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Abstract

Whole brain segmentation on structural magnetic resonance imaging (MRI) is essential for 

understanding neuroanatomical-functional relationships. Traditionally, multi-atlas segmentation 

has been regarded as the standard method for whole brain segmentation. In past few years, deep 

convolutional neural network (DCNN) segmentation methods have demonstrated their advantages 

in both accuracy and computational efficiency. Recently, we proposed the spatially localized atlas 

network tiles (SLANT) method, which is able to segment a 3D MRI brain scan into 132 

anatomical regions. Commonly, DCNN segmentation methods yield inferior performance under 

external validations, especially when the testing patterns were not presented in the training 

cohorts. Recently, we obtained a clinically acquired, multi-sequence MRI brain cohort with 1480 

clinically acquired, de-identified brain MRI scans on 395 patients using seven different MRI 

protocols. Moreover, each subject has at least two scans from different MRI protocols. Herein, we 

assess the SLANT method’s intra- and inter-protocol reproducibility. SLANT achieved less than 

0.05 coefficient of variation (CV) for intra-protocol experiments and less than 0.15 CV for inter-

protocol experiments. The results show that the SLANT method achieved high intra- and inter- 

protocol reproducibility.
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1. INTRODUCTION

Historically, multi-atlas segmentation (MAS) [1–3] has been regarded as the de facto 

standard method for detailed whole brain segmentation on magnetic resonance image (MRI) 
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(e.g., > 100 anatomical regions) due to its high accuracy. However, the heavy computational 

time (e.g. > 30 hours per scan) restricts the MAS whole brain segmentation on large-scale 

clinical cohorts. Recent advances in deep convolutional neural networks (DCNN) provide 

powerful tools to alleviate the computational time for whole brain segmentation [4–8], and 

even may result in higher accuracy compared with MAS such as the recently proposed 

spatially localized atlas network tiles (SLANT) method [9] (https://github.com/MASILab/

SLANT_brain_seg). The SLANT method has been shown to achieve superior performance 

on small-scale validation methods as it was trained on >5000 MRI scans from >60 sites [10]. 

However, it has not been evaluated on large-scale clinically acquired cohorts as external 

validation. Figure 1 illustrates the quality of both intensity image and the segmentation has 

variations even if they are from the same subject within the same protocols. Therefore, it is 

essential to see if the segmentation method works for external cohorts other than the training 

data, which is also a major question to answer before applying the method in real clinical 

usage.

In this paper, we perform the external validation for the SLANT method on 1480 clinically 

acquired brain MRIs with seven different sequencing protocols. For each scan, 132 regions 

of interest (ROI) are identified by applying the SLANT method following the BrainCOLOR 

protocol [11]. Since it is difficult to obtain a large-scale external validation dataset with 

manual delineation, the reproducibility on ROI volumes of SLANT segmentation on the 

same subjects (but different scans) was used as the primary outcome metric. Specifically, the 

coefficient of variation (CV) was used as the metrics to evaluate the consistency of ROI 

volumes between the same clinical sequence protocols (intra-protocol), and across different 

clinical sequence protocols (inter-protocol). The SLANT segmentation method achieved, on 

average, a less than 0.05 coefficient of variation for intra-protocol from the same subject and 

a worst coefficient of variation 0.143 for inter-protocol sequence comparison.

2. METHODS

2.1 Quality assessment and protocol sequence selection

The input image for the SLANT method was a single MRI T1 brain. All the data were 

retrieved in de-identified form under institutional review board approval from clinical scans 

studies conducted at the Vanderbilt University Medical Center (VUMC). For quality 

assurance (QA), the retrieved imaging data was visually inspected to verify that each scan 

has a complete brain without any missing tissue (field of view), without gross motion/

imaging artifacts, and lacking large scale neuro-abnormality (e.g., visually apparent brain 

tumors). After QA, 1480 MRI scans from 395 unique patients from seven MRI sequence 

protocols were employed in the experiments, where each protocol has at least 30 MRIs to 

ensure we have sufficient data to perform statistical analyses.

2.2 SLANT segmentation and ROI volume acquisition

The proposed SLANT method is presented in Figure 2, which combines canonical medical 

image processing methods (registration, harmonization, label fusion) with 3D network tiles. 

3D U-Net is used as each tile, whose deconvolutional channel numbers are modified to 133. 

The tiles are spatially overlapped in MNI space. All raw intensity images from seven 
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selected protocols were used as input to run the SLANT segmentation (Figure 2). Since the 

SLANT method has been implemented as a Docker container [12], we used that Docker 

directly without any fine-tuning on the validation cohorts. The 1480 testing scans were 

analyzed for external validation for the SLANT segmentation. After segmentation, 132 

regions of interest (ROI) were identified for each scan and each ROI’s volume is calculated.

2.3 ROI volume comparison between protocol sequences and coefficient of variation 
calculation

With seven protocols, there are in total 28 possible paired protocol combinations where 

seven are within-sequence validations and the remaining 21 are cross-sequence validations. 

Note that we retrieved at least 30 subjects with MRI scans from following combinations: (1) 

SAG_T1_3D_TFE and VT1W_3D_TFE_SENSE, (2) SAG_T1_3D_TFE and 

sT1W_3D_TFE, and (3) sT1W_3D_TFE and VT1W_3D_TFE_SENSE. Therefore, 25 

combinations of protocol sequences were evaluated in this work.

Next, for each subject, we evaluate all MRI scans with a particular sequence protocol and 

then find protocol scans with the six other protocols. Then, we calculate the standard 

deviation and mean volumes of each of 132 ROI of the all combinations of sequence 

protocols for the same subjects. After calculating the standard deviation and mean volumes 

of one combination for each ROI, we calculate the coefficient of variation (CV) of each ROI 

using following equation:

CV =
2θ S1 − S2
μ S1 + S2

(1)

where S1 indicates an array of one ROI’s volume from all subjects of one particular protocol 

sequence and S2 indicates an array of one ROI’s volume from all subjects of another 

protocol sequence with each element in S1 and its corresponding element in S2 from the 

same subject but in different scans. θ indicates the standard deviation and μ denotes the 

mean.

3. EXPERIMENTS

3.1 Data

Data eligible for the study were identified from the Research Derivative, a database of 

clinical and related data derived from the Vanderbilt University Medical Center’s (VUMC) 

clinical systems and restructured for research. The Research Derivative was searched for 

individuals between the ages of 18 and 80 years old who had a T1-weighted structural MRI 

with <=1.5mm voxel resolution and sodium lab values obtained between 2016–2017. The 

T1 images for each patient were then retrieved in deidentified form from ImageVU, a 

research database of magnetic resonance and computed tomography images that are 

obtained in the clinical setting at VUMC.

Seven sequence types were used in the comparisons distinguished by the names of 

sequences. For naming, T1_3D_TFE (“T1”) means T1 weighted 3D turbo field echo (TFE) 

MRI at 1mm slice thickness from Philips’ nomenclature. “POST” and “PRE” means the 
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TFE MRI acquired after and before gadolinium administration respectively. “SAG” means 

the TFE MRI acquired from sagittal acquisition. 1480 T1 MRIs volumes with seven 

sequencing protocols acquired from Vanderbilt University Medical Center were used to 

evaluate the reproducibility of the SLANT method with the number of combinations 

between each protocol sequence (Table 1). In Table 1, some cells are intentionally left blank 

because they are the same comparison if the order is reversed (e.g., T1 vs. POST has the 

same number of comparisons as POST vs. T1).

3.2 Experiments

The total number of MRI scans used in the within-protocol experiments equals the total 

number of comparisons between the same protocol sequence across the diagonal numbers in 

Table 1(619 + 177 + 223 + 43 + 35 + 49 + 49 = 1195). The numbers of inter protocol 

subjects are presented in the remaining elements in Table 1. Note that there were more inter-

protocol comparisons than intra-protocol comparisons because every MRI of one particular 

protocol was used to compare with all MRIs of another protocol sequence of the same 

subjects. In general, the grand total number of comparison between all combinations of 

protocol sequences is 2734.

The SLANT pretrained model in the SLANT Docker (https://github.com/MASILab/

SLANT_brain_seg) was used directly to segment all input scans with a variety of input 

resolutions and voxel sizes. For the experiments in this study, the SLANT segmentation 

Docker was run on NVIDIA GeForce 1080 TI GPU with 11GB memory. The SLANT 

Docker takes approximately 15 minutes to segment a single input MRI scan.

4. RESULTS

We show the CV of each combination of protocol sequences using quantitative (Figures 4 

and 5) as well as qualitative results (Figure 6). In Figure 4, every cell in the matrix 

represents the CV for one ROI from one comparison of protocol sequences and this matrix is 

sorted by the average CV. In particular, we note that colors on the top seven rows were much 

darker than the rest of the matrix, which shows the CV of variation is much lower for this set 

of sequences compared to the others. Those seven rows match seven comparisons between 

the same protocols, which is expected because the CV between the same protocol sequence 

is supposed to be much lower than that between inter-protocol comparisons. In Figure 5, we 

show the average CV of all combinations of protocol sequences. Each shape represents a 

particular protocol sequence compared with other protocol sequences. We find similar 

results to those shown in Figure 4; the average CV between the same protocol is much lower 

than that of inter-protocol comparisons. as the seven points on the bottom of the figure 

corresponds to the seven intra-protocol comparisons. However, the CV scores of inter-

protocol comparisons are still reasonable, where the worst average CV between two protocol 

sequences is around 0.143. In Figure 6, three groups of comparisons were presented, which 

presents the qualitative examples of highest, median, and lowest CV using SLANT. With a 

worst correlation variation 0.143 between protocol sequence POST_T1_3D_TFE and 

protocol sequence sT1W_3D_TFE and a best correlation of variation of only 0.042 in 

intraprotocol POST_T1_3D_TFE comparison.
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5. CONCLUSION AND DISCUSSION

In this study, we evaluate the reproducibility of SLANT method by means of calculating the 

coefficient of variation between each combination of clinical protocol sequences. Based on 

Figure 4, the CV is lower in intra-protocol sequence comparisons than in inter-protocol 

sequence comparisons, which is expected as the way of acquiring the data is slightly 

different if protocol sequences were different. In Figure 5, the result showed that the SLANT 

method achieved a CV that is less than 0.05 for all intra-protocol comparisons. Considering 

the inter-protocol comparisons as well, the lowest CV is 0.042 (comparison between the 

same protocol sequences), while the highest CV is 0.143 (comparison between the different 

protocol sequences). We conclude that SLANT method yields a high reproducibility across 

clinical protocol sequences.

There are also several limitations of this work. Based on Figure 4, we see two yellow strips 

in inter-protocol comparison area and light blue in intra-protocol comparison area, which 

means these two ROIs (49 Right-Inf-Lat-Vent and 50 Left-Inf-Lat-Vent) have notably and 

consistently higher CV across any protocol sequence comparison. This phenomenon 

requires further investigation. Another limitation is that we only evaluated the SLANT 

whole brain segmentation volumetry in this study. In the future, we would like to perform 

the external validation on other representative whole brain segmentation methods and 

include overlap measures, surface distances, and comparisons with expert human raters.
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Figure 1. 
Seven protocols and both of intensity image and result segmentation of their scan-rescan is 

presented. The first four protocol sequences are from the same subject while the last three 

protocol sequences are from different subjects. “POST_T1” and “VPOST_T1” typically 

represents contrast-enhanced MRI T1 scans, while the “Pre_T1” typically indicates the T1 

scans without contrast-enhancement. The “T1W” and “VT1W” could be a scan with 

contrast-enhancement, which is sometimes used in clinical scans. The protocol 

heterogeneity observed in this study highlights the need for methods that are robust to 

variations in clinical practice.
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Figure 2. 
Workflow of the SLANT method. Whole brain segmentation method is presented, which 

combines canonical medical image processing methods (registration, harmonization, label 

fusion) with 3D network tiles.
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Figure 3. 
Workflow evaluating SLANT reproducibility across clinical protocol sequences. (1) 1840 T1 

MRI scans were acquired to conduct quality assessment. (2) Seven different protocol 

sequences were selected where each protocol sequence has at least 30 MRIs. (3) SLANT 

segmentation was applied on all useable MRIs and generate labels and corresponding ROI 

volumes. (4) Coefficient of Variation (CV) was calculated between the same protocol 

sequences and across different protocol sequences.
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Figure 4. 
The reproducibility of SLANT method was shown. The CV of variation of each ROI of each 

comparison between protocol sequences were demonstrated. The color of each label 

corresponds to the CV of variation value shown in the color bar.
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Figure 5. 
Qualitative reproducibility of the SLANT method. In the lowest CV case, the segmentations 

between two scans within the same protocols look highly similar, while in the highest CV 

case the segmentations have more inter-scan differences.
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Figure 6. 
The average CV between each protocol sequence comparison. Each shape in the figure 

represents the comparison with one particular protocol sequence.
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Table 1

The number of subjects for 28 validation combinations

T1 POST PRE sT1W VPOST VT1W SAG

T1 619 434 137 50 57 154 28

POST 177 384 7 60 31 14

PRE 223 8 73 43 18

sT1W 43 2 0 42

VPOST 35 7 0

VT1W 49 0

SAG 39

*
1195 T1 MRIs volumes from dataset provided by Vanderbilt University Medical Center were used to evaluate the reproducibility of the SLANT 

method with the number of combination between each protocol sequence.
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