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Abstract

Objective: Systolic time intervals such as the preejection period (PEP) are important parameters 

for assessing cardiac contractility that can be measured non-invasively using seismocardiography 

(SCG). Recent studies have shown that specific points on accelerometer and gyroscope based SCG 

signals can be used for PEP estimation. However, the complex morphology and inter-subject 

variation of the SCG signal can make this assumption very challenging and increase the root mean 

squared error (RMSE) when these techniques are used to develop a global model.

Methods: In this study, we compared gyroscope and accelerometer based SCG signals, 

individually and in combination, for estimating PEP to show the efficacy of these sensors in 

capturing valuable information regarding cardiovascular health. We extracted general time domain 

features from all the axes of these sensors and developed global models using various regression 

techniques.

Results: In single axis comparison of gyroscope and accelerometer, angular velocity signal 

around head to foot axis from the gyroscope provided the lowest RMSE of 12.63±0.49 ms across 

all subjects. The best estimate of PEP, with a RMSE of 11.46±0.32 ms across all subjects, was 

achieved by combining features from the gyroscope and accelerometer. Our global model showed 

30% lower RMSE when compared to algorithms used in recent literature.

Conclusion: Gyroscopes can provide better PEP estimation compared to accelerometers located 

on the mid sternum. Global PEP estimation models can be improved by combining general time 

domain features from both sensors.

Significance: This work can be used to develop low cost wearable heart monitoring device and 

to generate a universal estimation model for systolic time intervals using single or multiple sensor 

fusion.
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I. Introduction

THE pre-ejection period (PEP) of the heart is defined as the time elapsed from the start of 

ventricular depolarization to the ensuing opening of the aortic valve, and is an important 

parameter for assessing cardiac health outside of clinical settings [1–3]. In particular, the 

changes in PEP resulting from exercise stressors can provide insight into the ability of the 

heart to respond appropriately to increased sympathetic nervous system activity and 

increased demand for blood flow to the muscles. An important recent finding was that the 

clinical status of patients with heart failure (HF) – a disorder in which the heart is unable to 

supply enough blood to meet the demands of the body – could be assessed using SCG (and 

PEP) responses to exercise measured with a wearable sensing system [4–6].

The wearable system used for that study facilitates computation of PEP from 

electrocardiogram (ECG) and seismocardiogram (SCG) signals [7]. The Q- or R-wave of the 

ECG signal provides the timing information required for detecting the depolarization of the 

ventricles (the start of the PEP interval); the Ao “peak” on the SCG signal provides the 

corresponding timing for the aortic valve opening (AVO) (the end of the PEP interval) [8]. In 

this system, the ECG is measured using three adhesive-backed gel (Ag/AgCl) electrodes, 

and the SCG is measured using a low-noise, tri-axial micro-electromechanical systems 

(MEMS) based accelerometer positioned at the middle of the sternum.

Though promising results have been obtained with this system both in healthy subjects and 

in patients with HF, there are sensing and data analytics advancements that can potentially 

improve the accuracy with which PEP is measured. First, recent work has shown that 

gyroscope based measurements of chest wall vibrations may provide improved detection of 

heart and blood movement activity as compared to accelerometers [9–11]. A rigorous 

investigation is needed comparing gyroscope and accelerometer based SCG waveforms and 

the corresponding accuracy with which PEP can be extracted. Second, while the opening of 

aortic valve may be readily detectable from SCG signals in supine subjects, high inter-

subject variability in SCG waveforms renders Ao peak detection inaccurate and ambiguous 

in many subjects standing upright or walking. Novel machine learning approaches for 

combining multiple features of gyroscope, accelerometer, and combined gyroscope and 

accelerometer based SCG measurements can be employed to address this limitation.

In this paper we perform, for the first time, a rigorous investigation of gyroscope and 

accelerometer based SCG measurement in the context of PEP detection accuracy. We use a 

low-noise MEMS gyroscope with sufficiently wide bandwidth to facilitate SCG 

measurement. We further leverage state-of-the-art nonlinear and linear regression algorithms 

[12, 13] to map features of the SCG signal to AVO, as detected by a reference standard 

signal—the impedance cardiogram (ICG) [14, 15]. In addition to single axis based estimates, 

we evaluate multi-axis and multi-sensor fusion approaches to assess the possible 
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corresponding improvement in PEP estimation. Finally, we compare our PEP estimation 

approaches directly against several methods from the existing literature. Fig. 1 shows a 

hypothetical system to estimate systolic timing intervals from wearable sensors’ fusion using 

our estimation method.

II. Methods

A. Experimental Protocol

The study was conducted under a protocol approved by the Georgia Institute of Technology 

Institutional Review Board. A total of 17 healthy subjects (7 females and 10 males) 

participated in the study (Age: 26.1±4.1 years, Weight: 66.2±13.6 kg and Height: 168.2±8.9 

cm). All subjects provided written informed consent before experimentation and reported no 

heart problems.

The purpose of the protocol was to induce changes in PEP non-invasively, and to then 

measure PEP with a reference standard (ICG) simultaneously with different sensors under 

test. Regression algorithms were then applied to compare the PEP estimation accuracy for 

these sensors under test compared to the reference standard. Exercise was selected as the 

means by which PEP was modulated non-invasively because it is known to change PEP 

substantially from the resting value in a relatively short period of time.

Fig. 2(a) illustrates the placement of sensors on each subject. For each subject, the middle 

point between the suprasternal notch and xiphoid process was located on the mid-sternal 

line. The accelerometer was placed on top of the point and the gyroscope was placed below 

the point. Both the sensors were attached using tape (Kinesio Tex, Kinesio, Albuquerque, 

NM). After placing the wearable sensors, each subject was asked to step on the modified 

weighing scale, which is capable of measuring ballistocardiogram (BCG) signal. The subject 

was asked to stand vertically and motionless for five minutes. Then, the subject performed 

three minutes of walking exercise at 3 miles per hour (mph) on a treadmill followed by one 

and a half minutes of squatting exercise. After the full exercise period, the subject stepped 

on the BCG scale again for monitoring the recovery period for five minutes. The whole 

procedure was performed continuously, as shown in Fig. 2(f). PEP decreased due to exercise 

and returned to baseline value of resting PEP during the recovery.

B. Sensing Hardware

Linear and angular vibrations of the chest wall due to the heart beat were recorded using a 

three-axis analog output accelerometer (ADXL354, Analog Devices, Inc., Norwood, MA) 

and a three-axis differential analog output gyroscope (QGYR330HA, Qualtre Inc., 

Marlborough, MA) [16] respectively. Both the MEMS accelerometer and gyroscope have 

very low noise and low drift. Fig. 2(c) shows the linear and angular directions for the 

accelerometer and gyroscope, respectively. The gyroscope’s differential outputs were passed 

through an instrumentation amplifier (AD8226, Analog Devices, Inc., Norwood, MA) to 

have one output signal per axis, shown in Fig. 2(b). BCG was measured simultaneously 

using a previously validated modified weighing scale [17]. Seven outputs (three from the 

accelerometer, three from the gyroscope and one from the scale) were connected to the data 
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acquisition system (MP150, BIOPAC System, Inc. Goleta, CA). ECG and ICG signals were 

measured concurrently using BN-EL50 and BN-NICO wireless modules (BIOPAC System, 

Inc., Goleta, Ca). Both signals were transmitted wirelessly to the MP150. The sampling 

frequency for all the signals was 2 kHz.

C. Signal Processing and Feature Extraction

Linear Filtering and Pre-Processing: All the raw signals (accelerometer and 

gyroscope based SCGs, ICG, BCG, and ECG) were filtered with finite impulse response 

(FIR) Kaiser window band-pass filters (cut-off frequencies: 1–40 Hz for both the 

accelerometer and gyroscope signals, 0.5–20 Hz for the BCG, 1–30 Hz for the ICG and 0.5–

40 Hz for the ECG). These cut-off frequencies were chosen based on the existing literature 

[7, 17, 18], to remove out-of-band noise without distorting the shape of the signals. The 

same cutoff frequencies were used for both gyroscope and accelerometer based chest 

vibration signals. The signal-to-noise ratio (SNR) of the ECG was found to be very poor for 

one of the subjects due to hardware issues, therefore data from this subject was discarded 

and data from the other 16 subjects were used for further processing and analysis.

As most physiological measurements are corrupted by motion artifact during exercise, which 

typically leads to higher noise, the signals recorded during exercise were discarded. Since 

the goal of this analysis was to determine which features of SCG (accelerometer and 

gyroscope) signals were most salient in PEP estimation, we decided rather to use only the 

cleaner portions of the datasets – those corresponding to the initial 5-minute resting and 5-

minute post-exercise recovery data. The signal processing and feature extraction were 

performed in Matlab 2017b with a Macbook Pro Laptop with Core i5 dual core processor 

and 16 GB of RAM and required approximately 54 minutes of processing time.

Ensemble Averaging: The R-wave peaks were detected on the ECG signal and all the 

other signals (SCG, BCG, and ICG) were segmented into individual heartbeat frames using 

the R peaks from the corresponding ECG signals, with a frame length equal to the minimum 

R-to-R interval. With frame length equal to the minimum R-to-R interval, one frame 

contained at a maximum one heartbeat by definition. In other cases, one frame contained 

less than one heartbeat. Multiple frames were ensemble averaged to get averaged frames, 

which reduced noise [19]. Five frames were averaged together to generate an ensemble 

averaged frame, with an overlap of four frames between consecutive ensemble averages. 

This technique of averaging was used to maximize the number of ensemble averaged frames, 

with a total of 13,993 heartbeat frames from 16 subjects.

Feature Extraction from ICG and BCG: The B-point and X-point of the ICG (dz/dt) 
frames, were extracted based on [20]. The B-point was then used as the reference standard 

AVO, and the ground truth PEP was obtained via calculating the R-B interval for every 

ensemble average frames. A high level block diagram of this process is shown in Fig. 2(d). 

The X-point of the ICG corresponds to the aortic valve closing (AVC). For BCG frames, I, J 

and K peaks were extracted following the work of Inan et al. [17].
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Feature Extraction from SCG: For the accelerometer and gyroscope signals, initially we 

extracted and analyzed different time domain, amplitude and frequency domain features. 

Time domain features performed better in PEP estimation compared to amplitude and 

frequency domain features as PEP itself is a time domain parameter. A total of 12 time 

domain features were chosen for detailed analysis in this paper. These 12 features per axis 

were extracted from each averaged frame by an automated algorithm and every frame was 

visually checked to maintain the accuracy of the feature extraction. Features extracted were 

as follows: largest and second largest maxima locations (0–250 ms), largest and second 

largest maxima width (0–250 ms), largest and second largest minima location (0–250 ms), 

largest and second largest minima width (0–250 ms), largest maxima location (250–500 ms), 

largest maxima width (250–500 ms), largest minima location (250–500 ms), largest minima 

width (250–500 ms). Peaks and valleys in the frame were ranked according to their 

amplitudes, and the highest and second highest amplitude were used as the largest and 

second largest maxima or minima accordingly. Location was calculated as the distance from 

the corresponding R-peak in ms. Width was calculated as the width of the peak or valley at 

half-prominence, in ms. We extracted eight timing features from the systolic portion of the 

signal (0–250 ms) rather than putting emphasis on one location feature, to explore how 

multiple points in the accelerometer and gyroscope signals are related to the AVO. Although 

PEP is related to the timing features from the systolic portion of the signals, we decided to 

explore features from the diastolic portion (250–500 ms) of the signals as well and we have 

extracted four timing features from the diastolic portion of the signals.

D. Regression Models

Overall Framework: We trained a regression model to estimate the PEP using the features 

extracted from the accelerometer and gyroscope signals described in Section II.C. For every 

axis, M features were extracted from N ensemble averages. These features were placed in an 

N ×M matrix A while the corresponding PEP values were placed in an N×1vector bPEP. A 

regression model was trained on these to learn the relationship between A and bPEP. 

Resulted trained model can then be used to estimate PEP for new heartbeat frames, from the 

features extracted from the accelerometer or gyroscope signals. Fig. 2(e) shows the high 

level block diagram of the feature extraction and regression on the accelerometer and 

gyroscope signals to estimate the PEP. The machine learning techniques, including various 

regression models, were performed using Python 3.6 with the same laptop described in 

Section II.C. It required approximately 20 to 60 minutes of processing time for different 

regression techniques based on the parameters and features used.

XGBoost Regression: The majority of the research on SCG to estimate hemodynamic 

parameters used conventional linear regression to relate the features from SCG to the 

estimated parameter [11, 18, 21–23], with the underlying assumption that the relationships 

are linear. However, the relationship between PEP and SCG features may not be linear as is 

the case in most real data sets. That is, if we let Y represent PEP as a random variable and X 

represent one of our features, it is unlikely that f(X)=E(Y|X) would be a linear function in X 

[24]. Our aim was to evaluate whether a non-linear model performs better in estimating PEP 

compared to the standard linear models. Therefore, rather than using only linear techniques, 

we leveraged Extreme Gradient Boosting (XGBoost) regression, which is a relatively new 
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machine learning algorithm that has recently gained popularity [13]. XGBoost is a 

computationally efficient implementation of the gradient boosting machine learning 

algorithm [25], and is an example of an ensemble method, combining multiple estimators to 

predict a variable rather than using a single estimator [26]. It generates multiple regression 

trees where errors from previous models are predicted by new models and are then added 

together. It uses a gradient descent algorithm for this addition to minimize the loss and these 

sequential additions are carried out until no further improvements can be made.

We used XGBoost regression (with hyper-parameter settings: learning rate=0.1, number of 

boosting rounds=200, column sampling factor=0.5, row sampling factor=0.5, regularization 

parameter (λ)=1) to estimate PEP using features extracted from different axes of the 

accelerometer and gyroscope based SCG signals and combination of multiple axes from the 

same sensor or both the sensors. Estimated PEPs from different axes and from different 

combinations of axes and sensors were compared using a variation of the repeated cross-

validation model assessment method discussed in [27].

Cross-Validation and Regression Model Evaluation: We first randomly paired the 

subjects in our dataset, which consists of 16 subjects, into eight groups. We then performed 

cross-validation by leaving one group (two subjects) out at each fold and trained an 

XGBoost regressor on the data from all subjects except the two that were left out. We then 

predicted PEP for the left-out subjects and repeated this seven more times leaving a different 

pair of subjects out each time. As a result, we have PEP predictions for all ensembles from 

all subjects. The root mean squared error (RMSE) was then calculated between the 

estimated PEP values (PEPe) and the ground truth PEP acquired from the ICG signals 

(PEPi):

RMSE = 1
N ∑

i = 1

N
PEPe − PEPi

2 (1)

where N=13,993, the number of ensemble average frames from 16 subjects. We used leave-

two-out cross validation over leave-one-out cross validation to have more variation in the 

training sets, and did not have enough subjects to leave more subjects out in the cross-

validation steps. We repeated the entire process 50 times with a new random pairing of 

subjects each time. The cross-validation RMSE was calculated as the average of the RMSE 

scores from 50 repetitions. In this way, we trained a global model rather than multiple 

subject-specific models.

Regression for Multiple Axes: This approach was repeated for different axes of the 

accelerometer and gyroscope and their combination, and we compared the resulting RMSE 

scores. For the combination of multiple axes from the same or different sensors, features 

from a pair of axes or multiple axes were combined using vector concatenation and were fed 

into regressors. The same cross-validation procedure was used to compute the RMSE. We 

performed statistical analysis of the cross-validation results for single and multiple axes 

comparisons.
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Regression for BCG Signals: Three features (R-J interval, R-I interval and R-K 

interval) from the ensemble averaged BCG frames were also used in similar fashion to 

develop another global model following the same cross-validation step stated above, to 

estimate PEP. Average RMSE from this model gave us the comparison between wearable 

sensors to the scale based cardiac hemodynamics monitoring.

E. Feature Importance Evaluation

To generate global models of PEP estimation from the accelerometer and gyroscope signals, 

we trained XGBoost regressors using many features acquired from one or multiple axes 

from one or both of the sensors. However, some of these features are more relevant to PEP 

estimation than others. One advantage of using XGBoost (and other gradient boosting 

methods) is that, it can provide feature importance estimates from a trained predictive 

model. This importance indicates how useful each feature is in constructing the boosted 

decision trees within the model [28]. Typically, the main node of a tree is divided based on 

the most important feature whereas the deep nodes are divided based on less important 

features. The feature importance values obtained from all of the decision trees within the 

model are averaged to get the final relative feature importance scores. These scores can be 

used to rank the features.

To evaluate which features generated from the accelerometer and gyroscope based SCG 

signals contributed more to PEP estimation, we trained an XGBoost regressor on the 

combination data set from all 16 subjects, with features from all the axes of the gyroscope 

and accelerometer. The resulting regression model was then used to generate relative feature 

importance scores as described above.

F. Comparing Our Estimation with Existing Literature

We compared our PEP estimation method with recent PEP estimation methods used in 

literature, where the researchers annotated specific points in the accelerometer and 

gyroscope signals using ECG as a reference signal and found those points to be well 

correlated with the AVO [9, 11, 29, 30]. Tadi et al. [29] and Javaid et al. [30] used a fixed 

length window of 90 and 200 ms respectively from ECG R peaks to find the AVO points in 

the dorso-ventral SCG. Yang et al. showed that the maximum peak of the envelope of 

rotational energy, calculated from the gyroscope signal, is close to the isovolumic moment 

(IM) of the accelerometer signal, where IM is the minima immediately before AVO in the 

accelerometer based dorso-ventral SCG signal [9]. Tadi et al. annotated the major maximum 

peak in angular velocity around the head-to-foot axis (from the gyroscope signal) as AVO 

and found strong correlation between the time interval between this point and corresponding 

ECG R-peak with PEP from echocardiography [11]. We have used the aforementioned 

algorithms to find AVO from the ensemble average heartbeat frames of corresponding 

accelerometer and gyroscope signals, in our dataset. We have used the same cross-validation 

method, described in Section II.E and calculated RMSE for each method to compare to our 

methods.
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G. Statistical Analysis

We performed statistical analysis on the cross-validated RMSE results to compare different 

axes and combination of axes. In our cross-validation procedure which consisted of 50 

repetitions, the random seed was fixed so that the subjects were paired in the same way in 

the ith repetition, for all sensor axes/combinations. Multiple comparison tests were 

performed on the RMSE results from the 50 repetitions to compare different axes and sensor 

combinations. The Friedman test was performed to detect statistical differences if exist and 

the Wilcoxon signed rank test was performed for post-hoc testing, on different axes or 

combinations. Additionally, for the post-hoc testing Benjamini-Hochberg correction for 

multiple comparison was performed on the p-value. Details on these statistical tests and the 

reasons behind their use are discussed in [31]. We performed similar procedure to compare 

different regression techniques and to compare our method with different algorithms from 

recent literature statistically. In this work, p-values below 0.05 were considered statistically 

significant.

III. Results and Discussion

A. Intersubject Variability

A visual comparison of the complex nature and intersubject variation in signals from both 

the accelerometer and gyroscope is shown in Fig. 3. AVO and AVC points, extracted from 

corresponding ICG signals, are marked on these signals, demonstrating that the AVO and 

AVC may not always correspond to specific points or patterns on the accelerometer or 

gyroscope signal, as often stated in existing literature. Estimation of systolic timing intervals 

based on this assumption might be error-prone and may work on a specific data set or 

subject, but not for a global model.

B. t-SNE Visualization

The features extracted from the ensemble averaged frames were analyzed using machine 

learning techniques. To visually compare the features generated using different axes and 

combinations of axes of the accelerometer and gyroscope signals, t-SNE (t-Distributed 

Stochastic Neighbor Embedding) [32] was used. The dimensionality of our data set, which 

has twelve features (dimensions) per sensor axis, was reduced to two dimensions using t-

SNE. A scatter plot of the data was constructed where the two axes are the two t-SNE 

dimensions and each point represents one ensemble averaged frame (Fig. 4). Each point was 

colored according to the ground truth PEP of the frame to visualize the relationship between 

the t-SNE dimensions and our target variable (PEP). If a particular feature has information 

relevant to PEP, we would expect to see a pattern in the color distribution, whereas if no 

relevant information is present, we would expect the colors to be randomly distributed 

spatially in the plot. Examples where t-SNE is used to visualize the relationship between a 

high dimensional feature space and a continuous variable can be found in [33, 34].

The t-SNE method considers pj|i the probability that a data point xi would pick xj as its 

neighbor, in high dimensions, as a similarity metric between data points. The similarity 

metric between lower dimension counter parts of these points are denoted as qj|i which is 

defined similarly to pj|i. The t-SNE algorithm finds a low dimensional embedding of the data 

Shandhi et al. Page 8

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



such that pj|i and qj|i remain similar [32]. We prefer t-SNE to other dimensionality reduction 

techniques such as principal component analysis (PCA) or isometric feature mapping 

(ISOMAP) because it was shown in the literature [34] that t-SNE preserves the details 

within the data structure better and minimizes local distortions. One limitation of t-SNE is 

that it has computational complexity that is quadratic in the number of data points. To reduce 

computational time, our data points were down-sampled by a factor of three from 13,993 

points to 4,664 points, which is sufficient for the purpose of t-SNE visualization.

Fig. 4 is showing the visual comparison among features from a single or combination of 

axes from the gyroscope and accelerometer with our target variable PEP. Features from 

scale-based BCG are also shown in the figure to compare the wearable sensor with the scale-

based BCG. In case of the accelerometer and gyroscope, each data point corresponds to all 

the features (12, 24 or 48 based on number of axes used) collected from the ensemble 

averaged frames. In case of BCG each point corresponds to three features, extracted from 

the ensemble average frames of BCG. These multiple dimensions (features) of data were 

reduced to two using t-SNE. Clear transition in the color pattern in the plots for the 

combination of axes over random nature in the color pattern for the single axis (both in the 

gyroscope and accelerometer) suggests that it is better to combine and use features from 

multiple axes in estimating PEP than using one axis only. While BCG is showing the best 

gradient in the color pattern, a combination of features from x and z axes of the 

accelerometer and x and y axes of the gyroscope is showing a color pattern which is the 

closest (compared to other four plots for single axis or pair of axes) to BCG.

C. Comparison and Combination of Accelerometer and Gyroscope

Table I shows the RMSE values in milli-seconds (ms) from different axes and their 

combination from the gyroscope and accelerometer signals. Statistically significant 

differences were found in these results according to Friedman test (p<0.05). Wilcoxon 

signed rank test was performed on the different axes and their combinations to investigate 

where the significance exists in post-hoc testing.

When comparing single axes from the gyroscope and accelerometer, the results showed that 

the x-axis of the gyroscope signals provided the lowest RMSE of 12.63±0.49 ms in PEP 

estimation (Fig. 5(a)) (p<0.05). RMSE from y-axis of the gyroscope and z-axis of the 

accelerometer were similar (p>0.05). The z-axis of the gyroscope yielded a slightly higher 

RMSE than the x-axis of the accelerometer, whereas the y-axis of the accelerometer 

provided the highest RMSE in PEP (p<0.05).

For the linear acceleration components of the SCG signal, the most salient information being 

derived from the z-axis from the accelerometer is consistent with the existing literature [35], 

as the z-axis represents the dorso-ventral component of the signal – the component that has 

been most commonly analyzed and demonstrated as being useful in prior studies [7, 21, 36, 

37]. For the rotational velocity components, the most salient information being derived from 

the x-axis of gyroscope is consistent with the direction of blood and heart movement inside 

the chest [38]. Prior imaging studies [38–40] have shown that blood flow has a right hand 

helical pattern around the ascending aorta and aortic arch at the beginning of systole: thus 
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the most salient information being contained in the x-axis of gyroscope, which represents 

rotational velocity around the head-to-foot axis of the body, is as expected.

Combination of axes from both the gyroscope and accelerometer reduced the RMSE 

compared to single axis results (p<0.05) (Fig. 5(b)). For the gyroscope, combining the x and 

y axes provided lower RMSE than all three axes combined (p<0.05), which suggests that 

adding features from the z-axis actually increases the error in estimation of PEP; 

accordingly, the z-axis is not providing substantial information regarding PEP. In case of the 

accelerometer, combination of x and z axes provided the lowest RMSE compared to the 

combination of all three axes (p<0.05), which suggests that the y-axis from the 

accelerometer is not providing useful information regarding PEP.

When axes from both the gyroscope and accelerometer were combined, results show that the 

combination of x and y axes of the gyroscope and x and z axes of the accelerometer is 

providing the lowest RMSE of 11.46±0.32 ms from all the axes and combination (p<0.05), 

whereas combination of all the axes from both the sensors yields RMSE of 11.79±0.44 ms. 

This result is supported by the feature ranking of the best 15 features in estimating PEP, 

shown in Fig. 6, where there are no features from the z-axis of the gyroscope and y-axis of 

the accelerometer.

This feature ranking also shows that, out of 15 most contributing features in estimating PEP, 

10 features are from the gyroscope; this suggests that the gyroscope is contributing more to 

PEP estimation compared to the accelerometer, in accordance with the work of Migeotte et 

al. [41]. One interesting finding is that three out of 15 features are widths of different peaks, 

which is suggesting that not only peak locations but also peak widths should be considered 

in PEP estimation. Finally, three out of 15 features are from the diastolic portion of the 

signals, which will require further studies to understand.

D. Comparison of Different Regression Technique

We hypothesized that non-linear regression models such as XGBoost regression would 

perform better than linear regression models for estimating PEP from SCG features. To 

address this hypothesis, we compared results obtained from the XGBoost regression on the 

combination of axes (x and z axes of the accelerometer and x and y axes of the gyroscope, 

which showed the lowest cross-validated RMSE) to the same combination (same feature set) 

but using other regression models.

We compared XGBoost regression to ordinary linear, Ridge, Lasso, random forest (RF) and 

extra trees (ET) regression techniques. Ordinary linear, Ridge and Lasso are all linear 

regression techniques, whereas XGBoost, RF and ET are ensemble learning algorithms. 

Ensemble methods using regression tree estimators can fit complicated non-linear functions 

robustly compared to linear models.

For Ridge and Lasso the regularization parameter α was varied between 10−3 to 102 

logarithmically. For RF and ET, regressors contained 200 trees and column sampling factor 

was chosen as 0.5, similar to the XGBoost model parameters. For these ensemble models, 

each tree was trained on a subset of features consisting of n features features. The cross-
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validated RMSE results were compared for the different regression models, keeping the 

same features and dataset and only the regression technique was altered.

As hypothesized, XGBoost produced the lowest RMSE (Fig. 5(c), p<0.05) when different 

regression techniques were compared. Ordinary least squares regression resulted in an 

RMSE that was 4 ms higher (p<0.05) compared to XGBoost. Linear regression results does 

not improve with the introduction of L2 regularization via Ridge regression. Fig. 5(c) is 

showing the result only for αridge=1. However, results did not change substantially for the 

range of αridge values tested. L1 regularization via Lasso regression decreases RMSE results 

by only 0.2 ms (p<0.05). Out of the three ensemble methods tested, RF regression 

performed better than ET regression (p<0.05), while XGBoost performed the best.

As hypothesized, the relation between the extracted SCG features and PEP was better 

characterized by non-linear models rather than linear ones, used in existing literature. 

Ensemble methods produced lower RMSE compared to linear methods. Automatic feature 

selection performed by the ensemble methods might be more effective than intrinsic feature 

selection (due to shrinkage of regression coefficients) used in L1 or L2 regularization.

E. Comparison with Algorithms from Existing Literature

Fig. 5(d) shows the comparison of RMSE in estimating PEP using features via algorithms 

from recent publications. As expected, PEP estimation using specific points on the 

accelerometer or gyroscope is providing higher (more than 30%) RMSE compared to our 

PEP estimation using combination of x and y axes of the gyroscope and x and z axes of the 

accelerometer (p<0.05). RMSE was similar (p>0.05) for PEP estimation models based on 

features following Javaid et al. [30] and Yang et al. [9].

These results demonstrate that emphasizing specific points (as in the existing literature) from 

the accelerometer or gyroscope signal in estimating PEP can increase the error of estimation 

in a global model, due to intersubject variation and complex morphology of the signals. As a 

result, these approaches may not be applicable as a universal model across subjects or across 

studies. As an alternative, our work suggests that general time domain features from these 

signals can provide necessary information regarding PEP and constitute a better-performing 

global model, which can reduce the complexity in feature extraction techniques. Another 

point to note is that, in all four algorithms, researchers used one peak/point from a single 

axis in the accelerometer or gyroscope signal, whereas we are using combination of features 

from multiple axes from both the sensors.

IV. Conclusion and Future work

In this paper, we have compared gyroscope and accelerometer based SCG signals and 

developed a global model to estimate PEP and compared our estimation with the ground 

truth PEP extracted from a simultaneously-recorded ICG signal. We have demonstrated that 

the combination of general time domain features from multiple axes of both accelerometer 

and gyroscope provides a better estimation of PEP compared to the use of specific locations 

or patterns from single axes of these sensors due to intersubject variability in these signals. 

In the case of individual sensors, the gyroscope provided more valuable information 
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regarding PEP compared to the accelerometer for our dataset, when the sensors are placed 

on the mid sternum. It was also shown that the relationship between SCG signal features and 

PEP can be modelled using ensemble learning techniques to develop the universal model. 

Finally, this work highlights the advantages of sensor fusion for developing wearable sensors 

to monitor cardiac health.

In this paper, we collected data from healthy subjects and used the signals acquired from the 

mid sternum only. Future work should look at the signals from different locations and data 

from patients with cardiovascular diseases as well to assess how the model performs with 

higher intersubject variability and take necessary measures to obtain more accurate 

estimation of PEP. Exercise signals were not used for PEP estimation in this work. Future 

work should focus on exercise data to assess the possible estimation of PEP during 

movement with these regression methods. Gravity vector projection on different postures 

was not considered in this work. Future work can take this into account and can use this as a 

feature in the prediction model to see if it improves the prediction accuracy. Future work 

should also focus on estimation of left ventricular ejection time, stroke volume, and other 

cardio-mechanical parameters. In this work, we explored the relationship between PEP and 

features from the diastolic portion of both accelerometer and gyroscope signal. Future work 

can be conducted to investigate the underlying mechanisms.
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Fig. 1. 
(a) Concept of a wearable device to monitor cardiovascular health parameters and (b) 

proposed sensors and corresponding signals.
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Fig. 2. 
(a) The experimental setup with the subject standing on the BCG scale, with all other 

wearable sensors attached to the body. One accelerometer (ADXL354) and one gyroscope 

(QGYR330HA) are placed on the mid sternum. ECG and ICG signals are collected 

simultaneously. (b) Circuit connection for the conversion of differential output of the 

gyroscope to single output per axis, using an instrumentational amplifier (AD8226). (c) Axis 

labels used for the accelerometer and gyroscope, with accelerometer X axis in the head to 

foot direction, Y axis in the side to side (lateral) direction and Z axis in the dorso-ventral 

direction. Gyroscope X axis angular velocity corresponds to the rotation around head to foot 

axis, Y axis angular velocity corresponds to the rotation around frontal axis and Z axis 

angular velocity corresponds to the rotation around sagittal axis. (d) Block diagram of the 

segmentation for ICG signal with reference R peaks from the corresponding ECG signal, 

feature extraction from the ICG segments to calculate ground truth PEP. (e) Block diagram 

of the segmentation for accelerometer and gyroscope signals with reference R peaks from 

corresponding ECG signal, feature extraction from the segments to estimate PEP. (f) PEP 

trend with the chronology of the experiment, 5-minute rest standing on BCG scale, 3-minute 
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walk at 3 miles per hour speed, 1.5-minute of squats and 5-minute post exercise standing on 

the scale. PEP remains fairly stable during the rest period, it decreases due to exercise, and 

returns nearly to the baseline rest values during the recovery period.
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Fig. 3. 
Illustration of inter-subject variability in accelerometer and gyroscope signals from rest data 

of 16 subjects, with AVO (B-point) and AVC (X-point) annotated from corresponding ICG 

signals. (Left) Ensemble average of 100 heartbeats of the accelerometer Z-axis (dorso-

ventral) signal and (right) ensemble average of 100 heartbeats of the gyroscope X-axis 

(angular velocity around head-to-foot axis) signal. All the signals are normalized in 

amplitude.
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Fig. 4. 
Visual comparison of features from single axis and combination of axes from the 

accelerometer and gyroscope signal, and features from BCG with target variable PEP from 

ICG using t-Distributed Stochastic Neighbor Embedding (t-SNE): (a) plot for features from 

z axis of the accelerometer, (b) plot for features from x axis of the gyroscope, (c) plot for 

combination of features from x and z axes of the accelerometer, (d) plot for combination of 

features from x and y axes of the gyroscope, (e) plot for combination of features from x and 

z axes of the accelerometer and x and y axes of the gyroscope. (f) plot for features from 

scale based BCG.
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Fig. 5. 
(a) Comparison of RMSE in estimation of PEP using features from single axes of gyroscope 

and accelerometer placed on the mid sternum, with RMSE in estimation using BCG features 

as a reference. (b) Comparison of RMSE in PEP estimation using combination of features 

from multiple axes of the gyroscope and accelerometer, with RMSE from BCG features as a 

reference. (c) Comparison of RMSE for PEP estimation using different regression 

techniques. (d) Comparing RMSE in estimated PEP from our method with RMSE 

calculated, using algorithms from recent literatures.
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Fig. 6. 
Ranking of the best 15 features from gyroscope (Gyro) and accelerometer (ACC) in 

estimating PEP.
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TABLE I.

RMSE (ms) for PEP estimates from single axis and combination of multiple axes from Accelerometer (A), 

Gyroscope (G) signals and BCG

Axis RMSE

Gx 12.63±0.49

Gy 13.54±0.31

Gz 15.50±0.29

Gx+Gy 12.13±0.40

Gx+Gy+Gz 12.26±0.33

Ax 15.16±0.40

Ay 19.03±0.55

Az 13.54±0.31

Ax+Az 12.98±0.30

Ax+Ay+Az 13.66±0.39

Gx+Az 12.63±0.42

Gx+Ax+Az 11.76±0.32

Gx+Gy+Az 11.84±0.41

Gx+Gy+Ax+Az 11.46±0.32

Gx+Gy+Gz+Ax+Ay+Az 11.79±0.44

BCG 9.39±0.20
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