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Abstract

We have recently introduced a new technique, coherent hemodynamics spectroscopy (CHS), 

which aims at characterizing a specific kind of tissue hemodynamics that feature a high level of 

covariation with a given physiological quantity. In this study, we carry out a detailed analysis of 

the significance of coherence and phase synchronization between oscillations of arterial blood 

pressure (ABP) and total hemoglobin concentration ([Hbt]), measured with near-infrared 

spectroscopy (NIRS) during a typical protocol for CHS, based on a cyclic thigh cuff occlusion and 

release. Even though CHS is based on a linear time invariant model between ABP (input) and 

NIRS measurands (outputs), for practical reasons in a typical CHS protocol, we induce finite 

“groups” of ABP oscillations, in which each group is characterized by a different frequency. For 

this reason, ABP (input) and NIRS measurands (output) are not stationary processes, and we have 

used wavelet coherence and phase synchronization index (PSI), as a metric of coherence and phase 

synchronization, respectively. PSI was calculated by using both the wavelet cross spectrum and the 

Hilbert transform. We have also used linear coherence (which requires stationary process) for 

comparison with wavelet coherence. The method of surrogate data is used to find critical values 

for the significance of covariation between ABP and [Hbt]. Because we have found similar critical 

values for wavelet coherence and PSI by using five of the most used methods of surrogate data, we 

propose to use the data-independent Gaussian random numbers (GRNs), for CHS. By using 

wavelet coherence and wavelet cross spectrum, and GRNs as surrogate data, we have found the 

same results for the significance of coherence and phase synchronization between ABP and [Hbt]: 

on a total set of 20 periods of cuff oscillations, we have found 17 coherent oscillations and 17 

phase synchronous oscillations. Phase synchronization assessed with Hilbert transform yielded 

similar results with 14 phase synchronous oscillations. Linear coherence and wavelet coherence 

overall yielded similar number of significant values. We discuss possible reasons for this result. 

Despite the similarity of linear and wavelet coherence, we argue that wavelet coherence is 

preferable, especially if one wants to use baseline spontaneous oscillations, in which phase locking 

and coherence between signals might be only temporary.
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1. Introduction

Recently, our group proposed a novel method, named coherent hemodynamics spectroscopy 

(CHS), for studying microvascular and microcirculation integrity by inducing controlled 

hemodynamic changes in living organisms.1 These hemodynamic changes may be 

associated with perturbations in the arterial blood pressure (ABP) that, in human studies, can 

be induced by a forcing mechanism such as paced breathing,2,3 cyclic occlusions and 

releases of pneumatic thigh cuffs,4 head-up tilt protocols,5 or squat–stand maneuvers.6 For 

brain studies, the ensuing changes in cerebral blood volume and blood flow can be measured 

by a number of techniques, including functional magnetic resonance imaging, near-infrared 

spectroscopy (NIRS), transcranial Doppler ultrasound, and diffuse correlation spectroscopy.7 

The basic hypothesis of CHS is that tissue with healthy microvasculature and perfusion 

differs from diseased tissue in terms of the dynamic relationship between blood flow and 

blood volume (or their covariates such as the tissue concentrations of oxy- [HbO2], deoxy- 

[Hb], and total hemoglobin [Hbt]) in response to hemodynamic perturbations such as those 

induced by systemic ABP changes. In particular, when perturbations in ABP are the driving 

force of the observed hemodynamic changes, one can study the phenomenon of cerebral 

autoregulation (CA), which is critically important for brain health.7

The idea of studying the covariation of [Hb] and [HbO2] with NIRS to obtain diagnostic or 

functional information is not new. For example, spontaneous cerebral co-variations of [Hb] 

and [HbO2] were characterized in infants8,9 and adults,10–12 and the phase relationship of 

paced-breathing-induced oscillations in cerebral [Hb] and [HbO2] was associated with the 

level of CA.13 Furthermore, covarying representations of cerebral [Hb] and [HbO2] were 

proposed for functional brain studies.14–16 The novelty of the CHS technique is that it 

targets a specific kind of cerebral hemodynamics, namely, those that feature a high level of 

coherence and phase synchronization with a specific driving physiological process. CHS is 

not only based on the characterization of multi-frequency oscillations or dynamic transients 

of cerebral [Hb] and [HbO2], but it also translates such frequency- or time-resolved dynamic 

information into physiological quantities on the basis of a CHS mathematical model that 

treats the cerebral microvasculature as a linear, time-invariant system.1 The CHS model 

shows that oxy- and deoxy-hemoglobin concentrations oscillations, in particular their phase 

and amplitude relationships, depend on ABP oscillations (and associated blood volume and 

flow oscillations) through six physiological parameters, including the capillary and venous 

blood transit times, relative blood volumes in the arterial, capillary, and venous 

compartments, a measure of CA, etc. These parameters are fitted for in an inversion 

procedure using our CHS model as a forward solver.17 The strengths of our CHS model and 

its current limitations with respect to others proposed in the literature are described 

concisely in our previous publications.7,18
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The CHS treatment of the microvasculature as a linear time-invariant system requires a high 

level of coherence or covariation between the measured hemoglobin concentration dynamics 

and the physiological changes of blood volume, blood flow, and oxygen consumption in the 

investigated tissue. In fact, when a process is stationary, low coherence levels between 

measured hemoglobin concentrations and underlying physiological processes may reflect a 

nonlinear relationship, a dependence on additional variables not considered in the CHS 

model, or contributions from confounds or noise.19 This work considers the coherence or 

covariation between cerebral total hemoglobin concentration [HbT] and systemic ABP, 

which are directly relevant for CHS, and presents methods to define proper metrics and their 

critical values for significance.

We note that the study of the significance of metrics for coherence or covariation between 

signals is a prerequisite for studying CA. For example, in transcranial Doppler, it is required 

high coherence between ABP and blood flow velocity (BFV) in the middle cerebral artery.20 

Some NIRS published studies have used ABP and the difference [HbO2]-[Hb], which has 

been considered a surrogate of cerebral blood flow.21 The importance of coherence between 

ABP and cerebral concentrations of oxy- and deoxyhemoglobin was also reported in a 

transfer function analysis of NIRS signals.10 In all of these studies, a coherence greater than 

a threshold value of about 0.5 was considered to be significant. More generally, a threshold 

coherence value for significance should result from a statistical test of a null hypothesis of 

zero coherence, which depends on the degrees of freedom associated with the specific case 

of data collection and analysis. Following this statistical procedure, lower threshold values in 

the range 0.1–0.3 have been reported.19,22,23 The thresholds of significance for coherence 

reported in these works were demonstrated by Koopmans24 for the case of stationary 

Gaussian processes and nonoverlapping segments used for the Welch’s periodogram 

method. A step forward in coherence estimation was achieved by Gallet and Juliene,25 in 

which the authors derived a formula valid also for overlapping segments according to 

Welch’s method. We also point out the work of Faes et al.,26 in which the authors used 

surrogate data for defining a threshold of significance of coherence in cardiovascular 

variability analysis and showed that such a threshold could be frequency-dependent.

In this work, we find critical values of significance for coherence and phase synchronization 

of ABP and [HbT] under typical conditions of CHS measurements, and we discuss their 

relevance for CHS. We have used [Hbt] instead of [HbO] and [Hb], because usually it is the 

most robust NIRS measurand. However, the results of this study can be applied also for the 

covariation between [HbO] and ABP, and [Hb] and ABP. These two NIRS measurands 

would be used in a CA study. A key assumption of the CHS technique and model is that the 

dynamics of the concentrations of hemoglobin species be mainly driven by a single 

physiological or functional process, say changes in ABP, in which case they are expected to 

feature a high level of coherence and covariation with such process. In reality, in addition to 

ABP, there are a number of factors that can affect the concentrations of oxy- and 

deoxyhemoglobin in brain tissue: for example, fluctuations in blood CO2 levels, changes in 

oxygen consumption during brain activation, local vasomotion, spontaneous changes in 

respiratory and heart rates (which do lead to associated changes in blood pressure), Mayer 

waves, etc. Therefore, in order to minimize the effects of other confounds, we have proposed 

a protocol for CHS that uses cyclic thigh cuff occlusion and release maneuvers at multiple 
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frequencies, in which the subjects are resting and not engaged in any mental or physical 

challenge. This protocol of cyclic inflation and deflation of pneumatic thigh cuffs is known 

to induce cyclic oscillations in ABP.4 However, spontaneous oscillations in ABP may also 

contribute to the observed dynamics of hemoglobin concentration. In transcranial Doppler 

studies, in which the autoregulation in the macrocirculation is studied, no distinction is made 

between fluctuations in BFV that are caused by spontaneous or induced oscillations in ABP 

(as long as the amplitude of blood pressure oscillations is above a certain threshold; see 

method of coherent averaging27). Similarly, in our study, we have not investigated whether 

blood pressure oscillations are induced by thigh cuff oscillations (this could be done by 

using the methods discussed later) but we only have focussed on a metric of coherence or 

covariation between oscillations in ABP and in cerebral hemoglobin concentration.

As a metric of covariation, one could use the magnitude square coherence (linear coherence) 

and test whether its value at the frequency of cuff pressure oscillations is above a certain 

threshold of significance, as discussed in the literature quoted earlier. However, we must 

assume that the whole process under observation is stationary. In our study, we consider a 

protocol that involves an initial baseline acquisition for 2 min followed by five 2 min time 

windows in each of which we induce cuff pressure oscillations at different frequencies in the 

range 0.045–0.083 Hz. Twenty seconds of baseline separates two consecutive time windows. 

Because of the nature of our protocol, the time series of blood pressure and total hemoglobin 

is nonstationary (meaning that they have time-varying frequency components), and therefore 

we have considered more appropriate the wavelet coherence and the method of analytic 

signal based on the Hilbert transform to define metrics of covariation between ABP and total 

hemoglobin oscillations. Wavelet coherence was used to define a metric for the time-

frequency-resolved value of coherence between ABP and total hemoglobin concentration. 

Since the coherence between two signals is affected by the covariation of both amplitude and 

phase of the signals,28–30 we also define a metric only based on phase covariation (or phase 

synchronization) of the two signals. In fact, as a result of a strong amplitude covariation, the 

coherence of two signals may be significant even when the phase covariation is not.29

In summary, in this work, we have designed an ad hoc method, tailored to our CHS protocol, 

in order to investigate the level of coherence and phase synchronization between ABP and 

cerebral total hemoglobin concentration. Since our protocol induces nonstationary 

oscillations of ABP and NIRS measurands, we used two metrics suitable for nonstationary 

data to determine whether total hemoglobin oscillations were directly associated with ABP 

oscillations: (a) wavelet coherence and (b)phase synchronization index (PSI) which are 

suitable for nonstationary data. For PSI, the phase between two signals was defined by using 

the wavelet cross spectrum and also the method of analytic signal, based on the Hilbert 

transform. We have also used linear coherence for comparison with wavelet coherence. The 

thresholds or critical values of significance for these two metrics were defined by the method 

of surrogate data, which involve the derivation of the distributions of the two metrics under a 

null hypothesis of zero coherence or zero phase synchronization, respectively. Among 

surrogate data, we have also tested Gaussian random numbers (GRNs), because of the 

practicality to derive a threshold for our metrics that is only dependent on the protocol and 

data processing method, but that is not specific to the particular experimental data set. 
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Random numbers have already been used in the literature as surrogate data for statistical 

inference.31

We observe that published NIRS studies on functional connectivity32–36 and 

autoregulation37–41 have used the concept of coherence and/or phase synchronization 

between signals, by using continuous wavelet transform, wavelet coherence, and the analytic 

signal methods. In a few studies,32–34,36,37,41 a method of surrogate data was used in order 

to assess the significance of the signals covariation. Other NIRS studies in which the method 

of surrogate data was used for statistical inference are: Bernjak et al.,42 in which blood flow 

and oxygen saturation were studied on the skin of human subjects and Bu et al.,43 in which 

the authors studied the effect of sleep deprivation. To the best of our knowledge, this is the 

first NIRS study where the question of covariation between signals has been addressed more 

critically by using different metrics of covariation and different methods for the estimation 

of threshold values for significance of those metrics.

2. Theory and Methods

2.1. Experimental protocol and data acquisition in vivo

The NIRS measurements on human subjects were performed with a commercial frequency-

domain NIRS instrument (OxiplexTS, ISS Inc., Champaign, IL, USA). Optical probes 

connected to the spectrometer delivered light at two wavelengths, 690 nm and 830 nm, at a 

source–detector distance of 35 mm. The probe was placed against the left side of the 

subject’s forehead, to access brain tissue in the prefrontal cortex, and secured with a flexible 

headband. Continuous ABP was recorded with a finger plethysmography monitoring system 

(NIBP100D, BIOPAC Systems, Inc., Goleta, CA, USA). Pneumatic thigh cuffs were 

wrapped around both of the subject’s thighs and connected to an automated cuff inflation 

system (E-20 Rapid Cuff Inflation System, D.E. Hokanson, Inc., Bellevue, WA, USA). The 

air pressure in the thigh cuffs was continuously monitored with a digital manometer (Series 

626 Pressure Transmitter, Dwyer Instruments, Inc., Michigan City, IN, USA). Analog 

outputs of the ABP monitor and the thigh cuff pressure monitor were fed to auxiliary inputs 

of the NIRS instrument for concurrent recordings with the NIRS data. All signals were 

sampled synchronously at an acquisition rate of 12.5 Hz. The protocol consisted of 2 min of 

baseline acquisition followed by five groups of thigh cuff occlusion and release at the 

frequencies: 0.0454, 0.0555, 0.0625, 0.0714, and 0.0833 Hz, corresponding to oscillation 

periods of 22, 18, 16, 14, and 12 s, respectively. Each group consisted of six consecutive cuff 

inflation/deflation cycles followed by 20 s of rest (where the cuffs stayed deflated). At the 

end of the last cycle, 1 min of recovery was collected. The order of the cuff frequencies was 

scrambled in order to have a minimum overlap among the induced frequencies between 

consecutive groups of oscillations (see Sec. 2.4.2). Specifically, the sequence of frequencies 

of cuff oscillations was: 0.0625, 0.0833, 0.0454, 0.0714, and 0.0555 Hz. The maximum cuff 

pressure during the legs occlusion was 200 mmHg. The Tufts University Institutional 

Review Board approved the experimental protocol, and the subjects provided their informed 

consent. In this study, we show the results obtained on four subjects.
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2.2. Wavelet coherence and analytic signal methods

In this section, we describe the wavelet coherence and the analytic signal approach, which 

we have used in the analysis of our data to obtain measures of coherence (in addition to 

linear coherence by Fourier transformation) and phase synchronization, respectively. Given a 

real function x(t), the continuous wavelet transform Cx (cwt) is defined as:

Cx(a, b) = 1
a∫−∞

+∞
x(t) ⋅ ψ∗ t − b

a dt

= 1
a

x(t) ⊗ ψ∗ −t
a (b),

(1)

where φ(t) is the mother wavelet, and a and b are the scale and location parameters, 

respectively. In Eq. (1), the * and ⊗ symbols denote the complex conjugate and the 

convolution operator, respectively.44 We can describe intuitively the wavelet coefficients 

Cx(a, b) as measuring the local temporal similarity of the original function x(t) and a time-

scaled version of the original mother wavelet φ(t). A typical mother wavelet used in cwt is 

the complex Morlet wavelet, φ(t):

ψ(t) = 1
π f b

e
2πi f ct

e
− t2

f b , (2)

(here we have chosen the form provided in MATLAB documentation: https://

www.mathworks.com/help/wavelet/ref/cmorwavf.html) where fb and fc are the time decay 

parameter and the central frequency, respectively. For the actual analysis of data, the variable 

t and the parameter fc are intended to be normalized to the sampling time and frequency, 

respectively. Given the mother wavelet, a scaled version of it with scaling parameter a is 

characterized by a characteristic frequency:

f = f c a . (3)

Note that it can be misleading to associate one frequency to a scaled wavelet. In fact, due to 

its time localization, a wavelet is characterized by a spectrum of frequencies and f represents 

only the value where the maximum of the absolute value of its Fourier transform (FT) is 

found. Equation (3) is the formula that allows one to shift between scale and characteristic 

frequency. Time scaling of the mother wavelet is therefore achieved by shrinking (a < 1) or 

dilating (a > 1) the wavelet in time, which corresponds to probing a signal locally in a 

frequency band centered at higher or lower frequencies, respectively.

Given two functions x(t) and y(t) the wavelet cross spectrum Cx,y and wavelet coherence 

Cohx,y are defined by:

Cx, y(a, b) = S(Cx
∗(a, b)Cy(ab)), (4)
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Cohx, y(a, b) =
∣ S[Cx

∗(a, b)Cy(a, b)] ∣2

S( ∣ Cx
∗(a, b) ∣2)S( ∣ Cy

∗(a, b) ∣2)
, (5)

where S is a smoothing operator in time and scale. Here we have reported the formulas 

provided in MATLAB documentation (https://www.math-works.com/help/wavelet/ref/

wcoherence.html). The time-scale resolved phase difference between the two signals is 

defined as:

Δφx, y(a, b) = φx(a, b) − φy(a, b)
= Arg(Cx, y(a, b)) . (6)

A different method to define the phase of a time-dependent function is the analytic signal 

method.45 Given a function x(t), its Hilbert transform (HT) is defined as Hx(t):

Hx(t) = 1
π p . v .∫

−∞

+∞ x(τ)
t − τ dτ

= p . v . x(τ) ⊗ 1
πτ (t),

(7)

where p.v. denotes the Cauchy principal value of the integral. One important property of the 

HT is that it shifts the phase of the Fourier components by ±π/2:

Hx(t)(ω) = − i ⋅ sgn(ω)x(t)(ω), (8)

where the tilde (~) denotes the FT and sgn(ω) is the signum function. The analytic signal of 

a function x(t) is defined as:

zx(t) = x(t) + i ⋅ Hx(t), (9)

and it has the property that its FT contains only positive frequencies. However, the definition 

of analytic signal by itself does not guarantee a unique definition of instantaneous phase and 

frequency of a signal, the reason being that the analytic signal may contain a broad spectrum 

of positive frequencies. The method of analytic signal leads to a unique (noncontradictory) 

definition of instantaneous phase and frequency of a signal only if the Bedrosian’s product 

theorem holds true,45 which requires that a signal is defined in a “narrow” frequency band. 

If this requirement is not met, paradoxical results for the instantaneous phase and frequency 

of a signal are found46 (pp. 913–914). Therefore, for a correct definition of instantaneous 

phase by the analytic signal method, first a narrow band pass filter centered at the frequency 

of interest is applied to the signal x(t) and a filtered signal xF(t) is obtained. Afterwards, the 

analytic signal is defined by:

zxF
(t) = xF(t) + i ⋅ HxF

(t), (10)
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where HxF is the Hilbert transform applied to the filtered signal. The instantaneous phase is 

defined as:

φx(t) = Arg(zxF
(t)) . (11)

Both wavelet transform and the analytic signal method allow one to define an instantaneous 

phase difference between two signals which are particularly useful under nonstationary 

conditions. Usually, given a time interval in which the phase difference of two signals is 

studied, both methods yield a distribution of phase values (one phase value for each time 

point), and the question arises if the distribution is consistent with the hypothesis of a 

constant, well-defined phase difference between the signals. If the distribution is peaked 

around a certain phase value, we could argue in favor of a phase covariation or 

synchronization of the two signals. On the contrary, if the phase distribution is uniform or 

rather broad, we conclude that there is no phase covariation or synchronization of the 

signals. In this study, we have used the concept of PSI which is based on the definition of 

entropy of a random variable.47 Given a discrete random variable with N possible values, the 

definition of Shannon entropy is:

E = − ∑
i = 1

N
Pi ⋅ ln(Pi), (12)

where Pi is the probability of the ith value of the random variable. The PSI is defined as:

PSI = 1 − E
Emax

, (13)

where Emax = ln(N). Strictly speaking, the Shannon entropy of a random variable is defined 

by using log2, since the maximum entropy coincides with the number of bits necessary to 

code the maximum information, i.e., when all the values are equiprobable. In general, we 

can easily demonstrate that, regardless of the base for the logarithm d (d > 1), the maximum 

entropy occurs when all the outcomes of the random variable are equiprobable and it 

coincides with logd(N) On the contrary, the entropy of a random variable is zero only when 

one outcome is certain (i.e., Pi = 1; Pj = 0, j ≠ i). From the definition of entropy, it follows 

that the PSI can take values in the range 0–1 and, specifically, PSI = 1 when E = 0, and PSI 

= 0 when E = Emax. Other metrics for phase synchronization are also found in the literature. 

We mention a metric inversely related to the standard deviation of an angular variable,44,48 

an index based on conditional probability,47 and an index based on mutual information.49 

We note that different metrics may yield different synchronization values because they are 

sensitive to different features of the phase distribution of the two signals. For example, the 

PSI of the relative phase of two signals can have a high value also for a multimodal 

distribution, i.e., having distinct narrow peaks. However, in this case, the distribution might 

have a large standard deviation and therefore the related synchronization index might not be 

significant. More complex measures of synchronization have been considered in the field of 

electroencephalography (EEG).50
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2.3. Method of surrogate data

We used surrogate data to estimate the statistical distribution that our experimental data 

would follow under conditions of no coherence or no phase synchronization. The method of 

surrogate data was initially proposed for assessing conditions of nonlinear dynamics in both 

univariate and multivariate time series.49,51–57 It has also been used for testing significance 

for linear coherence26,58 and phase synchronization of signals.49,59–62 Surrogate data are 

simulated data that are generated under a null hypothesis of zero coherence or zero 

synchronization between two signals. There are different ways to generate pairs of surrogate 

data having zero coherence or zero phase synchronization. For example, we could assume 

that the surrogate data are derived from two independent white noise processes, or instead 

that they are derived from two independent linear Gaussian processes. Therefore, the null 

hypothesis of zero coherence or zero phase synchronization will be more specifically linked 

to the underlying stochastic processes the data are generated from. The method to generate 

surrogate data from different processes is based on retaining different features of the 

experimental signals, but in all the cases the temporal structure and/or synchronization 

present in these signals is destroyed by following a process of randomization. The process of 

randomization is repeated, and the metrics (coherence and PSI in this study) are recalculated 

for each pair of surrogate data to generate a distribution of the metrics under the null 

hypothesis. Afterwards, the values of coherence and PSI obtained for the actual 

experimental signals are compared with a threshold value derived from the distribution 

obtained under the null hypothesis (usually the 95th percentile, which corresponds to a 

typical error of type I, α of 0.05).

Some of the most common surrogate data methods are the following, where we used the 

nomenclature of Paluš.49

(1) IID1 surrogates are realization of independent identically distributed (IID) white noise 

stochastic processes which are obtained by scrambling the order of the original signals with 

two independent permutations for the samples of each pair of surrogate data. The null 

hypothesis presented by the IID1 surrogates is that the original signals result from 

independent white noise processes, so that any temporal structure (and synchronization) 

present in the original signal is destroyed, and only the distribution of the values is 

preserved.

(2) IID2 surrogates are obtained by using the same permutation to scramble the order of the 

original signals. In this case, the null hypothesis is that the original signals are mutually 

dependent white noise processes, where the distribution of the values and the Pearson 

correlation coefficient between the original signals are preserved during the process of 

randomization.

(3) FT1 surrogates are obtained by randomizing the phase of the FT of the signals. The two 

samples in a pair of surrogate data are obtained by using two independent random sequences 

for the phase of their FTs. In this case, the spectra (or the autocorrelation functions) of the 

signals are preserved, and the surrogate data realize the null hypothesis of two independent 

linear Gaussian stochastic processes that asynchronously oscillate at the same frequencies of 

the original signals.49
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(4) FT2 surrogates are obtained in a similar manner as FT1 surrogates but the phases are 

randomized by using the same sequence in the samples of a pair of surrogate data. In this 

case, each randomization preserves not only the auto spectra but also the cross spectra. The 

null hypothesis in this case is that of two linear stochastic processes showing a linear 

synchronization, which is usually weaker than that from nonlinear stochastic processes.49

(5) AAFT1 (amplitude-adjusted FT) surrogate data preserve both the auto spectra and the 

distribution of values of the signals (which is not preserved by FT1). The null hypothesis in 

this case is that the signals are a monotonic (static) nonlinear transformation of linear 

Gaussian processes that oscillate asynchronously at the same frequencies of the original 

signals.51

(6) Similar to FT2, one can define AAFT2, which preserves auto and cross spectra, and 

distribution of the signals.

(7) GRN (Gaussian random numbers) surrogate data are a sequence of independent 

Gaussian random numbers. In this case, no feature of the original signals is preserved and 

these surrogate data present the null hypothesis that the signals result from independent 

Gaussian white noise processes. Several of these surrogate data were discussed in the work 

of Paluš,49 others like AAFT1 are discussed in the work of Theiler et al.,51 whereas GRN 

was adopted in the work of Xu et al.31 The method AAFT2, to the best of our knowledge, 

was not discussed previously. Because FT2 (and AAFT2) preserves the cross spectrum of 

the original data, it was argued that these surrogate data preserve some degrees of linear 

synchronization and that the rejection of FT2 implies the detection of nonlinearity in the abp 

T phase synchronization.49 In this work, we have not investigated this point (i.e., if the type 

of synchronization between abp and T is linear or nonlinear); therefore, we have applied the 

IID1, IID2, FT1, AAFT1, and GRN surrogate data methods.

2.4. Data processing

2.4.1. Optical data and ABP—Oxy- and deoxyhemoglobin concentration changes 

were calculated from the measured optical intensity changes at two wavelengths (690 nm 

and 830 nm) by the modified Beer–Lambert law63,64 with differential pathlength factors 

(DPFs) of 7.8 at 690 nm and 7.1 at 830 nm. These values are within a range of values that 

can be found in the literature for brain tissue. Even though the real DPFs may be different 

from the ones we assumed, the results of this study (about the significance of 

interdependence between two signals) are not expected to be significantly affected. The 

changes of intensity were calculated with respect to a baseline value which was defined as 

the average intensity value during baseline (first 2 min of data acquisition). Total 

hemoglobin concentration changes (T) were calculated as the sum of oxy- and 

deoxyhemoglobin concentration changes. ABP was de-meaned and normalized by its mean 

value (average value during baseline, ABP0). The normalized ABP which will be used for 

studying the covariation with T is identified with lower case letters (abp) and defined as 

abp(t) = [ABP(t)-ABP0]/ABP0.

2.4.2. Wavelet coherence and analytic signal—We used the MATLAB built-in 

function “wcoherence” for the calculation of wavelet coherence and cross spectrum between 

Sassaroli et al. Page 10

J Innov Opt Health Sci. Author manuscript; available in PMC 2019 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ABP and T. We used standard settings of the function, including the complex Morlet wavelet 

as mother wavelet (https://www.mathworks.com/help/wavelet/ref/wcoherence.html). The 

output of the function was the time-frequency resolved wavelet coherence and cross 

spectrum between abp and T. More precisely, the coherence was a matrix of real numbers 

(CohT , abp
WT (a, b); the superscript WT stands for wavelet transform) in the range [0, 1] with 145 

rows and a number of columns equal to the number of time points of the original abp and T 
signals. We remind that the parameter a is the scale and b is time. Each row corresponded to 

a different scale, therefore to a different characteristic frequency in the range 0.001457–

5.968 Hz. The frequencies are obtained by defining the scales using 12 octaves (this number 

depends on the length of our data) and 12 voices per octave (by default). More specifically, 

the scales are defined by a = 2
(io +

iv
Nv

)
, where in our case io = 0, 1, …, 12, iv = 0, 1, …, 11, 

and Nv = 12. The characteristic frequencies are derived from the scales by the formula: f = 

fc/a where fc = 6/(2π). Fs/2, where Fs is the sampling frequency. The cross spectrum 

(CT , abp
WT (a, b)) was a matrix of complex numbers, having the same size as the previous one. 

From the cross spectrum matrix, it was possible to define the time-frequency resolved phase 

difference between signals (Eq. (6)). In order to assign a value and an error to the coherence 

and phase difference between abp and T in each group of six thigh cuff oscillations, we used 

the following procedure:

(a) first we identified a range of frequencies associated with the group of six cuff 

oscillations. In the assumption of sinusoidal oscillations, one group has the absolute value of 

the FT with a main lobe defined by the frequencies ( f cuff − 1
Δ t , f cuff + 1

Δ t ) where fcuff is the 

cuff frequency and Δt is the duration of the six oscillations;

(b) we identified the characteristic frequencies (i.e., the scales) defined by the wavelet 

analysis within the main lobe ( f cuff − 1
Δ t , f cuff + 1

Δ t );

(c) we defined two temporal arrays obtained by averaging the phase differences 

( Δ φT , abp
WT (b) ) and coherence ( CohT , abp

WT (b) ) across the scales in the main lobe. We used 

circular statistics for averaging the phase differences65;

(d) we identified the time range associated with the beginning and the end of a group of six 

cuff oscillations, namely (tb, te), and calculated the average value and standard deviation of 

Δ φT , abp
WT (b)  in that time range. Average and standard deviation of phase differences were 

calculated by using circular statistics,65 but linear statistics was used for the standard 

deviation of CohT , abp
WT (b) . Therefore, we obtained Δ φT , abp

WT ± σΔφ
WT and CohT , abp

WT ± σCoh
WT

at each cuff frequency fcuff. The latter values were to be compared with the corresponding 

threshold values obtained by the surrogate data method. For the calculation of PSIT , abp
WT  (Eq. 

(13)), we arranged in a circular histogram a subset of the values Δ φT , abp
WT (b) , those defined 

in the interval (tb, te), by dividing the 360° angle into 72 angular intervals of 5° and 

calculating the frequency of occurrence as estimate of Pi (see Eq. (12)) in each interval. 
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PSIT , abp
WT  was calculated according to Eq. (13). Note that the calculation of PSIT , abp

WT  was not 

associated with an error, since the data are used only one time for the estimation of one 

value of PSIT , abp
WT .

The analytic signals of abp and T were defined by first applying a narrow band pass filter to 

the original signals. More precisely, we generated the filter’s coefficient by using a Parks 

McClellan algorithm corresponding to a pass band of 0.01 Hz, a stop band of 0.02 Hz and 

centered at fcuff. Note that the stop band had similar width of the main lobe of the cuff 

frequencies, which was in the range 0.015–0.028 Hz. The ripple in the pass band and the 

attenuation between the stop band and the pass band were less than 0.05. The coefficients of 

the filter were used as input of a zero-phase filtering procedure (“filtfilt” function in 

MATLAB). The phase between T and abp was defined as: Arg(
ZTF

(t)

ZabpF
(t) ) where ZTF(t) and 

ZabpF(t) are the analytic signals defined after filtering T and abp (Eq. (10)). An average 

phase difference and standard deviation were defined by using circular statistics in the time 

range where the cuff oscillations occurred (tb, te), therefore obtaining Δ φT , apb
HT ± σΔφ

HT, 

where the superscript HT stands for Hilbert transform. We also calculated PSIT , abp
HT  in a 

similar manner as for PSIT , abp
WT .

2.4.3. Linear coherence—We computed the linear magnitude squared coherence 

(function “mscohere” in MATLAB) and the cross power spectral density (function “cpsd” in 

MATLAB) as measures of coherence and the angle between T and abp, respectively, at 

different frequencies. Both functions are based on the Welch’s averaged modified 

periodogram method. Default settings of the functions were used; therefore, the signals were 

divided into eight sections with 50% overlap, each section was windowed with a Hamming 

window, and eight modified periodograms were computed and averaged. For linear 

coherence between T and abp, we defined CohT , apb
FT ± σCoh

FT  (the superscript FT means 

Fourier transform) where the averages and standard deviations were calculated across the 

frequencies in the range ( f cuff − 1
Δ t , f cuff + 1

Δ t ). Similarly, for the phase difference, we 

defined Δ φT , abp
FT ± σΔφ

FT  and CohT , Aapb
FT ± σCoh

FT . Note that in this case time-averaging of 

phase difference and coherence is not possible because the method does not produce time-

resolved values. We also note that Fourier methods applied to nonstationary signals often 

produce results that are not easily interpretable, the reason being that the basis of Fourier 

decomposition of a signal is sinusoidal function defined at all time points. Nevertheless, 

since Fourier methods are standard and easier to apply, we have also compared its results 

with those obtained with the method described earlier. A final note about the phase 

difference between abp and T: with all the methods used in this work (wavelet, Hilbert, and 

FTs), we report the phase of total hemoglobin with respect to the phase of ABP: 〈ΔφT,abp〉 = 

〈φT − φabp〉.
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2.4.4. Calculating threshold values by the surrogate data methods—Given a 

surrogate data method (described in Sec. 2.3), we calculated a threshold value of 

significance for PSIT , abp
WT  and PSIT , abp

HT  by using the following procedure. We generated 100 

pairs of surrogate data and for each pair we calculated PSIT , abp
WT  and PSIT , abp

HT . For the 

calculation of the PSI between each pair of surrogate data, we applied the same procedure 

used for the calculation of PSI between T and abp. These 100 values were arranged in a 

histogram (distribution) where the range [0, 1] was divided into 50 intervals. The threshold 

values for the wavelet (PSIth
WT) and Hilbert transform (PSIth

HT) were defined by those values 

for which the error type I was less than 5% (i.e., the probability of finding a value higher 

than the threshold was less than 5% under the null hypothesis). We repeated this procedure 

three times, and we defined PSIth
WT ± σPSI

WT and PSIth
HT ± σPSI

HT  calculated as average and 

standard deviation of the values found in the three repetitions. In a similar manner, we 

calculated the threshold for wavelet coherence and linear coherence, but in this case the 

threshold values were calculated only one time by using 100 pairs of surrogate data. We 

assigned a constant error of 0.05 which corresponded to the partition of the interval [0,1] in 

20 sections. A rejection of IID1, IID2, FT1 and AAFT1 (which for almost Gaussian 

distributions yields results similar to FT1) null hypotheses supports the conclusion that the 

original signals are phase synchronized.49

3. Results

3.1. Example of raw data and phase difference plots

An example of raw data is shown in Fig. 1 (subject 4), which include: cuff pressure (CP; 

panel (a)), normalized changes in ABP (abp; panel (b)), changes of total hemoglobin 

concentration (T; panel (c)), and wavelet coherence ( CohT , abp
WT (b) ; panel (d)). The plots 

include the second 1 min of 2 min baseline and the first group of six cuff oscillations at fcuff 

= 0.0625 Hz. In panel (d) are also indicated the values of PSIth
WT during baseline and during 

the group of six cuff oscillations.

As it is visible from the raw abp, T, and CP signals, the cuff oscillations drive the amplitude 

and entrainment of abp and T oscillations at its own frequency. These oscillations in abp and 

T were not present (or present to a much lesser extent) during baseline. For these reasons, 

the signals obtained in our protocol are strictly nonstationary, so that nonstationary methods 

(like wavelet and Hilbert transforms or short time FT (STFT)) are in principle more 

appropriate. For example, from Fig. 1, we observe how the dynamic entrainment between 

abp and T is captured by both wavelet coherence and PSI: during cuff oscillation, wavelet 

coherence was significant ( CohT , abp
WT = 0.97 ± 0.02), whereas during baseline it was 

nonsignificant ( CohT , abp
WT = 0.64 ± 0.26).

Similarly, PSI was significant (PSIth
WT = 0.71) during the cuff oscillations and nonsignificant 

(PSIth
WT = 0.49) during baseline. Even linear coherence for this case showed a significant 
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value CohT , abp
FT = 0.90 ± 0.05. The significance or non-significance of coherence or PSI was 

true regardless of the null hypothesis for surrogate data. We have found that Fourier, Hilbert, 

and wavelet-based methods always agreed within errors for the calculation of the phase 

differences between T and abp. One example is shown in Fig. 2 for the same subject of Fig. 

1. On the left panel are plotted the average phase differences and standard deviations 

calculated at the cuff frequencies with the three methods. For the cross power spectral 

density (FT), these quantities are obtained by considering the frequencies across the main 

lobe of the cuff frequencies (Sec. 2.4.3), whereas for the analytic signal (HT) and wavelet 

cross spectrum (WT) methods, after averaging across the frequencies, the final averages and 

standard deviations were calculated in the time intervals where cuff oscillations occurred 

(Sec. 2.4.2). On the right panel, the same time-frequency calculation of averages and 

standard deviations was carried out for the analytic signal method (HT) and wavelet cross 

spectrum (WT) during baseline. As one can see from these two nonstationary methods, the 

standard deviations are much smaller during cuff oscillations than during baseline, which 

can be interpreted as enhanced phase synchronization or entrainment between T and abp 

driven by the cuff. We remind that one of the synchronization indices defined in the 

literature (not used in this work) is inversely related to the standard deviation of the phase 

difference distribution.44,48 Therefore, the content of Fig. 2 is in agreement with the 

different values of coherence and PSI found during cuff oscillations and baseline (Fig. 1). 

Also, from Fig. 2 (right panel), we can see that the phase differences calculated with the 

analytic signal and wavelet methods do not always coincide (at least when the 

synchronization of the signals is poor). We will comment on this fact in the discussions. 

These results confirm that Fourier methods tell us only if abp and T are overall coherent or 

entrained, whereas analytic signal and wavelet methods tell us also when this happens.

3.2. Significance of phase synchronization and coherence

A comparison between real data and threshold values for coherence and phase 

synchronization is presented in Fig. 3 (subject 1). The four panels are organized in the 

following way: linear coherence CohT , abp
FT  (panel (a)); wavelet coherence CohT , abp

WT  (panel 

(b)); PSI calculated with Hilbert transform PSIT , abp
HT  (panel (c)); and PSI calculated with 

wavelet transform PSIT , abp
WT  (panel (d)). In each panel, the x axis is defined as in Fig. 2. The 

threshold values for these parameters were calculated by using five different methods to 

generate surrogate data: (1) Gaussian random numbers (GRN, diamond symbol); (2) 

independent identically distributed white noise stochastic processes (IID1, square symbol); 

(3) mutually dependent white noise processes (IID2, cross symbol); (4) linear stochastic 

processes that asynchronously oscillate at the same frequencies of the original signals (FT1, 

circle symbol); and (5) monotonic (static) nonlinear transformation of linear Gaussian 

processes that oscillate asynchronously at the same frequencies of the original signals 

(AAFT1, asterisk symbol).

The values of these parameters calculated for the experimental data are also shown (data, 

triangle symbol). We remind that the PSI values for the real data are calculated only one 

time, and therefore no error is associated to them. In this work, we have not applied 
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statistical tests between experimental data and threshold values; rather, we define an 

experimental data value as significant if it is not in the error range of the corresponding 

threshold value. If an experimental data value has an associated error range (as is the case 

for CohT , abp
FT  and CohT , abp

WT ), we define it as significant if its range does not overlap the 

range of the threshold value. As we can see from Fig. 3 (subject 1), almost all of the four 

covariation parameters are significant regardless of the null hypothesis of surrogate data. 

The only exception is PSIT , abp
WT  (Fig. 3(d)), which is not significant at fcuff = 0.056 Hz. 

However, this value becomes significant if we choose IID1 and GRN as surrogate (we note 

that for this case the symbol size is larger than the error bars).

In Fig. 4 (subject 2), we see some discrepancies about the significance of the parameters of 

covariation. For example, if IID2 is chosen for threshold, CohT , abp
FT  (Fig. 4(a)) has no 

significant values, whereas CohT , abp
WT  (Fig. 4(b)) has two significant values (at fcuff = 0.071 

Hz and 0.083 Hz). PSIT , abp
HT  (Fig. 4(c)) has one significant value (at fcuff = 0.083 Hz), 

whereas PSIT , abp
WT  has three significant values (the same as for CohT , abp

WT  and at fcuff = 0.056 

Hz). If we choose any of the other threshold methods, CohT , abp
FT  has two significant values 

(at fcuff = 0.056 Hz and 0.071Hz) and CohT , abp
WT  has three (fcuff = 0.056 Hz adds to the 

previous two). The results for PSI do not change. Strictly speaking, if we consider GRN or 

IID1, CohT , abp
FT  has three significant values: the value at fcuff = 0.045 Hz adds to the other 

two significant values found with FT1 and AAFT1.

Also in Fig. 5 (subject 3), we see some discrepancies among the parameters of covariation 

and methods for surrogate data. If we choose IID2 for threshold values, CohT , abp
FT  has three 

significant values (fcuff = 0.045, 0.056, and 0.071 Hz); also CohT , abp
WT  has three significant 

values (fcuff = 0.056, 0.071, and 0.083 Hz). PSIT , abp
HT  and PSIT , abp

WT  have two significant values 

(fcuff = 0.071 Hz and 0.083 Hz). If we consider any other surrogate data for threshold, all the 

values are significant for CohT , abp
FT ; the same is true for CohT , abp

WT  with the exception of 

fcuff = 0.045 Hz. For PSIT , abp
HT  another significant value (at fcuff = 0.056 Hz) will add to those 

found with IID2 but only if we choose GRN or IID1 as surrogate data. For PSIT , abp
WT  if we 

consider any other surrogate data other two significant values (fcuff = 0.056 Hz and 0.0625 

Hz) will add to those found with IID2.

In Fig. 6 (subject 4), we can see that regardless of the surrogate data CohT , abp
FT  and 

CohT , abp
WT  show all significant values (the latter with the exception of fcuff = 0.071 Hz).

For PSIT , abp
WT  if we choose IID2 we have three significant values (fcuff = 0.056, 0.0625, and 

0.083 Hz), if we choose any other surrogate data all the values become significant. Different 

results are obtained for PSIT , abp
HT : if we choose IID2 only one value is significant (fcuff = 
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0.0625 Hz); four more significant values will add if we choose GRN, three if we choose 

IID1, and two if we choose FT1 or AAFT1. The results obtained in this section are 

summarized in Table 1.

3.3. Surrogate data thresholds across subjects

In this section, we show a comparison of the threshold values obtained by different surrogate 

data across subjects. If possible, one would want to disentangle the threshold values from the 

particular data set collected on a subject, so that a single threshold value may be used. In this 

sense, the threshold values obtained with GRN are not data-dependent, but depend only on 

the details of the protocol and on the details of the calculation method of the metric of 

covariation. Once those are fixed, the thresholds obtained with GRN are also fixed and could 

be used in a lookup table of general applicability. All the other surrogate data are obtained 

by a process of randomization of the experimental data, and the thresholds values derived 

from them should be recalculated every time new experimental data are collected. Because 

of the limited statistics used for Figs. 3–6, it is unclear whether the threshold values obtained 

by different methods for surrogate are subject-dependent. In Fig. 7, the threshold data 

calculated for CohT , abp
WT  are shown for the four subjects. We have omitted only the 

threshold data calculated with AAFT1 method because of their similarity with those 

calculated with the FT1 method.

In Fig. 7, we note that the variance across subjects with GRN and IID1 seems to be 

negligible, but it is not the case for IID2 and FT1. For IID2, the values scale according to the 

Pearson correlation coefficient between abp and T: subject 2 (square symbols in Fig. 7) had 

the lowest value of 0.33, whereas subject 4 (circle symbols in Fig. 7) had the highest value 

of 0.59. This discrepancy of the threshold values between subjects obtained with surrogate 

data IID2 and FT1 is also confirmed by repeating the calculations with higher statistics. We 

used 1,000 pairs of surrogate data and we extracted CohT , abp
WT  for each set; this was repeated 

three times and we computed CohT , abp
WT ± σCoh

WT . For this calculation, we also chose a more 

refined partition of the interval (0,1) which was divided into 50 sections.

The standard deviation σCoh
WT  is defined as the maximum between the one obtained from the 

three runs and 0.02 (width of each section). The results are shown in Fig. 8, in which we can 

see that subject-dependent thresholds can happen at all frequencies (IID2; left panel) or only 

at specific frequencies (FT1; right panel). In Fig. 9, we show the plots referring to the 

threshold values calculated with FT1 for the four parameters of covariation: CohT , abp
FT

(panel (a)), CohT , abp
WT  (panel (b)), PSIT , abp

HT  (panel (c)), and PSIT , abp
WT  (panel (d)). The 

results are shown for subject 3 (diamond symbols) and subject 4 (square symbols), and they 

were calculated by using better statistics (1,000 pairs of surrogate data) as in Fig. 8.

As one can see in Fig. 9, also for other parameters of covariation, the threshold values 

calculated from surrogate data may depend on the subject; therefore, they should be 

recalculated for better accuracy when a new data set on a different subject is collected. 
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Finally, for all the four parameters of covariation the widest variance across subjects is found 

by using IID2 surrogate data (results not shown).

3.4. How many frequencies are induced?

Last, we discuss the effectiveness of our protocol to induce coherent oscillations of T and 

abp. One direct way (not used in this work) is to assess the coherence/synchronization 

between abp and cuff signal and T and cuff signal separately (at a given fcuff), by using one 

of the surrogate data described before. One indirect way is to compare the coherence/

synchronization between abp and T during cuff oscillations and during baseline. If the 

coherence/phase synchronization is higher during cuff oscillations than baseline (at a given 

fcuff), we say that a particular frequency fcuff was induced by the cuff operation. This point 

can only be studied with nonstationary methods; therefore, we used three of the four 

parameters of covariations, namely, CohT , abp
WT , PSIT , abp

HT , and PSIT , abp
WT . These parameters 

were calculated during the periods of cuff oscillations and also during baseline, and their 

significance was decided by assuming the threshold values calculated with FT1 surrogate 

data (Figs. 3–6). The results are summarized in Table 2. The ratio of successfully induced 

oscillations varies among the three methods: 17/20 ( CohT , abp
WT ), 11/20 ( PSIT , abp

HT ), and 

16/20 ( PSIT , abp
WT ). We can also see that some coherent oscillations were present at baseline 

in subject 3 (according to CohT , abp
WT  and PSIT , abp

WT ) and in subject 4 (according to 

PSIT , abp
WT ). Similar results can be expected also by using other surrogate data.

4. Discussion

In this section, we address some questions arising from the choice of surrogate data and 

about the significance of the four parameters of covariation considered by us.

In our data analysis, different surrogate data yield comparable threshold values for 

significant covariation. However, on average, GRN and IID1 yield slightly lower threshold 

values, followed by FT1 and AAFT1, and last by IID2. Except GRN, this hierarchy of 

threshold values according to different null hypothesis reflects the information of the 

original data which is preserved after different processes of randomization. For IID1, only 

the distribution of the original data is preserved in the surrogate data, but oscillations and 

any kind of temporal feature are absent. For FT1, the auto spectra of the original data are 

preserved, and therefore the surrogate data are independent realization of the original data 

with de-synchronized oscillations (if they were present in the original data). AAFT1 

preserves both auto spectra and the distribution of the original data. It is expected that the 

threshold values calculated with FT1 and AAFT1 are greater than those found with GRN 

and IID1 and that the difference is related to the broadness of the spectrum of the original 

signals. In fact, if two signals are narrow band (ideally only one or few Fourier components), 

the randomization of the Fourier components will not destroy (or destroy only partly) the 

coherence/synchronization of the signals calculated at the center frequency of the band. On 

the contrary, GRN is characterized by a constant power spectrum (independent on 

frequency) where the Fourier components have unrelated phases, therefore yielding lower 
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values of PSI. Therefore, for the case of a narrow band spectrum, the threshold values 

obtained with FT1 would be progressively larger (as the band width of the spectrum is 

decreased) than those obtained with GRN. We verified this point by using finite sinusoidal 

oscillations as test signals (results not shown). Similar results were found by Faes et al.26 by 

comparing IID1 and FT1 for studying the threshold of linear coherence in cardiovascular 

variability analysis (in our study we have found the same thresholds with IID1 and GRN). 

The authors concluded that the advantage of using FT1 (for controlling precisely error type 

I) was clear only for narrow band signals. While for broad band signals, the two surrogate 

data methods could be used interchangeably.

The method IID2 yields threshold values greater than those obtained with FT1 and AAFT1. 

This result was not found in the work of Paluš49; on the contrary, the author found similar 

threshold values for IID1 and IID2 when studying the synchronization of the number of 

solar spots and the temperature in Prague, as function of the calendar year. Since in our 

study ABP and T are measured independently, any correlation of the signals cannot be the 

result of correlated noise, but only due to a true covariation of the signals. Therefore, we 

argue that the process of randomization that preserves the Pearson correlation coefficient 

might be too strict and should not be chosen. In fact, in the limit case in which the Pearson 

coefficient is “1” (one signal is the scaled version of the other), IID2 yields a threshold value 

of “1”, causing an error type II of 100%.

The practical importance of using GRN as surrogate data is that the threshold values depend 

only on the details of the protocol and data acquisition (sampling frequency, cuff 

frequencies, time span of cuff oscillations) and data processing (filter bandwidth for the HT, 

mother wavelet choice for WT) but not on the particular data collected on a subject. In this 

study, we have found that GRN yielded results that are similar to the other methods. For 

example, by looking at Table 1, if we consider CohT , abp
FT , the ratio of significant oscillations 

was 18/20 with GRN and 17/20 with FT1; with CohT , abp
WT  both surrogate data yielded a 

ratio of 17/20 significant oscillations. By using PSIT , abp
HT  the ratio was 14/20 with GRN and 

11/20 with FT1. Finally, if we consider PSIT , abp
WT  the ratio was 17/20 with GRN and 16/20 

with FT1. The reason for comparing GRN and FT1 is because they yield (on average) 

slightly lower and slightly higher threshold values (Fig. 7), respectively. These results 

suggest that GRN surrogate data can be used to obtain reliable threshold values of coherence 

and phase synchronization in a typical protocol used for CHS. We have also carried out PSI 

calculation by using the MATLAB function “cwt” (continuous wavelet transform) by using 

both Morse wavelet and complex Morlet wavelet (having fb = 2, fc = 6/(2π)), obtaining 

comparable threshold values by using different surrogate methods as those found with the 

function “wcoherence”.

Another question we want to address is about the comparison between stationary methods 

(represented here by CohT , abp
FT ) and nonstationary methods (represented here by CohT , abp

WT , 

PSIT , abp
HT , and PSIT , abp

WT ). In particular, it makes sense to compare CohT , abp
FT  with 

CohT , abp
WT  because they are both a measure of coherence between two signals. From the 
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significance viewpoint, even though the two metrics did not always agree, they shared a 

similar number of significantly induced oscillations for the four subjects investigated in this 

study (Table 1). However, we remind that the meaning of the significance is different for the 

two metrics: a significant CohT , abp
FT  at a frequency fcuff means that during the entire 

experiment the two signals were overall coherent at that frequency; in contrast, a significant 

CohT , abp
WT  at fcuff means (at least for this study) that the two signals were coherent during 

the time period when the cuff was oscillating at the frequency fcuff (note that CohT , abp
WT  can 

be studied, in principle, in any time interval). One possible explanation of the similarity of 

these two metrics is that our particular protocol, due to the wide overlapping of frequency 

bands induced by the cuff oscillations (at least for some cuff oscillation frequencies), can be 

considered weakly nonstationary. In fact, by using CohT , abp
WT  we have found that a particular 

frequency fcuff can be significant also in a time period when the cuff was oscillating at 

another (nearby) frequency. Moreover, because CohT , abp
FT  is an overall measure of 

coherence (as if the signals were strictly stationary), it is affected by the coherence during 

baseline, which is not considered in our significance analysis with CohT , abp
WT . For example, 

by looking at Table 2, it seems that by using CohT , abp
WT , the cuff frequencies were all 

significant also at baseline on subject 3. This observation might explain the higher ratio of 

significant frequencies found for subject 3 by using CohT , abp
FT  compared with those found 

with CohT , abp
WT  (Table 1). Given the relevance of time-resolved measures of coherence, for 

example, to identify coherent hemodynamics oscillations at rest (when no ABP 

perturbations are induced), we favor measures of coherence based on the wavelet transform 

rather than the FT for CHS. However, the nonstationary approach of the STFT is also 

suitable for CHS.

Another interesting question we want to address is about the relationship between coherence 

and phase covariation (or synchronization). There is a large amount of literature (especially 

in the field of EEG and magnetoencephalography (MEG)) pointing out that coherence is 

affected by both phase synchronization and covariation of amplitudes.28–30,66 For example, 

Srinath and Ray29 found that even when the phase relationship between two EEG channels 

is random, a strong amplitude covariation may introduce a significant coherence. Also, in an 

MEG study by Tass et al.,47 the authors found a significant coherence between channels 

without a detection of significant phase synchronization. These results, observed in two 

different research fields, point to the conclusion that a significant phase synchronization 

might be more difficult to achieve than a significant coherence. In our study, we can 

compare the coherence and phase synchronization metrics by releasing the assumption of 

stationarity. In fact, if we consider CohT , abp
WT  and PSIT , abp

WT  from Table 1, we can see that 

these two metrics have a similar significance across the four subjects. In particular, the ratios 

of significant induced oscillations for CohT , abp
WT  and PSIT , abp

WT  are: 17/20, 17/20 for GRN, 

same ratios of GRN for IID1, 17/20, 16/20 for FT1 and same ratio of FT1 for AAFT1, 

respectively. These results point to the conclusion that wavelet coherence is mainly affected 

by phase synchronization, at least when the phase is calculated with wavelet cross spectrum, 
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so that CohT , abp
WT  may be a good option to assess the level of both coherence and phase 

synchronization in CHS.

We want also to discuss the differences of the results obtained with the two PSI metrics, 

which differ only for the way the phases are calculated. First, by looking at Figs. 3–6, we 

notice a qualitative difference between PSIT , abp
HT  and PSIT , abp

WT . In fact, for all the subjects 

and for any surrogate data, the threshold of PSIT , abp
HT  has a linear trend with fcuff, whereas 

PSIT , abp
WT  is independent of it. These results can be explained if one thinks that a critical 

parameter for PSIth is the product Δf · Δt, where Δf is the bandwidth of the filter used and Δt 
is the period of observation (in this study, the operating time of the cuff). More specifically, 

we can say that PSIth is approximately inversely proportional to Δf · Δt. For the HT method, 

we have filtered the data by using a Parks McClellan filter with constant band width Δf; 

therefore, in this case, PSIth
HT is inversely proportional to Δt. For the protocol, we have 

induced the same number of oscillations at each value of fcuff; therefore, the lowest and 

highest fcuff are associated with the lowest and highest PSIth
HT, respectively. By the definition 

of WT (Eq. (1)), we can see that the WT is a convolution and that at each scale (i.e., each 

characteristic frequency, f = fc/a), the scaled mother wavelet acts as a filter (at the 

frequencies centered around f) to the entire signal. We can prove that for any scaled wavelet 

of the Morlet mother wavelet Δf/f (where Δf is the bandwidth of the scaled wavelet) is a 

constant. Therefore, for the wavelet “filter” Δf is directly proportional to f ≅ fcuff and Δf · Δt 
is constant for different fcuff. About the significance, if one compares the two PSI metrics 

across the subjects (Table 1) by using GRN and FT1, we get ratios of significant induced 

oscillations for PSIT , abp
HT  and PSIT , abp

WT  of 14/20 and 17/20 for GRN and 11/20 and 16/20 

for FT1, respectively. In the work of Bruns,30 the author presented theoretical arguments to 

infer the similarity among STFT, wavelet transform, and Hilbert transform. Bruns argued 

that the differences between the three non-stationary methods could be narrowed down to 

the choice of a window function in the three approaches, and if one chose the same window 

function there would be no difference among these methods. The author, after choosing 

similar window functions for STFT, WT, and HT, showed a qualitative comparison of the 

spectral amplitudes of some EEG data with the three methods. The subject of the similarity 

of phase synchrony with WT and HT was addressed, at least partly in the work of Le Van 

Quyen et al.28 In the work of Le Van Quyen et al., the authors presented a figure (Fig. 7(d)) 

in which the number of significant synchronous events found with HT and WT was 

comparable; however, it is not clear whether they applied the same metric or two different 

metrics to calculate synchronicity of events. In their work, they described the metric of 

phase locking value (PLV) and single-trial PLV (SPLV) when using wavelet transform. 

These metrics are related to angular standard deviation of the phase difference between two 

signals. Instead, they described PSI and mutual information when using Hilbert transform. 

We have already discussed in the introduction that the metric based on angular standard 

deviation and that based on PSI may not always agree. In our work, we have chosen the 

same metric (PSI) for the two ways (based on HT and WT) of calculating the phase 

difference between two signals. It is possible that the discrepancies found between the 
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significance of the two PSI metrics in our study are due to the different window functions, 

which in the wavelet approach is the shape of either the real or imaginary part of the wavelet 

and for the Hilbert transform is the shape of the impulse response function of the band pass 

filter.

Similar to Bruns’ work,30 we want express our ideas about a comparison among STFT, WT, 

and HT for studying coherence and synchronization in CHS. There are basically two reasons 

to prefer STFT or WT instead of HT: (1) STFT and WT yield two time–frequency resolved 

parameters (coherence and phase difference between two signals), whereas HT yields only 

one (the phase difference); (2) STFT and WT imply less computational effort than HT, at 

least if we want to determine the instantaneous phase at a number of distinct frequencies, 

since HT requires previous application of narrow band filtering at each frequency which can 

be a computationally heavy process. We note though that these drawbacks of HT might be 

reduced if one applies the empirical mode decomposition67 (EMD), previous to the 

application of the HT to the data in order to find the so-called Hilbert spectrum (where both 

the amplitudes and the instantaneous frequencies of the intrinsic mode functions (IMF) are 

expressed as a function of time). However, in principle, one would want to decompose the 

original signals in IMFs which are associated with clearly identifiable physical processes 

which still seem to be an issue for EMD.68

About the comparison between WT and STFT, research in our group applied to CHS has 

found that these two methods are similar and could both be used equally well for data 

analysis. In STFT, given a certain window size and type, it is more straightforward to assign 

a time and frequency resolution. On the contrary, as we have repeatedly discussed in this 

work, WT deals with scales and the “translation” of scales into frequencies should be done 

always with caution. In particular, one should not confuse the characteristic frequencies as 

the only frequencies of the scaled wavelets and their spacing (Δf) as the frequency resolution 

associated with WT. For example, in our study, for a typical characteristic frequencies list 

output by the MATLAB function “wcoherence”, the spacing Δf becomes smaller than the 

inverse of the total experiment duration, which obviously cannot be the true resolution.

In this study, we have focussed on the covariation between two independent data set like abp 

and T. However, in NIRS, we are often interested to study the covariation between oxy- and 

deoxyhemoglobin concentrations. These hemoglobin species are often derived by using 

mBLL, therefore, by using a linear combination of the same normalized changes of 

intensities at two wavelengths. The linear combination introduces a spurious correlation 

between the two hemoglobin species. For example, when we use λ1 = 690 nm and λ2 = 830 

nm, we can show that even when two sequences of random numbers are chosen as 

normalized intensities at the two wavelengths, the phase difference between oxy- and 

deoxyhemoglobin is weakly peaked around 180°. Given a fixed protocol, the study of 

coherence and PSI in this case shows that higher thresholds are found for oxy-and 

deoxyhemoglobin than for abp and T.
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5. Conclusions

In this work, we have investigated the significance of covariation between ABP oscillations 

(abp) and cerebral concentrations of total hemoglobin (T) in human subjects during a 

protocol involving cyclic inflation and release of pneumatic thigh cuffs. We focussed on the 

question of covariation, in the sense of both coherence and phase synchronization, between 

abp and T, which is directly relevant in the new technique of CHS. Even though the data 

processing method was tailored to our protocol and CHS, the scope of our work is broader 

because it aims at defining suitable metrics of significant covariation for any pair of signals.

The main goal of this work was to determine criteria to identify coherent/synchronous 

hemodynamic oscillations that are suitable for CHS. On the basis of our results, we propose 

to use independent Gaussian random numbers (GRN surrogate data) to generate a null-

hypothesis statistical distribution of coherence, whose 95th percentile is taken as a critical 

(or threshold) value for significance. Here, we have focussed on coherence between abp and 

T, but the methods presented are applicable to the characterization of coherence between any 

physiological and cerebral hemodynamics measures. However, we have pointed out that if 

one were to consider the coherence between the concentrations of oxy-hemoglobin (O) and 

deoxyhemoglobin (D) as measured with NIRS, care must be taken to properly take into 

account the intrinsic correlation introduced by the linear relationship between optical 

intensities and O and D. In general, the existence of an intrinsic correlation between two 

signals results in a greater critical value of significance for their coherence.

We also propose to use a wavelet-transform-based (or STFT-based) measure of coherence, 

which allows for a time-resolved assessment of significant coherence during the course of a 

CHS measurement. This latter result is particularly important because it enables the 

identification of coherent hemodynamics during periods of induced physiological 

perturbations as well as during rest periods, in which only spontaneous hemodynamic 

oscillations are present. The ability to apply CHS to resting subjects, without a need to 

induce controlled perturbations in ABP, may result in a broader applicability of CHS for 

monitoring microvascular reactivity, cerebral perfusion, and vascular brain health.

Acknowledgments

The authors wish to acknowledge Peter Kostelec. This work was supported by the US National Institutes of Health, 
Grant Nos. R21-EB020347 and R01-NS095334.

References

1. Fantini S, “Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in 
relation to blood volume, flow velocity, and oxygen consumption: Implications for functional 
neuroimaging and coherent hemodynamics spectroscopy (CHS),” NeuroImage 85, 202–221 (2014). 
[PubMed: 23583744] 

2. Panerai RB, “Assessment of cerebral pressure autoregulation in humans — A review of 
measurement methods,” Physiol. Meas 19, 305–338 (1998). [PubMed: 9735883] 

3. Cheng R et al., “Noninvasive optical evaluation of spontaneous low frequency oscillations in 
cerebral hemodynamics,” NeuroImage 62, 1445–1454 (2012). [PubMed: 22659481] 

4. Aaslid R et al., “Asymmetric dynamic cerebral autoregulatory response to cyclic stimuli,” Stroke 38, 
1465–1469 (2007). [PubMed: 17413049] 

Sassaroli et al. Page 22

J Innov Opt Health Sci. Author manuscript; available in PMC 2019 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Hughson RL et al., “Critical analysis of cerebrovascular autoregulation during repeated head-up 
tilt,” Stroke 32, 2403–2408 (2001). [PubMed: 11588333] 

6. Claassen JA, Levine BD, Zhang R, “Dynamic cerebral autoregulation during repeated squat-stand 
maneuvers,” J. Appl. Physiol 106, 153–160 (2009). [PubMed: 18974368] 

7. Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J, “Cerebral blood flow and autoregulation: 
Current measurement techniques and prospects for noninvasive optical methods,” Neurophotonics 3, 
031411 (2016). [PubMed: 27403447] 

8. Taga G et al., “Spontaneous oscillation of oxy- and deoxyhemoglobin changes with a phase 
difference throughout the occipital cortex of newborn infants observed using non-invasive optical 
topography,” Neurosci. Lett 282, 101–104 (2000). [PubMed: 10713406] 

9. Watanabe H et al., “Hemoglobin phase of oxygenation and deoxygenation in early brain 
development measured using fNIRS,” Proc. Natl Acad. Sci 114, E1737–E1744 (2017). [PubMed: 
28196885] 

10. Obrig H et al., “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism 
in human adults,” NeuroImage 12, 623–639 (2000). [PubMed: 11112395] 

11. Tian F, Niu H, Khan B, Alexandrakis G, Behbehani K, Liu H, “Enhanced functional brain imaging 
by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography,” 
IEEE Trans. Med. Imaging 30, 1239–1251 (2011). [PubMed: 21296704] 

12. Pierro ML et al., “Phase-amplitude investigation of spontaneous low-frequency oscillations of 
cerebral hemodynamics with near-infrared spectroscopy: A sleep study in human subjects,” 
NeuroImage 63, 1571–1584 (2012). [PubMed: 22820416] 

13. Reinhard M et al., “Oscillatory cerebral hemodynamics — The macro- vs. microvascular level,” J. 
Neurol. Sci 250, 103–109 (2006). [PubMed: 17011584] 

14. Wylie GR et al., “Using co-variations in the Hb signal to detect visual activation: A near infrared 
spectroscopic imaging study,” NeuroImage 47, 473–481 (2009). [PubMed: 19398013] 

15. Yoshino K, Kato T, “Vector-based phase classification of initial dips during word listening using 
near-infrared spectroscopy,” NeuroReport 23, 947–951 (2012). [PubMed: 22989928] 

16. Hong K, Naseer N, “Reduction of delay in detecting initial dips from functional near-infrared 
spectroscopy signals using vector-based phase analysis,” Int. J. Neural Syst 26, 1650012 (2016). 
[PubMed: 26971785] 

17. Kainerstorfer JM et al., “Practical steps for applying a new dynamic model to near-infrared 
spectroscopy measurements of hemodynamic oscillations and transient changes: Implications for 
cerebrovascular and functional brain studies,” Acad. Radiol 21, 185–196 (2014). [PubMed: 
24439332] 

18. Sassaroli A, Kainerstorfer JM, Fantini S, “Nonlinear extension of a hemodynamic linear model for 
coherent hemodynamics spectroscopy,” J. Theoret. Biol 389, 132–145 (2016). [PubMed: 
26555847] 

19. Timmer J, Lauk M, Pfleger W, Deuschl G, “Cross-spectral analysis of physiological tremor and 
muscle activity: I Theory and application to unsynchronized electromyogram,” Biol. Cybern 78, 
349–357 (1998). [PubMed: 9691264] 

20. Zhang R, Zuckerman JH, Giller CA, Levine BD, “Transfer function analysis of dynamic cerebral 
autoregulation in humans,” Am. J. Physiol. Heart Circ. Physiol 274, H233–H241 (1998).

21. Hahn GH, Heiring C, Pryds O, Greisen G, “Applicability of near-infrared spectroscopy to measure 
cerebral autoregulation noninvasively in neonates: A validation study in piglets,” Pediatr. Res 70, 
166–170 (2011). [PubMed: 21566541] 

22. Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF, “A framework for the 
analysis of mixed time series/point process data — Theory and application to the study of 
physiological tremor, single motor unit discharges and electromyograms,” Prog. Biophys. Mol. 
Biol 64, 237–278 (1995). [PubMed: 8987386] 

23. Winterhalder M, Schelter B, Kurths J, Schulze-Bonhage A, Timmer J, “Sensitivity and specificity 
of coherence and phase synchronization analysis,” Phys. Lett. A 356, 26–34 (2006).

24. Koopmans L, The Spectral Analysis of Time Series, Academic Press, San Diego Boston New York 
London Sydney Tokyo Toronto (1995).

Sassaroli et al. Page 23

J Innov Opt Health Sci. Author manuscript; available in PMC 2019 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Gallet C, Juliene C, “The significance threshold for coherence when using the Welch’s 
periodogram method: Effect of overlapping segments,” Biomed. Signal Process. Control 6, 405–
409 (2011).

26. Faes L et al., “Surrogate data analysis for assessing the significance of the coherence function,” 
IEEE Trans. Biomed. Eng 51, 1156–1166 (2004). [PubMed: 15248532] 

27. Panerai RB et al., “Analysis of cerebral blood flow autoregulation in neonates,” IEEE Trans. 
Biomed. Eng 43, 779–788 (1996). [PubMed: 9216150] 

28. Le Van Quyen M et al., “Comparison of Hilbert transform and wavelet methods for the analysis of 
neuronal synchrony,” J. Neurosci. Methods 111, 83–98 (2001). [PubMed: 11595276] 

29. Srinath R, Ray S, “Effect of amplitude correlations on coherence in the local field potential,” J. 
Neurophysiol 112, 741–751 (2014). [PubMed: 24790174] 

30. Bruns A, “Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different 
approaches?,” J. Neurosci. Methods 137, 321–332 (2004). [PubMed: 15262077] 

31. Xu L et al., “Spurious detection of phase synchronization in coupled nonlinear oscillators,” Phys. 
Rev. E 73, 065201 (2006).

32. Tan Q et al., “Age-related alterations in phase synchronization of oxyhemoglobin concentration 
changes in prefrontal tissues as measured by near-infrared spectroscopy signals,” Microvasc. Res 
103, 19–25 (2016). [PubMed: 26525098] 

33. Molavi B, Gervain J, Dumont GA, Noubari H, “A functional connectivity analysis of cortical 
networks in functional near infrared spectroscopy using phase synchronization,” Conf. Proc. IEEE 
Eng. Med. Biol. Soc, pp. 5182–5185 (2012). [PubMed: 23367096] 

34. Han Q et al., “Phase synchronization analysis of prefrontal tissue oxyhemoglobin oscillations in 
elderly subjects with cerebral infarction,” Med. Phys 41, 102702 (2014). [PubMed: 25281981] 

35. Taga G, Watanabe H, Homae F, “Spatiotemporal properties of cortical haemodynamic response to 
auditory stimuli in sleeping infants revealed by multi-channel near-infrared spectroscopy,” Phil. 
Trans. R. Soc. A 369, 4495–4511 (2011). [PubMed: 22006903] 

36. Wang W et al., “Vigilance task-related change in brain functional connectivity as revealed by 
wavelet phase coherence analysis of near-infrared spectroscopy signals,” Front. Hum. Neurosci 10, 
400 (2016). [PubMed: 27547182] 

37. Cui R et al., “Wavelet coherence analysis of spontaneous oscillations in cerebral tissue 
oxyhemoglobin concentrations and arterial blood pressure in elderly subjects,” Microvasc. Res 93, 
14–20 (2014). [PubMed: 24594440] 

38. Papademetriou MD et al., “Multichannel near infrared spectroscopy indicates regional variations in 
cerebral autoregulation in infants supported on extracorporeal membrane oxygenation,” J. Biomed. 
Opt 17, 067008 (2012). [PubMed: 22734786] 

39. Payne SJ, Mohammad J, Tisdall MM, Tachtsidis I, “Effects of arterial blood gas levels on cerebral 
blood flow and oxygen transport,” Biomed. Opt. Expr 2, 966–979 (2011).

40. Rowley AB et al., “Synchronization between arterial blood pressure and cerebral oxyhaemoglobin 
concentration investigated by wavelet cross-correlation,” Physiol. Meas 28, 161–173 (2007). 
[PubMed: 17237588] 

41. Tian F et al., “Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–
ischemic encephalopathy,” NeuroImage: Clin 11, 124–132 (2016). [PubMed: 26937380] 

42. Bernjak A, Stefanovska A, McClintock PVE, “Coherence between fluctuations in blood flow and 
tissue oxygen saturation,” Fluct. Noise Lett 11, 1240013 (2012).

43. Bu L et al., “Effects of sleep deprivation on phase synchronization as assessed by wavelet phase 
coherence analysis of prefrontal tissue oxyhemoglobin signals,” PLoS ONE 12, e0169279 (2017). 
[PubMed: 28046043] 

44. Addison PS, “A review of wavelet transform time–frequency methods for NIRS-based analysis of 
cerebral autoregulation,” IEEE Rev. Biomed. Eng 8, 78–85 (2015). [PubMed: 26011892] 

45. Boashash B, “Estimating and interpreting the instantaneous frequency of a signal-Part 1: 
Fundamentals,” Proc. IEEE 80, 520–538 (1992).

46. Huang NE et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and 
non-stationary time series analysis,” Proc. R. Soc. Lond. A 454, 903–995 (1998).

Sassaroli et al. Page 24

J Innov Opt Health Sci. Author manuscript; available in PMC 2019 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



47. Tass P et al., “Detection of n:m phase locking from noisy data: Application to 
magnetoencephalography,” Phys. Rev. Lett 81, 3291–2294 (1998).

48. Latka M et al., “Phase dynamics in cerebral autoregulation,” Am. J. Physiol. Heart Circ. Physiol 
289, H2272–H2279 (2005). [PubMed: 16024579] 

49. Paluš M, “Detecting phase synchronization in noisy systems,” Phys. Lett. A 235, 341–351 (1997).

50. Quian Quiroga R et al., “Performance of different synchronization measures in real data: A case 
study on electroencephalographic signals,” Phys. Rev. E 65, 041903 (2002).

51. Theiler J et al., “Testing for nonlinearity in time series: The method of surrogate data,” Phys. D 58, 
72–94 (1992).

52. Schreiber T, Schmitz A, “Surrogate time series,” Phys. D 142, 346–382 (2000).

53. Prichard D, Theiler JA, “Generating surrogate data for time series with several simultaneously 
measured variables,” Phys. Rev. Lett 73, 951–954 (1994). [PubMed: 10057582] 

54. Andrzejak RG et al., “Bivariate surrogate techniques: Necessity, strengths, and caveats,” Phys. Rev. 
E 68, 066202 (2003).

55. Dolan TD, Spano ML, “Surrogate for nonlinear time series analysis,” Phys. Rev. E 64, 046128 
(2001).

56. Nakamura T, Small M, Hirata Y, “Testing for nonlinearity in irregular fluctuations with long-term 
trends,” Phys. Rev. E 74, 026205 (2006).

57. Lucio JH, Vald’es R, Rodríguez RL, “Testing for nonlinearity in irregular fluctuations with long-
term trends,” Phys. Rev. E 85, 056202 (2012).

58. Porta A et al., “Quantifying the strength of the linear causal coupling in closed loop interacting 
cardiovascular variability signals,” Biol. Cybern 86, 241–251 (2002) [PubMed: 12068789] 

59. Kreuz T et al., “Measuring synchronization in coupled model systems: A comparison of different 
approaches,” Phys. D 225, 29–42 (2007).

60. Sun J, Small MT, “Unified framework for detecting phase synchronization in coupled time series,” 
Phys. Rev. E 80, 046219 (2009).

61. Rosenblum M et al., Phase synchronization: From theory to data analysis, in Handbook of 
Biological Physics, Moss F and Gielen S. (eds.), Vol. 4, Elsevier, pp. 279–321 (2001).

62. Schelter B et al., “Testing for phase synchronization,” Phys. Lett. A 366, 382–390 (2007).

63. Delpy DT et al., “Estimation of optical pathlength through tissue from direct time of flight 
measurement,” Phys. Med. Biol 33, 1433–1442 (1998).

64. Sassaroli A, Fantini S, “Comment on the modified Beer–Lambert law for scattering media,” Phys. 
Med. Biol 49, N255–N257 (2004). [PubMed: 15357206] 

65. Berens P, “CircStat: A MATLAB toolbox for circular statistics,” J. Statist. Softw 31, 1–21 (2009).

66. Lachaux J-P et al., “Measuring phase synchrony in brain signals,” Hum. Brain Mapp 8, 194–208 
(1999). [PubMed: 10619414] 

67. Huang NE et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and 
non-stationary time series analysis,” Proc. R. Soc. Lond. A 454, 903–995 (1998).

68. Ayenu-Prah A, Attoh-Okine N “Criterion for selecting relevant intrinsic mode functions in 
empirical mode decomposition,” Adv. Adaptive Data Anal 2, 1–24 (2010).

Sassaroli et al. Page 25

J Innov Opt Health Sci. Author manuscript; available in PMC 2019 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Raw signals and wavelet coherence between abp and T, calculated on a subject during the 

first 2 min of baseline (only last 1 min is shown) and during the first group of six cuff 

oscillations at fcuff = 0.0625 Hz. Panel (a) cuff pressure (CP), panel (b) normalized ABP 

(abp), panel (c) changes in concentration of total hemoglobin (T), and panel (d) wavelet 

coherence ( CohT , abp
WT ). In panel (d) are also indicated the values of PSIT , abp

WT  during baseline 

and during the group of six cuff oscillations.
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Fig. 2. 
Phase difference between T and abp at the cuff frequencies. On the left panel the phase 

differences were calculated as averages across the main lobe of the cuff frequencies with the 

analytic signal (HT), wavelet cross spectrum (WT), and cross power spectral density (FT) 

methods. For the wavelet (WT) and analytic signal (HT) methods, the averages were also 

carried out in the time intervals when the cuff was oscillating at each specific frequency. On 

the right panel the time-frequency averages of the phase differences were calculated with 

analytic signal and wavelet methods during baseline. The vertical lines define the different 

cuff frequencies. The error bars are the standard deviations across the frequencies of the 

main lobe of the cuff frequencies (FT) or across the temporal ranges of cuff oscillations (WT 

and HT).
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Fig. 3. 
The threshold values of coherence and PSI are shown for five different methods to generate 

surrogate data together with the values calculated for an experimental data set in vivo 
(subject 1). The x axis is defined as in Fig. 2. Specifically, in the four panels are plotted: 

linear coherence (a), wavelet coherence (b), PSI calculated with analytic signal (c), and PSI 

calculated with wavelet cross spectrum (d). The methods for surrogate data are: GRN 
(diamonds), IID1 (squares), IID2 (crosses), FT1 (circles), and AAFT1 (asterisks). The 

experimental data are represented by triangles.
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Fig. 4. 
Same as Fig. 3 but for subject 2.
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Fig. 5. 
Same as Fig. 3 but for subject 3.
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Fig. 6. 
Same as Fig. 3 but for subject 4.
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Fig. 7. 

Threshold values obtained from surrogate data for CohT , abp
WT  are shown for the four 

subjects. They refer to GRN (panel (a)), IID1 (panel (b)), IID2 (panel (c)), and FT1 (panel 

(d)).
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Fig. 8. 

Threshold values obtained from surrogate data for CohT , abp
WT  are shown for higher statistics 

(1,000 pairs of surrogate data) by using IID2 (left panel) and FT1 (right panel).
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Fig. 9. 

Threshold values obtained with surrogate data FT1 for: CohT , abp
FT  (panel (a)), CohT , abp

WT

(panel (b)), PSIT , abp
HT  (panel (c)) and PSIT , abp

WT  (panel (d)). We used higher statistics as in 

Fig. 8.
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Table 1.

Summary of the results reported in Figs. 3–6 about the significance of the four different covariation metrics 

with five methods to generate surrogate data.

Subject 1 Subject 2 Subject3 Subject 4

CohT , abp
FT

GRN 5 3 5 5

IID1 5 3 5 5

IID2 5 0 3 5

FT1 5 2 5 5

AAFT1 5 2 5 5

CohT , abp
WT

GRN 5 3 4 5

IID1 5 3 4 5

IID2 5 2 3 4

FT1 5 3 4 5

AAFT1 5 3 4 5

PSIT , abp
HT

GRN 5 1 3 5

IID1 5 1 3 4

IID2 5 1 2 1

FT1 5 1 2 3

AAFT1 5 1 2 3

PSIT , abp
WT

GRN 5 3 4 5

IID1 5 3 4 5

IID2 4 3 2 3

FT1 4 3 4 5

AAFT1 4 3 4 5

Note: Each entry is an integer in the range [0, 5] which corresponds to the number of induced frequencies that were significant according to a 
particular metric and surrogate data.
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Table 2.

Number of frequencies (out of the five considered frequencies of 0.045, 0.056, 0.0625, 0.071, and 0.023 Hz) 

that feature significant coherence or phase synchronization during cyclic thigh cuff occlusions and at baseline, 

for the three non-stationary metrics and thresholds obtained with the surrogate data method FT1.

Subject 1 Subject 2 Subject 3 Subject 4

CohT , abp
WT

Oscillations 5 3 4 5

Baseline 0 0 5 0

PSIT , abp
HT

Oscillations 5 1 2 3

Baseline 0 0 0 0

PSIT , abp
WT

Oscillations 4 3 4 5

Baseline 0 0 3 1
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