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Abstract

The gold(I)-catalyzed, stereoselective hydrofluorination of electron-deficient alkynes with 

triethylamine trihydrogen fluoride (Et3N·3HF) is described. Fluorinated α,β-unsaturated 

aldehydes, amides, esters, ketones, and nitriles were isolated in moderate to good yields as single 

diastereomers. In all but four cases, the (Z)-vinyl fluorides were initially formed in ≥97% 

diastereoselectivity. This work constitutes the first catalytic example of the diastereoselective 

preparation of a variety of β-alkyl, β-fluoro Michael acceptors from alkynes. Additionally, the 

described work expands access to β-aryl, β-fluoro Michael acceptors to the synthesis of β-fluoro-

α,β-unsaturated amides and nitriles. The monofluoroalkenes formed through this strategy were 

readily transformed into other fluorine-containing compounds, and the developed method was 

applied to the synthesis of a fluorinated analogue of Exoderil, a topical antimycotic.
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New routes toward the selective fluorination of small molecules have been targeted in recent 

years due to the differences in the physical and biological properties between fluorinated 

compounds and those of their nonfluorinated analogues.1 A fluorinated motif of particular 

interest is the monofluoroalkene. Monofluoroalkenes are isosteric with peptide bonds, and 

several bioactive compounds containing this motif have been reported.2 Although several 

synthetic protocols exist to access α-fluoro, α,β-unsaturated carbonyl compounds—the 
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Horner–Wadsworth–Emmons reaction,3 the Julia Olefination,4 the Peterson Olefination,5 

and the Reformatsky reaction6—the stereoselective synthesis of β-fluoro, α,β-unsaturated 

carbonyl compounds has proven to be a challenge, especially if β-alkyl substituents are 

desired.7 Previous methods to access (Z)-β-fluoro-α,β-unsaturated carbonyl compounds are 

limited by the formation of products with low diastereoselectivities or yields,8 the 

requirement for prefunctionalized starting materials,9 and narrow functional group tolerance.
9b,c,10 Because of these limitations, a stereoselective and functional-group-tolerant method 

to access (Z)-β-alkyl, β-fluoro-α,β-unsaturated carbonyl compounds would be highly 

desirable.

The hydrofluorination of electron-deficient alkynes is perhaps the most direct method to 

generate (Z)-β-fluoro α,β-unsaturated carbonyl compounds from commercially available 

starting materials. Although some electron-deficient alkynes can undergo hydrofluorination 

in the absence of a catalyst, the diastereoselectivities of these reactions are generally 

moderate, especially for β-alkyl substrates.8a,b,10 Traditional chromatographic techniques 

often fail to separate (E) and (Z) isomers of monofluoroalkenes; therefore, it is essential that 

the desired monofluoroalkenes are synthesized with high diastereomeric ratios.11

Since Sadighi’s seminal report of the gold-catalyzed hydrofluorination of internal alkynes in 

2007, other research groups have expanded the use of coinage metals for alkyne 

hydrofluorination.12 Both Jiang, with excess AgF (Scheme 1a), and Nolan, with a catalytic 

amount of gold (Scheme 1b), prepared β-aryl, β-fluoro-α,β-unsaturated esters or ketones 

from electron-deficient, unsymmetrical alkynes.12c,e However, neither procedure reported 

the synthesis of β-alkyl, β-fluoro Michael acceptors or utilized alternative electron-

withdrawing groups such as nitriles or amides. Alternative conditions were described by 

Hammond and Xu for the gold-catalyzed hydrofluorination of alkynes with a new 

DMPU/HF fluorinating reagent, but this procedure did not expand access to (Z)-β-fluoro-

α,β-unsaturated carbonyl compounds.12d The first gold-catalyzed synthesis of a β-alkyl-β-

fluoro Michael acceptor was demonstrated by Hammond and Xu in 2017 (Scheme 1c).12f

Although β-alkyl-β-fluorovinylsulfones could be accessed in a (Z)-selective manner, alkynes 

that did not bear a sulfonyl group—such as aroyl and phosphonyl—failed to undergo 

hydrofluorination. Despite these advances in alkyne hydrofluorination by coinage metals, a 

general procedure to synthesize a variety of (Z)-β-alkyl, β-fluoro Michael acceptors from 

electron-deficient alkynes is still an unsolved challenge.

Herein, we report a method for the preparation of a diverse array of β-alkyl, β-fluoro 

Michael acceptors from the gold-catalyzed hydrofluorination of electron-deficient alkynes. 

In addition to forming β-fluoro-α,β-unsaturated esters and ketones, this method is the first 

gold-catalyzed procedure to generate β-fluoro-α,β-unsaturated amides, nitriles, and 

aldehydes. A variety of β-alkyl as well as β-aryl substituents were tolerated; notably, 3° 

alkyl, alkenyl, and o-tolyl. Furthermore, we demonstrate that the monofluoroalkene products 

are synthetically versatile fluorinated building blocks.

The hydrofluorination of ethyl 2-butynoate (1a) with Et3N· 3HF to form ethyl (Z)-3-

fluorobut-2-enoate (1b) was selected as a model reaction. Monofluoroalkene 1b formed in 
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moderate yields and low stereoselectivities under conditions similar to those reported by 

Sadighi (see Table 1, entry 1).12a Reactions employing AgBF4 as the silver salt afforded 

alkene 1b in greater chemical yield compared to reactions conducted in the presence of other 

silver salts (entry 1 and 2, see the Supporting Information for further details). Upon 

switching from gold catalysts bearing NHC-ligands to gold catalysts bearing phosphine 

ligands, modest improvements in both yield and stereoselectivity were observed (entries 3 

and 4). Unfortunately, reactions conducted with several triaryl or trialkyl phosphine gold(I) 

complexes as catalysts generated a purple hue after several hours in the presence of 

Et3N·3HF, which has been reported by others as a visual indication of catalyst 

decomposition.13

Cationic-gold(I) complexes with dialkylbiarylphosphine ligands are known to be more stable 

toward decomposition pathways than cationic gold(I) complexes triaryl or trialkyl 

phosphines.14 Upon switching the gold catalyst to CyJohnPhosAuCl, monofluoroalkene 1b 
was generated in 84% yield. However, the stereoselectivity of the reaction conducted with 

CyJohnPhosAuCl decreased relative to the stereoselectivity of the reaction conducted with 

Cy3PAuCl as the catalyst (entry 3 and 4). Examination of a variety of dialkylbiaryl 

phosphinegold(I) complexes revealed that only reactions with RuPhos as the ligand afforded 

the greatest Z:E selectivity of 1b (entries 6 and 7). For instance, in the presence of 

CyJohnPhos the yield of 1b after 4 h was 85% but with a Z:E of 77:23.

In addition to the ligand effect on the reaction, both the solvent and additive were found to 

influence the yield and stereoselectivity of the hydrofluorination of alkynoate 1a. Switching 

from potassium bisulfate to p-chlorobenzoic acid (p-Cl BA), a more soluble acid coadditive, 

resulted in a modest improvement in the yield of monofluoroalkene 1b (entry 8). Reactions 

conducted with RuPhosAuCl and CH3CN as the solvent afforded the hydrofluorination 

product in a further improved yield while maintaining the Z-selectivity observed at shorter 

reaction times (entry 8 and 9). The change in solvent also ensured that the Z:E ratio did not 

decrease over time, permitting easier reaction monitoring as alkene isomerization was 

largely suppressed. Ultimately, reactions conducted in a solvent mixture of CH3CN:CH2Cl2 

maintained the high stereoselectivity of the hydrofluorination of alkyne 1a while affording 

alkene 1b in an improved yield (entry 9 and 10). The beneficial improvement in the yield of 

1b was observed with as little as 10 mol % p-Cl BA (entry 11 and 12). Other acid additives 

were examined, but benzoic acid derivatives appeared to provide an optimal pKa range (see 

Supporting Information, Table S4). Increasing the equivalents of Et3N·3HF did not have a 

significant influence on the reaction (entry 13); however, reactions with Et3N·2HF, Et3N·HF, 

and pyridine·HF (70% HF) failed to generate alkene 1b (See Supporting Information).

Having identified suitable reactions conditions for the hydrofluorination of alkyne 1a, we 

investigated the hydrofluorination of β-alkyl alkynoates, alkynones, alkynamides, and 

alkynenitriles (Table 2). Methyl, 1° alkyl, 2° alkyl, and vinyl β-substituted alkynoates 

underwent hydrofluorination in the presence of Et3N·3HF in a Z-selective manner in good 

yields. Notably, the final products were all isolated as a single diastereomer after standard 

silica gel column chromatography. Importantly, these results highlight this operationally 

simple, one-step route to β-alkyl, β-fluoro Michael acceptors from alkynes. The 

hydrofluorination reaction was also shown to be scalable, as fluoroalkenes 3b and 5b were 
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both prepared on a gram scale in good yield and with excellent Z-selectivity. For substrate 

6a with a bulky β-substituents, a higher reaction temperature was required to obtain the 

product in moderate yield (6b). The hydrofluorination of alkynoates bearing β-vinyl 

substituents provided straightforward access to fluorinated dienes 7b and 8b. 

Hydrofluorination of the γ,δ-alkene of either 7a or 8a was not detected by 19F NMR 

spectroscopy. The reaction conditions for the hydrofluorination of β-alkyl alkynoates were 

also suitable for the hydrofluorination of β-alkyl (hetero)aryl alkynones 9b and 10b. 

Although methyl ketone 11a proved to be a challenging substrate, 11b was isolated in good 

yield with only a trace amount of the E-isomer. Both 2° and 3° β-alkyl alkynamides 

(12−14a) as well as alkynonitrile derivative 15a underwent hydrofluorination to provide 

12−15b in moderate yields. Dec-2-ynal was the only substrate that did not undergo 

hydrofluorination in a diastereoselective manner under the standard conditions in Table 2 

(72%, Z:E = 51:49). However, conducting the reaction at 5 °C did afford a Z:E ratio of 

>98:2 and 22% yield after 24 h. Unfortunately, after 96 h at 5 °C, the yield increased to 51% 

but the Z:E ratio decreased to 70:30.

To showcase the generality of this method, the hydrofluorination reactions of a variety of 

electron deficient alkynes bearing β-aryl substituents were also explored (Table 3). 

Generally, the yields of β-aryl-monofluoroalkenes 16–30b were comparable to those of their 

β-alkyl-analogues 2–15b. In contrast to previous procedures, even a monofluoroalkene 

bearing an ortho-substituted aryl group (19b) was generated in modest yield.12e Compared 

with the esters and ketones, even the more electrophilic 2-phenylpropiolaldehyde afforded 

27b in a Z-selective manner. Moreover, both β-aryl alkynonitriles and alkynamides were 

suitable substrates, generating otherwise difficult to access fluorinated motifs (28–30b). 

Finally, this methodology was found to be complementary to that reported by Hammond and 

Xu (See Supporting Information, Table S5)12f

The monofluoroalkenes generated from our catalytic process underwent a series of 

transformations demonstrating that β-fluoro Michael acceptors are valuable fluorinated 

building blocks (Scheme 2). For example, ester 3b was reduced in the presence of DIBAL–

H to yield the fluorinated allylic alcohol 1c in high yield.15 Aldehyde 27b underwent Wittig 

olefination in modest yield to afford a 1-fluoro-2,4-diene 2c.16 In the presence of a suitable 

1,3-ylide, ester 5b underwent a regioselective [3 + 2] cycloaddition to generate a pyrrolidine 

with a quaternary fluorine center (3c).17 Finally, amide 31b was reduced in the presence of 

Meerwein’s salt to furnish a fluorine-containing analogue of Exoderil 4c.18

In conclusion, we have developed a stereoselective hydrofluorination of electron-deficient 

alkynes catalyzed by a RuPhos-ligated gold(I) complex. For the first time, direct access to a 

variety of (Z)-β-alkyl, β-fluoro Michael acceptors was achieved. In addition, (Z)-β-aryl, β-

fluoro α,β-unsaturated amides and nitriles were conveniently accessed with the disclosed 

method. The synthetic potential of the resulting monofluoroalkene was demonstrated with 

various transformations of the products without the loss of the newly installed fluorine atom, 

and with the synthesis of a fluorinated analogue of Exoderil.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Generation of β-Fluoro Michael Acceptors from Alkynes with Coinage Metals
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Scheme 2. 
Diversification of Fluorinated Michael Acceptors
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Table 1.

Effect of the Reaction Conditions on the Hydrofluorination of 1a

entry L solvent additive yield [%] (Z:E)
b

1 IPr CH2CI2 KHSO4 50 (66:34)

2
c

IPr CH2CI2 KHSO4 43 (70:30)

3 PPh3 CH2CI2 KHSO4 55 (60:40)

4 PCy3 CH2CI2 KHSO4 64 (75:25)

5 CyJohnPhos CH2CI2 KHSO4 84 (55:45)

6 RuPhos CH2CI2 KHSO4 57 (56:44)

7
d

RuPhos CH2CI2 KHSO4 62 (97:3)

8
e

RuPhos CH2CI2 p-CI BA
e

66 (97:3)

9 RuPhos CH3CN p-CI BA 70 (97:3)

10 RuPhos 1:4 CH2CI2:CH3CN p-CI BA 76 (96:4)

11
f

RuPhos 1:4 CH2CI2:CH3CN p-CI BA 71 (96:4)

12 RuPhos 1:4 CH2CI2:CH3CN none 65 (96:4)

13
g

RuPhos 1:4 CH2CI2:CH3CN p-CI BA 80 (96:4)

a
General reaction conditions: 0.2 mmol 1a, plastic vial.

b
Yields and Z:E ratios were determined by 19F NMR spectroscopy with 2,4-dinitrofluorobenzene as an internal standard.

c
5 mol % AgSbF6.

d
4 h.

e
p-chlorobenzoic acid.

f
10 mol % p-CI BA.

g
3.0 equiv Et3N·3HF.
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Table 2.

Scope of β-Alkyl, β-Fluoro Michael Acceptors

a
Standard reaction conditions: 0.5 mmol 2–15a, 3.0 equiv Et3N·3HF, 1.0 equiv p-CI BA, 5 mol % RuPhosAuCl, 5 mol % AgBF4, 4:1 

MeCN:CH2CI2 [0.7M], rt, 24 h.

b
2-15b isolated as a single isomer except 11b.

c
Detemined by 19F NMR spectroscopy with PhF as an internal standard.

d
6.0 mmol scale.

e
5.0 mmol scale.

f
55 °C ginsoluble product.
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h
1.25 M, 4.0 equiv Et3N·HF.

i
1.25 M, 4.0 equiv Et3N·3HF.

j
1.43 M, 4.5 equiv Et3N·3HF, 50 °C.
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Table 3.

Scope of β-aryl, β-fluoro Michael acceptors

a
Standard reaction conditions: 0.5 mmol 16-30a, 3.0 equiv Et3N· 3HF, 1.0 equiv p-CI BA, 5 mol % RuPhosAuCl, 5 mol % AgBF4, 4:1 

MeCN:CH2CI2 [0.7M], rt, 24 h.

b
16-30b isolated as a single isomer.

c
Determined by 19F NMR spectroscopy with PhF as an internal standard.

d
1.43 M, 45 °C.

e
45 °C.

f
4.5 mmol.

g
1.25 M, 55 °C, 4.0 equiv Et3N·3HF.

h
45 °C, 48 h, 4.0 equiv Et3N·3HF.
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