Table 1.
Convolutional Layer | Input Channel=3, Output Channel=64, Stride=2. Padding=3 BatchNorm2D ReLU() MaxPooling(Stride=2, padding=1, dilation=1) |
ResNet50 Block1 | Bottleneck (64, 256) |
ResNet50 Block2 | Bottleneck (256, 512) |
ResNet50 Block3 | Bottleneck (512, 1024) |
ResNet50 Block4 | Bottleneck (1024, 2048) |
Boundary Refinement Layer | BatchNorm2D () ReLU () Conv2d (Input Channel=2, Output Channel=2, Stride=1, Padding=1) |
Up-Sampling | Bilinear Decoder |
GCN Connector | Conv2d (Kernel Size=7, Stride=1, Padding=3) |