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Abstract

Brain imaging analysis on clinically acquired computed tomography (CT) is essential for the 

diagnosis, risk prediction of progression, and treatment of the structural phenotypes of traumatic 

brain injury (TBI). However, in real clinical imaging scenarios, entire body CT images (e.g., neck, 

abdomen, chest, pelvis) are typically captured along with whole brain CT scans. For instance, in a 

typical sample of clinical TBI imaging cohort, only ~15% of CT scans actually contain whole 

brain CT images suitable for volumetric brain analyses; the remaining are partial brain or non-

brain images. Therefore, a manual image retrieval process is typically required to isolate the whole 

brain CT scans from the entire cohort. However, the manual image retrieval is time and resource 

consuming and even more difficult for the larger cohorts. To alleviate the manual efforts, in this 

paper we propose an automated 3D medical image retrieval pipeline, called deep montage-based 

image retrieval (dMIR), which performs classification on 2D montage images via a deep 

convolutional neural network. The novelty of the proposed method for image processing is to 

characterize the medical image retrieval task based on the montage images. In a cohort of 2000 

clinically acquired TBI scans, 794 scans were used as training data, 206 scans were used as 

validation data, and the remaining 1000 scans were used as testing data. The proposed achieved 

accuracy=1.0, recall=1.0, precision=1.0, f1=1.0 for validation data, while achieved 

accuracy=0.988, recall=0.962, precision=0.962, f1=0.962 for testing data. Thus, the proposed 

dMIR is able to perform accurate CT whole brain image retrieval from large-scale clinical cohorts.
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1. INTRODUCTION

Traumatic brain injuries (TBI) affects more than 2 million patients every year in the United 

States, which may lead to severe physical, cognitive, and psychological disorders. Computed 

tomography (CT) on the human brain is one of the most widely used tools for diagnosing 

TBI associated with intracranial hemorrhage [1, 2]. In recent years, large-scale informatics 

analyses have shown its advantages in understanding TBI [3]. Thus, it is appealing to 

perform large-scale imaging analyses on TBI cohorts as well, especially as brain trauma is a 

heterogenous condition with large inter-subject variations. The challenge even in a single 

medical center or healthcare system is the generation of more than thousands of whole brain 

CT scans/year for TBI patients associated with a 5-fold higher number of non-brain scans 

(e.g., neck, abdomen, chest, pelvis). Therefore, manual image retrieval procedures are 

commonly included to filter out the unrelated scans. For instance, in a sample of clinically 

acquired TBI cohort at Vanderbilt University Medical Center (VUMC), only 307 scans 

(15%) are marked as useable whole brain CT scans in a set of 2000 scans. Moreover, the 

manual image retrieval is resource and time consuming on 2000 scans and could be 

impractical for larger cohorts. Previous efforts have been made on automatic medical image 

retrieval [4]. In recent years, the deep convolutional neural network (DCNN) based methods 

have been used in medical image retrieval due to the superior performance in speed and 

accuracy [5, 6]. However, most previous DCNN medical image retrieval methods used only 

a single 2D slice without fully using the 3D information. Therefore, image retrieval methods 

for 3D medical images are desired for the community, especially for big medical image data 

processing [7].

In this paper, we propose deep montage-based image retrieval (dMIR) method, an automated 

3D medical image retrieval pipeline, to retrieve usable whole brain CT scans from a 

heterogenous clinical TBI cohort. The 2D montage images from 3D scans are used as the 

training and testing images for training a classification deep convolutional neural network. 

ResNet [8] was employed as the DCNN network due to its superior performance in 2D 

image classification.

2. METHODS

2.1 Montage Image Generation

The framework of dMIR pipeline is shown in Figure 1, whose raw input is a 3D CT scan. 

Rather than learning from the 3D volume directly, we used 2D montage images to represent 

such 3D volumes. The original size of the input scan S is x × y × z, which is then resampled 

to volume V with 512 × 512 × 36 if z ≥ 36 using the following steps

N = floor( z
36) (1)
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m = floor Z
2 − N × 17 (2)

V(: , : , i) = S(: , : , m + N × i), i ∈ [1, 2, … , 36] (3)

where N is the length of sampling step, m is the first slice in S to perform sampling. 

Otherwise, if z < 36, the scan is first resampled to 512 × 512 × z, then zero padding to 512 × 

512 × 36. After achieving the resampled 3D volume V, the 2D montage images are 

generated by concatenating all slices of 3D volume V on z direction to a 6 × 6 image matrix.

2.2 DCNN based Image Retrieval

The input 2D montage images are the input of the DCNN, so the image retrieval becomes a 

2D image classification problem, where class = 0 means unusable scans and class = 1 means 

usable whole brain CT scans. The ResNet has been regarded as the de facto standard image 

classification network due to its superior performance in accuracy and training convergence. 

Therefore, the 50 layer ResNet (ResNet-50) was employed as the classification network in 

this study. The ResNet-50 network was trained from scratch with the number of input 

channel = 1 and the number of output channel = 2. All the montage input images are 

resampled to 512 × 512 for training purposes. More specifically, the maximum epoch = 100, 

batch size = 8, and learning rate = 0.0001. The Adam optimization algorithm [9] was used to 

train the network with weighted cross entropy loss. Since the classes are unbalanced, 

weights = [1, 10] are used as the weights for cross entropy loss. The experiment was 

performed on NVIDIA GForce Titian GPU with 12 GB memory. The DCNN was 

implemented in PyTorch 0.4 version [10].

3. DATA

Clinically acquired CT scans (n=2000) from VUMC were retrieved in deidentified form 

under Institutional review board approval and employed as training, validation, and testing 

data. Specifically, 794 scans from 80 subjects were used as training data; 206 scans from 21 

subjects were used as validation data; 1000 scans from 551 subjects were used as testing 

data. In the 794 training scans, 124 are usable whole brain scans, while the remaining 670 

are unusable scans. Among 206 validation scans, 27 are usable whole brain scans, while the 

remaining 179 are unusable scans. In 1000 testing scans, 156 are usable whole brain scans, 

while the remaining 844 scans are unusable scans. The content labels are performed by two 

human raters with visually checking on the montage figures. Figure 2 shows the montage 

figures for the usable whole brain CT scans. Figure 3 shows the montage figures for the first 

category of unusable scans, where the brains are not included in the scans. Figure 4 shows 

another category of unusable scans, which contained part of the brains but were dedicated 

for other head and neck structures. Those are marked as unusable since such scans were not 

preferred in the following brain image analyses, which typically required whole brain 

volumes on CT.
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4. RESULTS

The validation cohort was used to define the hyper-parameters in “Method” section. From 

the epoch number 42, the best validation performance was achieved on validation scans. 

From the empirical validation, the accuracy=1.0, recall=1.0, precision=1.0, f1=1.0 are 

achieved for 206 validation scans. The corresponding Receiver Operating Characteristic 

(ROC) curves and Area under the ROC Curve (AUC) are presented in Figure 5a. Then, the 

model at epoch number 42 was applied on the 1000 independent testing scans, which 

achieved accuracy=0.988, recall=0.962, precision=0.962, f1=0.962. The corresponding ROC 

curves and AUC are presented in Figure 5b. In total, 12 wrong classification images are 

obtained in the testing stage, where six are false positive and remaining six are false 

negative. To further exam the failures in Figure 5b, we plot all six false positive examples in 

Figure 6, while plots all six false negative examples in Figure 7.

5. DISCUSSION

In this paper, we presented the dMIR pipeline to perform usable whole brain CT image 

retrieval from heterogenous clinically acquired TBI scans. The proposed method achieved 

AUC=1 on validation cohort and AUC=0.9965 on independent validation cohort. The results 

show that the dMIR method is able to perform image retrieval in high accuracy. Thus, it is 

able to alleviate the heavy manual efforts for the image retrieval from clinical radiology 

archive. In this work, the ResNet-50 was employed as the classification network. However, 

we do not claim the ResNet-50 is the best network for this scenario. Since we have already 

achieved 1.0 accuracy on training and validation cohort, we did not compare the extra 

experiments on other deep image classification neural networks. It would be interesting to 

see if the performance of other networks (including ResNet) on larger training and testing 

cohorts.

The proposed method simplified the 3D whole volume learning problem to 2D learning task 

using the montage figures. The primary contribution of the proposed method for image 

processing is to provide a new way (montage figures) of performing medical image retrieval. 

As a result, the prevalent 2D based image retrieval methods developed in computer vision 

communities are able to be applied to medical images retrieval directly using the dMIR 

pipeline. In the future, the proposed method could be used to solve the quality assurance for 

large-scale image archives, such as Vanderbilt VUIIS-CCI XNAT [11].
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Figure 1. 
The dMIR whole brain CT scan retrieval method is presented. The 3D CT scans were 

resampled to in-plane resolution 512 × 512. If the slice number z is larger than 36, the 

volume is resampled to 512 × 512 × 36. Otherwise, the 3D volume is resampled to 512 × 

512 × z and zero padding is performed to achieve a 512 × 512 × 36 volume. Next, the 512 × 

512 × 36 volume was used to form the 2D montage figures. Finally, the 2D montage figures 

were used to train and test a deep neural network using a 50 layer ResNet.
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Figure 2. 
The example montage images of usable whole brain 3D CT scans. “1” shows a montage 

image with < 36 slices after zero padding. “2” and “3” are the montage images resampled 

from axial view images, while “4” and “5” are from coronal and saggital view images 

respectively. “6” presents an example that whole brain and part of body are included in one 

scan. As the entire brain volume is included, “6” is also regarded as usable.
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Figure 3. 
This figure shows six representative examples of unusable scans, which does not include 

brain in the scans.
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Figure 4. 
This figure shows six representative examples of unusable scans. “1” to “4” shows the 

incomplete brains (e.g., maxillofacial CT, neck CT, temporal bone CT, patient movement). 

In “5”, an abnormal spatial translation is found in last two slices. For “6”, the scan only 

covers few slices of the cranium.
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Figure 5. 
The Receiver Operating Characteristic (ROC) curves and Area under the ROC Curve (AUC) 

are presented. (a) is the ROC curve and AUC for 206 internal validation scans at the best 

performance epoch. After applying the model at such epoch on 1000 independent test scans, 

the AUC=0.9965 is achieved in (b).
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Figure 6. 
This figure shows all six false positive cases in testing stage. The false positive scans are 

typically partially incomplete whole brain CT scans.
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Figure 7. 
This figure shows all six false negative cases in testing stage.
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