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Abstract

Coronary artery calcium (CAC) is biomarker of advanced subclinical coronary artery disease and 

predicts myocardial infarction and death prior to age 60 years. The slice-wise manual delineation 

has been regarded as the gold standard of coronary calcium detection. However, manual efforts are 

time and resource consuming and even impracticable to be applied on large-scale cohorts. In this 

paper, we propose the attention identical dual network (AID-Net) to perform CAC detection using 

scan-rescan longitudinal non-contrast CT scans with weakly supervised attention by only using 

per scan level labels. To leverage the performance, 3D attention mechanisms were integrated into 

the AID-Net to provide complementary information for classification tasks. Moreover, the 3D 

Gradient-weighted Class Activation Mapping (Grad-CAM) was also proposed at the testing stage 

to interpret the behaviors of the deep neural network. 5075 non-contrast chest CT scans were used 

as training, validation and testing datasets. Baseline performance was assessed on the same cohort. 

From the results, the proposed AID-Net achieved the superior performance on classification 

accuracy (0.9272) and AUC (0.9627).
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1. INTRODUCTION

Coronary artery calcium (CAC) indicates the presence of advance coronary plaque and is a 

strong and independent predictor of myocardial infarction and cardiovascular death prior to 

age 60 years [2]. In typical practice, non-contrast computed tomography (CT) scans are 

obtained and then manually annotated for calcified lesions in each of the coronary arteries. 
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The manual detection with quality control has been regarded as the standard assessment for 

CAC measurements. However, slice-wise manual tracing is time and resource consuming, 

and impracticable for a large population. Therefore, it is appealing to develop automatic 

CAC measurement methods to alleviate the manual efforts. In the past decade, many 

automated CAC detection approaches have been developed to achieve CAC detection and 

estimations from non-contrast CT [3, 4]. In recent years, deep convolutional neural network 

(DCNN) based methods have shown their superior performance on many medical image 

analysis tasks in terms of accuracy and efficiency. For DCNN based CAC detection, 

Lessmann et al. [5] proposed a DCNN to detect CAC using hierarchical structures with two 

DCNN networks. Santini et al. [6] proposed a patch-based CAC segmentation method. 

Shadmi et al. [7] introduced the fully convolutional network (FCN) for CAC segmentation. 

However, the previous efforts were typically trained in 2D or 2.5D fashion rather than 3D. 

Moreover, voxel/lesion level manual annotation were typically required to train a DCNN 

based CAC detection in previous studies. Meanwhile, recent studies [8, 9] trains a deep 

network using scan-rescans data, which has shown the advantages on Diffusion Weighted 

magnetic resonance imaging (MRI).

In this paper, we propose a 3D DCNN based CAC detection method, called attention 

identical dual network (AID-Net), to perform CAC detection using weakly supervised 

attentions on per-subject level labels. Specifically, the purpose of the proposed AID-Net is to 

determine if a non-contrast CT volume has CAC or not. The proposed method has three 

features: (1) 3D identical dual network is proposed to use longitudinal CT scans for CAC 

detection, (2) a 3D training attention gate is integrated to the network to leverage the 

performance, (3) 3D weakly supervised attention mechanisms were introduced to explain the 

behavior of the proposed network (visualize the location) only using subject level weak 

labels. To train the network, we used 5075 non-contrast chest CT scans with Agatston 

calcium score (Agatston score) [10] without using the voxel/lesion level manual annotations.

2. METHOD

2.1 Preprocessing

The same automatic preprocessing procedures (Figure 1) are deployed on each scan to 

normalize the data. Briefly, a whole lung segmentation method [11] was first applied to the 

chest CT scan (https://github.com/lfz/DSB2017). Then, the 3D sub-space containing two 

whole lung regions are cropped (contains the heart) as the useable region. On such sub-

space, the Hounsfield unit (HU) intensity within the lung segmentation region and the 

intensities outside the lung convex hull mask were set to −200 HU. For the remaining 

voxels, HU scores are windowed to −200 for HU<−200 and +600 for HU>600. Meanwhile, 

another 3D mask is obtained by setting the threshold HU>130 to be used as another input 

channel for AID- Net.

2.2 Attention Identical Dual Network (AID-Net)

The previously mentioned 3D cropped CT volume and mask volume are used as two input 

channels for AID-Net. The identical dual network, inspired by Siamese network [12], is 

introduced to take advantage of longitudinal training scans. To leverage the classification 
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performance, we extend a recent proposed soft attention gate (SAG) [1] from 2D to 3D as a 

training attention to provide complementary local features, which are concatenated with the 

major global averaging pooling features for final dense layer. The total loss function of the 

AID-Net consists of three terms:

Losstotal = LOSScross − entropy1 + Losscross − entropy2 + λ · Losscontrastive

where the Losscross − entropy1 and Losscross − entropy2 are the cross-entropy loss for the two 

paths in AID-Net. The LOSScontrastive is the contrastive loss [13], which measures the 

similarities between the outputs of two paths as

Losscontrastive = (1 − Y)1
2 Dw

2 + (Y)1
2 max 0, m − Dw

2

where Dw is the Euclidean distance between the outputs of two paths in AID-Net. m is a 

coefficient to limit the range of maximization. Y = 0 if the inputs are deemed similar, and Y 
= 1 if they are deemed dissimilar.λ is an constant coefficient to decide the weight of 

contrastive loss.

2.3 Training and Testing Attention

We proposed 3D SAG as the training attention, which extended the 2D based SAG into 3D 

fashion. To be compatible with large memory consumption in 3D, the channel number of the 

intermediate layer was set to 32. For 3D SAG, the feature maps before the last global 

average pooling layer were used as gate (g) to filter the feature maps from higher level 

layers, which worked as another complimentary inputs for classification. The attention map 

from the lower level layers typically yields a larger reception field. Therefore, the SAG 

enables the AID-Net to consider higher level and some task related local features when 

making the classification decision. If the 3D SAG is excluded in the network, the AID-Net 

becomes ID-Net without training attention.

To characterize the attention mechanism of the main stream in AID-Net, the Grad-CAM [14] 

method has been extended from 2D to 3D in this work to visualize the attention maps, which 

were related to the classification tasks. Using the 3D Grad-CAM, the attention maps were 

able to explain the behavior of the DCNN and localize the CAC. The Grad-CAM attention 

was generated before the global average pooling layer as shown in Figure 2.

2.4 Experiments

To evaluate the classification performance of proposed AID-Net, the 3D ResNet [15] with 

101 layers as well as the 3D DenseNet [16] with 121 layers were employed as the baseline 

methods. All 4664 scans from 2332 subjects were used as inputs for baseline methods, while 

the 2332 scan-rescan pairs were used as inputs of the AID-Net. To evaluate the performance 

of 3D SAG training attention, the ID-Net was also evaluated. For AID-Net, two loss 

coefficients (λ=0 and λ=0.001) were compared. After training the network, 205 scans were 

used as validation data and another set of 206 scans were used as the independent testing 
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data. The parameters and epochs with the best performance were tuned through 205 

validation scans and been applied to 206 withheld testing scans. For each scan, the clinical 

measure of CAC, the Agatston score is available. To form the CAC detection task as a 

classification problem, we evaluated two strategies. Presence verses absence of CAC using a 

threshold of any score > 0. The second strategy used a three-class approach with scores of 0, 

1–399 and 400 and greater. We did not further split the data with more sub-categories using 

other thresholds (e.g., Agatston score at 100, 200, 300, etc.) since the target of the proposed 

work is to detection “Yes/No” for CAC rather than Agatston score regression. Moreover, the 

Agatston score ≥ 400 is typically regarded as severe CAC scenarios. As a result, 1107 

control scans, 848 scans with Agatston score < 400, 377 scans with Agatston score ≥ 400 

were used in the training procedures. As shown in Figure 3, the latter strategy yields better 

performance than categorizing all CAC patients as one class for deep learning.

The network was trained using the following parameters: learning rate = 0.0001, maximum 

epoch number = 100, input resolution = 192×128×64, batch size = 2, λ = 0.001, optimizer = 

Adam. The network was implemented using PyTorch = 0.4 and CUDA = 8.0. The 

experiments were performed on NVIDIA GeForce Titan GPU with 12GB memory.

3. RESULTS

Figure 4 shows the 2×2 classification matrices of different methods on CAC detection, 

which is formed as classification problem. Figure 5 shows the Receiver Operating 

Characteristic (ROC) and Area Under the ROC (AUC) curves for different methods. From 

such results, the proposed AID-Net with λ = 0.001 achieved the best overall classification 

performance. Figure 6 presents the 3D training attention gate from SAG as well as the 3D 

testing attention heatmaps form 3D Grad-CAM. From the results, the training attention 

provides the complementary attentions on the task related local features for better prediction 

performance (from red circle in Figure 2). The 3D Grad-CAM (testing attention) maps show 

that the testing attention is able to localize the CAC location using weakly annotated 

attention mechanism (from green circle in Figure 2). Subject 1 and 2 in Figure 6 are two 

representative cases for Controls. For subject 2, although a large number of voxels are 

marked as HU>130, the proposed AID-Net is able to distinguish them from CAC by 

considering the spatial locations of such voxels. For subject 3, even though a small number 

of voxels are marked as HU>130, the proposed AID-Net is able to locate the CAC. 

Moreover, the training attention focused on the local features around the CAC, while the 

testing attention located the CAC. The similar situations were presented for subject 4 to 6.

4. DISCUSSION

In this paper, we present the AID-Net, which is able to perform CAC detection with 

accuracy = 0.9272, and AUC = 0.9627. The performance of the proposed AID-Net achieved 

superior performance compared with ResNet, DenseNet, and ID-Net. The attention 

mechanisms were presented as qualitative results in this paper without quantitative 

validation due the lack of the per voxel/lesion annotation. In the next phrase, we would like 

to validate the attention model using the per voxel/lesion annotation. The performance of the 

proposed method would be further improved when such annotations are available. Moreover, 
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the detailed heart structures can be achieved by DCNN-based 3D medical image 

segmentation techniques [17, 18], which is able to be combined with CAC detection, domain 

adaptation [19, 20] as a multi-task learning procedure [21].

Prior efforts on automatic CAC detection methods would yield better performance on the 

testing cohort. However, the previous works typically required resource intensive per voxel/

lesion annotations, which were not required in the proposed AID-Net. To the best of our 

knowledge, this work is the first deep learning method on CAC detection using weakly 

supervised attention. As the per voxel/lesion annotations are not require, the proposed 

method could be trained on larger clinical cohorts with Agatston scores available.
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Figure 1. 
The entire processing pipeline of AID-Net method. The upper panel shows the 

preprocessing steps, while the lower panel shows the deep learning procedures.
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Figure 2. 
The network structure of proposed AID-Net. The inputs of the network are the longitudinal 

scan and rescan data, where each data consists of two channels: preprocessed CT and 

HU>130 mask. The outputs of the network are the classification results and training and 

testing attention maps. The definition on symbols of SAG subnetwork is the same as [1].
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Figure 3. 
Two strategies of training a CAC classification network. The “Strategy 1” is the traditional 

design for a two-class classification task. To further leverage the performance, we split the 

CAC to two sub-categories: (Agatston score < 400 and Agatston score ≥ 400). Then, the 3×3 

classification matrix for prediction were converted to two class problem for better prediction 

performance.
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Figure 4. 
The final CAC classification results are showed as 2×2 classification metrices.
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Figure 5. 
The Receiver Operating Characteristic (ROC) curves and Area under the ROC Curve (AUC) 

are presented.
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Figure 6. 
The training and testing attention mechanisms were presented in this figure. The 3D SAG 

training attention typically achieves local features from higher level layers, which provides 

the complementary information for classification decision. The 3D Grad-CAM testing 

attention reflects the behavior of the deep networks when making classification decisions. 

The Grad-CAM attention maps are also be able to roughly localize the CAC.
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