter and a novel team-constructed algorithm to 
develop a predictive tool that estimates the prob-
ability of mortality for an individual patient being 
proposed their next treatment. The tool’s practi-
cal value lies in being:

1. Personalized: The tool uses EHR inputs for 
patients, their cancer, and the proposed 
treatment to output a mortality risk adjusted 
for these characteristics.

2. Clinically cogent: Physicians easily under-
stand the reasoning behind the algorithm’s 
outputs through interpretable decision 
trees that illustrate key variable predictors.

3. Evidence and data driven: The tool is 
informed by over 23,000 patient records 
with ≥ 400 predictors drawn from demo-
graphics, comorbidities, treatments, labor a-
tory values, and genomic results, and so 
on.

4. Actionable: Clinicians can compare between 
proposed treatments for a patient with 
respect to mortality risk estimates to make 
informed recommendations and decisions.

5. Validated and accurate: The accuracy 
and AUC in unseen patient data show 

encouraging results compared with 
competing approaches.

6. On the basis of novel machine learning: 
The methodology leverages two optimization 
algorithms developed by our team: (1) 
predictive classification trees,29 and (b) 
predictive statistical methods for missing 
data imputation.30

The following sections detail our approach to 
developing the predictive model and tool.

METHODS

Patients

We retrospectively obtained patient data from 
the EHR and linked Social Security Administra-
tion mortality data for patients at the Dana- 
Farber/Brigham and Women’s Cancer Center  
from 2004 through 2014. Study eligibility 
required that patients be at least 18 years old 
at cancer diagnosis and have received at least 
one anticancer treatment over the course of 
their care. The primary outcomes were mortality 
rates at 60, 90 and 180 days after initiation of 
an anticancer regimen, including chemother-
apy, immunotherapy, and targeted therapy. If 
the patient’s date of death was missing and the 
last known date alive was before the cutoff, that 
patient’s record was censored for predicting that 
outcome. Each observation corresponded to a 
patient initiating an anticancer regimen, which 
was systematically recorded in the EHR.

Data

We considered 401 predictive features, includ-
ing demographics, diagnoses, treatments, vital 
signs, laboratory results, and so on (Data Sup-
plement). Missing values were imputed using 
the optimal-impute algorithm,30 which frames 
the imputation task as a family of optimization 
problems and solves directly. We chose this algo-
rithm because the data had many key predictors 
that had a large number of observations missing, 
a scenario in which traditional methods, such as 
complete-case analysis and mean imputation, 
often give poor predictions in the end, whereas 
this algorithm had demonstrated significant 
improvement in downstream prediction tasks 
compared with classic methods. The quality of 
imputation was evaluated in a sensitivity analysis 
against alternative methods. We used treatment 
lines initiated from 2004 to 2011 as the training 
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Table 1. Summary of Mortality Prediction Studies in Patients With Advanced Cancer

Study Model Population

Training 
Sample Size, 

No.
Covariable 
Size, No. Data Model AUC First Author

A1 Palliative Prognostic 
Score, exponential 
multiple regression

Terminal cancer 519 36, selected 6 Demographics, 
cancer status 
and treatment, 
symptoms, 
laboratory values

Not reported Pirovano14

A2 Palliative Performance 
Index, multiple 
regression

Terminal cancer 150 25, selected 5 Demographics, 
cancer status, 
symptoms

Not reported Morita15

A3 Memorial Sloan 
Kettering Cancer Center 
nomograms, accelerated 
failure time model

Metastatic 
prostate cancer 
after castration

409 7 total Demographics, 
symptoms, 
laboratory values

Not reported Smaletz16

A4 Cancer Prognostic Score, 
Cox regression model

Terminal cancer 356 26, selected 8 Demographics, 
cancer status 
and treatment, 
symptoms

Not reported Chuang17

A5 Intrahospital Cancer 
Mortality Risk Model, 
multivariable logistic 
regression

Hospitalized 
patients with 
cancer

334 14, selected 5 Demographics, 
cancer status 
and treatment, 
symptoms, 
laboratory values

0.82 
(intrahospital 
mortality)

Bozcuk18

A6 Glasgow Prognostic 
Score, Cox regression 
model

Inoperable non–
small-cell lung 
cancer

161 10 total Demographics, 
cancer status 
and treatment, 
symptoms, 
laboratory values

Not reported Forrest19

A7 Objective Prognostic 
Score, Cox regression 
model

Terminal cancer 209 17, selected 7 Demographics, 
cancer status 
and treatment, 
symptoms, 
laboratory values

Not reported Suh20

A8 Artificial neural networks Non–small-cell 
lung cancer

440 Thousands 
of variables, 
selected 5

Demographics, 
cancer status and 
treatment, gene 
expression

Not reported Chen21

A9 Support vector machine 
ensemble

All cancers 869 18 total Demographics, 
cancer status 
(including receptor 
status for patients 
with breast cancer)

0.76 (2-year 
survival), 0.80 
(1-year survival), 
0.87 (6-month 
survival)

Gupta22

A10 Bayesian network Breast cancer 78 7 clinical, 232 
genes

Demographics, 
cancer status, gene 
expression

0.85 (predicting 
good prognosis)

Gevaert23

A11 Imminent Mortality 
Predictor in Advanced 
Cancer study, Cox 
regression model

Hospital-
admitted 
patients with 
cancer with 
advanced solid 
tumors

468 13 PCA-
derived 
weights and 
22 static 
variables; 
selected 1 
PCA-derived 
weight and 
5 static 
variables

Rothman Index24 
time-series 
trajectory, and 
clinicopathologic 
variables

0.736 (30-day 
mort.), 0.722 
(60-day mort.), 
0.710 (90-day 
mort.), 0.717 
(180-day mort.)

Adelson25

(Continued on following page)
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set and assessed each model’s predictive per-
formance using those initiated from 2012 to  
2014 as the validation set. The institutional review 
boards of Dana-Farber Cancer Institute/Partners 
Healthcare and the Massachusetts Institute of 
Technology approved this study.

Model and Tool Development

The mortality predictions are based on a novel 
decision tree algorithm, optimal classification 
trees.29 We selected decision trees for their advan-
tage in interpretability, where the predictions are 
based on a few decision splits on variables of 
high importance. Such tree structures can read-
ily model nonlinearities and interactions between 
variables. However, classic decision tree methods 
typically cannot achieve the same level of accu-
racy as their less interpretable counterparts, such 
as artificial neural networks and gradient boosted 
trees. To mitigate the trade-off between interpret-
ability and prediction accuracy, we made use 
of the optimal classification trees algorithm that 
trains a single decision tree with state-of-the-art 
performance, achieving high accuracy without the 
need to sacrifice interpretability.

During the training process, we tuned the para-
meters to maximize performance on a separate 
holdout set to avoid overfitting. After training the  
model, for interpretation and verification, we gen-
erated the following: (1) a decision tree visualiza-
tion, whereby experts could trace the algorithm’s 
logic and predict mortality risks to corroborate 
clinical relevance; and (2) feature importance 
scores, which provided an estimate of the rela-
tive importance of key variables in the mortality 
predictions.

We next built the interactive tool for physicians 
on the basis of the trained decision trees. The 
tool is made available as a Web-based applica-
tion (www.oncomortality.com) in the format of a 
patient characteristics questionnaire. The clini-
cian user has the option to select 60-, 90-, or 
180-day mortality predictions and cancer types 
(all cancers, breast, lung, ovarian, and so on.).

The user is then prompted to answer a short 
series of adaptive questions corresponding to the 
decision splits in the trained decision tree, until 
the tool ultimately generates a predicted mortal-
ity risk specific to the patient at hand. Examples 
are provided in Results.

Performance Comparisons

We evaluated the performance of optimal classi-
fication trees in unseen patient data for the qual-
ity of mortality predictions. To demonstrate our 
improvement in prognostic quality, we sought  
to ideally compare our model against established 
prognostic studies on the same patient pop-
ulations. For such comparisons, the outcome 
variables (short-term mortality) needed to be 
aligned, and the predictor variables from prior 
studies needed to be available. Unfortunately, 
among the identified studies, no such compar-
ison could be conducted. As proxies, a variety 
of other machine learning models were trained 
and validated on the same set of data for com-
parisons (comparative models detailed in the 
Data Supplement). We report the prediction 
accuracy (number of correctly classified positive 
and negative samples over total samples) on the 
basis of a default 50% threshold and the positive 
predictive value (PPV), a clinically relevant mea-
sure, at a fixed sensitivity level of 0.6. For further 
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Table 1. Summary of Mortality Prediction Studies in Patients With Advanced Cancer (Continued)

Study Model Population

Training 
Sample Size, 

No.
Covariable 
Size, No. Data Model AUC First Author

B1 Artificial neural networks Breast and 
colorectal 
cancers

5,169 
(breast), 5,007 
(colorectal)

21 (breast), 
32 
(colorectal)

Demographics, 
cancer status 
and treatment, 
symptoms

0.78/0.87 (5-
year survival: 
breast/colorectal)

Burke26

B2 Graph-based 
semisupervised learning 
and others

Breast cancer 40,000 16 total Demographics, 
cancer status and 
treatment

0.81 (5-year 
survival)

Kim27

B3 Decision trees and 
others

Breast cancer 202,932 16 total Demographics, 
cancer status and 
treatment

Not reported Delen28

Abbreviations: AUC, area under the curve; mort., mortality; PCA, principal component analysis.
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assessment of the model at varying thresholds, 
we report the AUC for each model in addition 
to plotting the receiver operating characteristic 
curves and the PPV against sensitivity for various 
thresholds. The analyses were repeated for each 
of the three time horizons (60-, 90-, and 180-day 
mortality) and subgrouped by cancer type.

RESULTS

Patient and Treatment Characteristics

A total of 23,983 patients were selected in the 
cohort, spanning a spectrum of breast (26.7%), 
lung (14.9%), ovarian (7.7%), colorectal (5.9%), 
and other solid tumors and hematologic malig-
nancies. Among those, 14,427 (60.2%) were in 
the training set and 9,556 (39.8%) were in the 
validation set. These patients initiated 46,646 
total treatment lines; 2,619 (5.6%) of new treat-
ment line starts were followed by the patient’s 
death within 60 days, and 44,027 (94.4%) were 
not. Baseline characteristics of groups are pre-
sented in the Data Supplement. Overall, new 
treatment lines that led to mortality were associ-
ated with more malignant cancers (eg, lung and 
pancreatic cancer) and heavier prior resource 
utilization. Patients in this group on average also 
had higher disease burden and staging, as well 
as a higher number of prescribed medications, 
inpatient/outpatient visits, and blood infusions. 
The treatment lines that led to mortality were 
also associated with more comorbid conditions, 
such as congestive heart failure, stroke, diabe-
tes. Finally, the laboratory test results for those 
lines that led to mortality were often significantly 

worse than the ones that did not lead to mortality 
(lower weight and albumin, higher tumor mark-
ers, suppressed blood counts, and so on.). The 
median survival was 514 days for all patients.

Interpretable Tool on the Basis of Machine 
Learning

We trained the optimal classification trees to 
predict the 60-, 90-, and 180-day mortality. The 
model produced predictions with accuracies of 
94.9%, 93.3%, and 86.1% at a 50% threshold, 
and AUCs of 0.86, 0.84, and 0.83, respectively. 
We further trained the model to predict the mor-
tality for each subgroup of cancer sites, achiev-
ing similarly high estimation qualities, with AUCs 
ranging from 0.77 to 0.90 (Data Supplement).

On the basis of the prediction algorithm, we 
developed the tool, which is available online 
(screenshot depicted in Fig 1). Once the clini-
cian enters the desired time horizon and cancer 
type, his or her answers to adaptive questions 
concludes with the tool output of a risk estima-
tion. In this example, in response to the 60-day 
mortality risk for a patient with lung cancer, the 
tool adaptively prompts the clinician to input the 
percentage change in weight and the albumin 
levels. With these two input values, the tool pres-
ents a final risk for 60-day mortality of 46.79%.

Model Interpretation

Each model trained with optimal classification 
trees presents a highly interpretable decision 
tree on which the tool is based. A tree stratifies 
patients into risk groups on the basis of values 
of a sequence of key variables, the selection of 
which is learned automatically by the model. As 
an example, Figure 2 presents the tree that pre-
dicts the 60-day mortality for patients with breast 
cancer. The total number of metastatic solid 
tumors is the first splitting variable, patients with 
few metastatic solid tumors (left of the tree), are 
placed into the lower-risk branch (0.4%) com-
pared with the higher-risk one (5.84%). Within 
each branch, patients are further stratified on 
the basis of other variables. For example, in the 
lower-risk branch, if the pulse is above 86 beats 
per minute, the patient has a mortality risk of 
1.31%; if the pulse is below 86 beats per minute, 
depending on the age (younger or older than 60 
years), the risk is 0% and 0.88%, respectively. 
In the higher-risk branch, many of the decisions 
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Fig 1. Screenshot 
of the cancer mortality 
prediction question-
naire. The clinician 
enters responses to a few 
questions regarding the 
patient’s medical history, 
many of which can be 
automatically populated 
via electronic health 
record integration, and 
the tool will immediately 
generate predictions. 
Available online at www.
oncomortality.com.

http://ascopubs.org/journal/cci
http://www.oncomortality.com
http://www.oncomortality.com


are based on change in weight, albumin, and 
other laboratory test results.

This model also produces feature importance 
rankings in mortality prediction (Fig 3). In tree-
based models, the feature importance score 
measures the relative contribution of a particu-
lar feature in the model on the basis of the fre-
quency this variable is selected for splitting and 
the improvement in model performance at each 
split; the score of all variables sum up to 1.29 
Among all patients, percentage change in weight 
from a patient’s moving average over the past 
90 days is the most important predictive feature 
of mortality (a more drastic decrease is associ-
ated with higher risk of mortality). Albumin level, 
pulse, WBC counts, total bilirubin, and weight 
were the next predictive variables.

Although the feature importance does not demon-
strate the interaction across predictive variables, 
the relationship was evidently characterized by the  

tree structure. As an example, the Data Supple-
ment depicts a case where the change in weight 
interacts with albumin in the predictions of  
mortality.

Machine Learning Models Comparison of 
Performance

Among all the transparent machine learning 
models being compared against, optimal clas-
sification trees achieved the best performance 
in validation (Table 2). The only method that 
improves over optimal classification trees is the 
black-box method of gradient boosted trees. 
The receiver operating characteristic curves 
and PPV against sensitivity curves for each  
of the methods (Fig 4) both showed con-
sistently strong predictive power across all 
thresholds at all time horizons. In the subgroup 
analyses, we found a similar performance for 
our method (detailed model comparison results 
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Fig 2. Mortality prediction 
tree for patients with breast 
cancer for 60-day mortality. 
Patients are stratified on 
the basis of a sequence of 
variables and are eventually 
placed into a mortality risk 
bin.
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and subgroup breakdowns provided in the Data 
Supplement).

DISCUSSION

Within the context of the growing momentum 
toward value-based health care delivery,6 we 
developed a clinically actionable prognostic tool  
for individual mortality prediction among patients 
with cancer before initiating a systemic treat-
ment. Developed with the intent to augment 
physicians’ clinical decision making at the point 
of care, our tool necessarily accounts across the 
entirety of a patient’s cancer treatment journey 
to provide personalized prognostic insight. More-
over, such insight can address an unmet need 
by catalyzing the proper engagement of a phy-
sician, a patient, and his or her caregiver(s) in a 
personal, objectively assessed reflection on the 
implications of a proposed treatment in relation 
to the overall goals of care.

Our predictive tool uses novel machine learning 
methods to support the movement toward fully 
personalized, evidence-based treatment deci-
sions. The prediction model’s accuracy draws 

from the combination of (1) a large cohort of 
general patients with cancer, (2) longitudinal 
EHR data that provide extensive and nuanced 
information compared with registry and claims 
data, (3) novel machine learning methods with 
high interpretability and state-of-the-art per-
formance, and (4) curated clinical intuition 
and substantiated knowledge from experienced 
oncologists on the team that facilitated the 
model class selection and feature engineering 
process. The optimal classification trees model 
we used is fully transparent and interpretable, 
and produces highly accurate results. More 
importantly, decision trees closely resemble a 
human approach to decision making and, as a 
result, our machine learning–based approach 
to medical decision support is consistent with 
physicians’ mental process of identifying pat-
terns from experience, but doing so using a 
much broader and more representative cohort 
of patient base. Because of the transparency 
and interpretability inherent in our model, as 
technology continues to develop and more 
data are collected, the model will improve  
while maintaining its resemblance to physicians’ 
decision-making processes.
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Fig 3. Feature importance 
in 60-day mortality predic-
tion for patients (all cancer 
and by cancer sites). The 
importance score is based 
on the relative contribution 
to the model performance 
of each feature during the 
optimal classification trees 
training process. The 10 most  
important predictors are 
shown in this figure. Abl1, 
Abelson murine leukemia 
viral oncogene homolog 1 
gene (ABL proto-oncogene 1);  
AFP, alpha-fetoprotein; CA, 
cancer antigen.
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Operationally, given the complexity of knowledge 
management in evolving precision oncology care 
practices,31we envision our tool’s adaptive infor-
mation curation system seamlessly integrating 
with EHRs as a value-driven component of a 
chemotherapy-order-entry workflow to augment 
clinical decision making and informed consent. 
Because curated information is automatically 
populated from data repositories, physicians ver-
ify populated inputs and acknowledge mortality 
risk outputs transpiring within real time. On the 
back end, the novel optimal-impute30 method  
fulfills the necessary preprocessing charac-
teristic of a nimble data platform that facilitates 
accurate results in the sensitive downstream 
tasks of mortality prediction and knowledge- 
based practices.31

The rich data constitute the other key reason 
for our high prediction quality. Because this 
study predicts mortality in a large population 
with available EHR data, we were able to study 
a much broader set of covariables than typical 
mortality prediction studies. We studied 401 
covariables in total, including 289 variables 

encoding gene mutation results, 52 on recent 
treatments, and 18 on recent laboratory and 
vital test results. We acknowledge that because 
of the sparsity of data collection on gene muta-
tion results, these variables were not selected 
by the models, but as more genomic data are 
collected consistently in the future, we believe 
these predictors will play a more important role 
and further improve the models. The longitudi-
nal nature of the EHR data used in this study 
further enables the study of patient characteris-
tics through time. For instance, we included the 
percentage change in weight from the 90-day 
moving average weight measurement, a pre-
dictor not used in previous mortality prediction 
work.

Performing head-to-head comparisons against 
existing prognostic studies and online tools is  
of interest. However, among identified short-term 
mortality studies, differences in patient popula-
tions and subjective clinical variables that our 
data do not contain make definitive compari-
son of results difficult. Nonetheless, the IMPAC 
(Imminent Mortality Predictor for Advanced  
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Table 2. Model Performances (accuracy at 50% threshold, PPV at sensitivity level of 0.6, and AUC) for 60-Day, 90-Day, and 180-Day Mortality 
Predictions in the Validation Set, Comparing Optimal Classification Trees Against Five Other Prediction Models

Model Performance 60-Day Mortality 90-Day Mortality 180-Day Mortality

Accuracy (%)

Logistic regression (fewer predictors) 94.6 93.0 83.4

Logistic regression 94.3 92.8 84.4

Regularized logistic regression 94.9 93.1 84.4

CART decision tree 94.0 92.0 81.8

Optimal classification tree 94.9 93.3 86.1

Gradient boosted trees 95.0 93.6 87.2

Positive predictive value at sensitivity level of 0.6 (%)

Logistic regression (fewer predictors) 11.3 15.9 32.2

Logistic regression 14.0 18.2 35.9

Regularized logistic regression 16.1 21.4 37.5

CART decision tree 20.2 21.0 39.2

Optimal classification tree 20.2 27.5 43.1

Gradient boosted trees 28.2 34.7 53.4

AUC

Logistic regression (fewer predictors) 0.74 0.76 0.76

Logistic regression 0.73 0.74 0.75

Regularized logistic regression 0.79 0.80 0.79

CART decision tree 0.81 0.81 0.79

Optimal classification tree 0.86 0.84 0.83

Gradient boosted trees 0.90 0.89 0.87

Abbreviations: AUC, area under the curve; CART, classification and regression trees; PPV, positive predictive value.
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Cancer)25 study’s comparative metrics of mortal-
ity prediction specifically within the hospital  
setting are notable for their improved accu-
racy, thereby highlighting potential predictive 
benefits to analyzing carefully curated patient 
cohorts and care episodes. Significantly, both 
studies achieve high levels of predictive per-
formance that provide a benchmark for future 
studies across the cancer care continuum.

Our study has several limitations. As a single- 
institution retrospective study, it is subject to 
data selection and measurement biases. In 
addition, validation was performed using an 
internal data set, which underscores our plans 
to test prospectively in an external cohort. Look-
ing forward, despite the continuing importance 
of chemotherapies in the cancer treatment  
arsenal, we already anticipate the need to 
refactor our model in light of novel drugs and 
changing treatment paradigms. Nonetheless, 
disparities in care resources and access to 
treatments persist in certain geodemographic  
and sociodemographic areas where our tool  
may hold relevance. Encouragingly, as precision- 
based molecular and genomic sequencing data 

are collected in more patients along the dis-
ease trajectory, our model and performance are 
expected to improve. To this end, the iterative 
process of the model’s learning, calibration, and 
validation is essential to its prognostic perfor-
mance and continued relevance to clinical prac-
tice. Further prospective studies with this tool 
are being planned to demonstrate the clinical 
utility of this tool as part of a platform measur-
ing the impact on informed consent engage-
ment, mortality, and patient experience metrics, 
including hospital length of stay, earlier hospice 
enrollment, and quality of life.

In conclusion, we developed a clinically action-
able tool for mortality prediction for patients 
with cancer initiating systemic therapy. Such  
capability leveraging machine learning, tempo-
rally nuanced data, and clinical expertise pres-
ents the opportunity for value capture at point 
of care.
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Fig 4. Receiver operating 
characteristic curves and 
positive predictive value 
versus sensitivity plots  
for 60-day, 90-day, and 
180-day mortality predictions, 
comparing the following 
methods: optimal classifica-
tion trees, CART (classifica-
tion and regression trees), 
logistic regression with fewer 
variables, logistic regression 
with all variables, regularized 
logistic regression, and 
gradient boosted trees.
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