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Abstract

The yellow fever virus (YFV) epidemic in Brazil is the largest in decades. The recent discovery of 

YFV in Brazilian Aedes sp. mosquitos highlights a need to monitor the risk of re-establishment of 

urban YFV transmission in the Americas. We use a suite of epidemiological, spatial and genomic 

approaches to characterize YFV transmission. We show that the age- and sex-distribution of 

human cases is characteristic of sylvatic transmission. Analysis of YFV cases combined with 

genomes generated locally reveals an early phase of sylvatic YFV transmission and spatial 

expansion towards previously YFV-free areas, followed by a rise in viral spillover to humans in 

late 2016. Our results establish a framework for monitoring YFV transmission in real-time that 

will contribute to a global strategy to eliminate future YFV epidemics.

Yellow fever (YF) is responsible for 29000–60000 deaths annually in South America and 

Africa (1) and is the most severe mosquito-borne infection in the tropics (2). Despite the 

existence of an effective YF vaccine since 1937 (3), an estimated >400 million unvaccinated 

people live in areas at risk of infection (4). Yellow fever virus (YFV) is a member of the 

Flaviviridae family and classified into four genotypes: East African, West African, South 

American I, and South American II (5–9). YFV transmission occurs mainly via the “sylvatic 

cycle”, in which non-human primates (NHP) are infected by infected tree-dwelling 

mosquitoes, such as Haemagogus spp. and Sabethes spp. (10, 11). YFV transmission can 

also occur via an “urban cycle”, in which humans are infected by Aedes spp. mosquitoes 

that feed mostly on humans (12, 13).
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Brazil has recently experienced its largest recorded YF outbreak for decades, with 2043 

confirmed cases and 676 deaths since Dec 2016 (Supplementary Text and Fig. S1) (14). The 

last YF cases in Brazil attributed to an urban cycle were in Sena Madureira, in the northern 

state of Acre, in 1942 (15). An intensive eradication campaign eliminated Aedes aegypti and 

YF from Brazil in the 1950s (16) but the vector became re-established in the 1970s and 

Aedes spp. mosquitoes are now abundant across most of Brazil (17). The consequences of a 

re-ignition of urban cycle transmission in Brazil would be serious, as an estimated 35 

million people in areas at risk for YFV transmission in Brazil remain unvaccinated (4). New 

surveillance and analytical approaches are therefore urgently needed to monitor this risk in 

real-time.

Between Dec 2016 and the end of Jun 2017 there were 777 PCR-confirmed human cases 

across 10 Brazilian states, mostly in Minas Gerais (60% of cases), followed by Espírito 

Santo (32%), Rio de Janeiro (3%) and São Paulo (3%) (18). The fatality ratio of severe YF 

cases was estimated at 33.6%, comparable to previous outbreaks (19, 20). Despite the 

exceptional magnitude and rapid expansion of the outbreak, little is known about its 

genomic epidemiology. Further, it is uncertain how the virus is spreading through space, and 

between humans and NHPs, and analytical insights into the contribution of the urban cycle 

to ongoing transmission are lacking.

To characterise the 2017 YFV outbreak in Brazil, we first compare time series of confirmed 

cases in humans (n=683) and NHP (n=313) reported until October 2017 by public health 

institutes in Minas Gerais (MG), the epicentre of the outbreak (Fig. 1A and B, Fig. S2). The 

time series are strongly associated (cross-correlation coefficient=0.97; p<0.001). Both peak 

in late January 2017 and we estimate human cases lag those in NHP by 4 days (Table S1). 

NHP cases are geographically more dispersed in MG than human cases, which are more 

concentrated in Teófilo Otóni and Manhuaçu municipalities (Fig. 1D and E). Despite this, 

the number of human and NHP cases per municipality are positively correlated (Fig. 1F).

To establish whether human cases are acquired in proximity to potential sources of sylvatic 

infection, we estimate the distance between the municipality of residence of each human 

case and the nearest habitat of potential transmission, determined by using the enhanced 

vegetation index (EVI) (21) (Supplementary Materials). The average minimum distance 

between areas with EVI>0.4 and the residence of confirmed human cases is only 5.3km. In 

contrast, a randomly chosen resident of MG lives on average ≥51km away from areas with 

EVI>0.4. Similarly, human YFV cases reside on average 1.7km from the nearest NHP case, 

whereas the mean minimum distance of a randomly chosen MG resident to the nearest NHP 

case is 39.1km. This is consistent with YF infection risk being greatest for people who 

reside or work in forested areas where sylvatic transmission occurs. We find that most 

human cases (98.5%) were notified in municipalities with estimated YFV vaccination 

coverage above the 80% threshold recommended by the World Health Organization (WHO). 

On average, human cases would need to travel 65km from their place of residence to reach 

an area where vaccination coverage is <80% (4).

YFV was detected in Ae. albopictus mosquitoes caught in MG in Jan 2017 (22). Further, 

experiments suggest that Aedes spp. mosquitoes from southeast Brazil can transmit 
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Brazilian YFV, although perhaps less effectively than vectors from elsewhere in Brazil (23, 

24). It is therefore important to investigate whether YFV cases in MG occur where and when 

Aedes spp. vectors are active. To do so, we analysed confirmed chikungunya virus (CHIKV) 

cases from MG (Fig. 1C).

CHIKV is transmitted by the urban mosquitoes Ae. aegypti and Ae. albopictus (25). There 

were 3755 confirmed CHIKV cases in MG during Jan 2015 to Oct 2017. The CHIKV 

epidemic in MG in 2017 began later and lasted longer than the YFV outbreak (Fig. 1C), 

consistent with the hypothesis that YFV and CHIKV in the region are transmitted by 

different vector species. However, 29 municipalities with human YFV cases also reported 

CHIKV cases (Fig. 1D and Fig. S3), indicating that YFV is indeed present in municipalities 

with Aedes mosquitoes. The mean YFV vaccination rate in districts with both YFV and 

CHIKV cases is 72.6% (range=61-78%) (4). Thus, a combination of relatively high 

vaccination rates in the locations in MG where YF spillover to humans occurs, and 

potentially lower vector competence (23, 24), may ameliorate the risk of establishment of an 

urban YFV cycle in the state. However, adjacent urban regions (including São Paulo and Rio 

de Janeiro) have lower vaccination rates (4), receive tens of millions of visitors per year (26), 

and have recently experienced many human YFV cases (20). Thus, the possibility of 

sustained urban YFV transmission in southern Brazil and beyond necessitates continual 

virological and epidemiological monitoring.

We sought to establish a framework to evaluate routes of YFV transmission during an 

outbreak from the characteristics of infected individuals. Specifically, we assessed whether 

an outbreak is driven by sylvatic or urban transmission by comparing the age and sex 

distributions of observed YFV cases with those expected under an urban cycle in MG. For 

example, an individual’s risk of acquiring YFV via the sylvatic cycle depends on their 

likelihood of travel to forested areas, typically highest among male adults (27). In contrast, 

under a urban cycle, we expect more uniform exposure across age- and sex-classes, similar 

to that observed for urban cases in Paraguay (28) and Nigeria (29).

The male-to-female sex ratio of reported YFV cases in MG is 5.7 (i.e., 85% of cases are 

male) and incidence is highest among males aged 40-49 (Fig. 2). We compare this 

distribution to that expected under two models of urban cycle transmission (Supplementary 

Materials). In model M1, age- and sex- classes vary in vaccination status but are equally 

exposed to YFV, a scenario that is typical of arboviral transmission (30). Under model M1, 

predicted cases are characterized by a sex ratio ~1 and incidence peaks among individuals 

aged 20-25 (Fig. 2). In model M2, we assume that the pattern of YFV exposure among age- 

and sex- classes follows that observed for CHIKV. The sex ratio of reported CHIKV cases in 

MG is 0.49 (33% of cases are male; Fig. S4). Under model M2, predicted incidence is 

highest in females aged >30. The discrepancy between the observed distribution and that 

predicted under the two urban cycle models indicates that the YF epidemic in MG is 

dominated by sylvatic transmission. This method shows that age- and sex-structured 

epidemiological data can be used to qualitatively evaluate the mode of YFV transmission 

during an outbreak.
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During a YF outbreak it is important to undertake virological surveillance to (i) track 

epidemic origins and transmission hotspots, (ii) characterise genetic diversity to aid 

molecular diagnostics, (iii) detect viral mutations associated with disease severity, and (iv) 

exclude the possibility that human cases are caused by vaccine reversion.

We generated 62 complete YF genomes from infected humans (n=33) and non-human 

primates (NHP) (n=29) from the most affected Brazilian states, including Minas Gerais 

(n=51), Espírito Santo (n=8), Rio de Janeiro (n=2), and Bahia (n=1) (Fig. 3, Table S3). We 

also report two new genomes from samples collected in 2003 during a previous YFV 

outbreak in MG, in 2002–2003 (31). Genomes were generated in Brazil using a combination 

of methods (Table S3); half were generated in Minas Gerais using a MinION portable YFV 

sequencing protocol adapted from (32) (Tables S4 and S5). This protocol was made publicly 

available in May 2017 following pilot sequencing experiments using a cultured vaccine 

strain (Supplementary Materials). Median genome coverages were similar for samples 

obtained from NHP (99%; median Ct=11) and from human cases (99%; median Ct=16) 

(Tables S5 and S6).

To put the newly generated YFV genomes in a global context, we added our genomes to 61 

publicly available genomes (33, 34). We developed and applied an automated online 

phylogenetic tool to identify and classify YFV gene sequences (also publicly available, see 

Supplementary Materials). Phylogenies estimated this tool, and using maximum likelihood 

and Bayesian methods, consistently place the Brazilian outbreak strains in a single clade 

within the South America I (SA1) genotype with maximum statistical support 

(bootstrap=100%; posterior probability>0.99) (Fig. 3A; Fig. S5).

The outgroup to the outbreak clade is strain BeH655417, a human case sampled in Alto 

Alegre, Roraima, north Brazil, in 2002. In contrast, local isolates sampled during the 

previous outbreak in MG in 2003 are more distantly related to the outbreak clade within the 

SA1 genotype (Fig. 3). Thus the 2017 outbreak was more likely caused by a YFV strain 

introduced from an endemic area, possibly northern or center-west Brazil (35), than by the 

re-emergence of a lineage that had persisted in MG. Although low sampling densities mean 

this conclusion is provisional, similar scenarios have been suggested for previous Brazilian 

epizootics (36). The 14-year gap between the current outbreak and the date of the most 

closely related non-outbreak strain agrees with the reported periodicity of YF outbreaks in 

northern Brazil (37), thought to be dictated by vector abundance and the accumulation of 

susceptible NHP hosts (19, 38).

At least 7 PCR-confirmed YFV human cases from MG received a YF vaccine ≥3 days 

before onset of symptoms. To test that these infections were caused by natural infection, and 

not by vaccine reactivation, we sequenced the YFV genomes of three of these cases (Fig. 

3A, Table S3). Our phylogenetic analysis clearly shows that these represent natural 

infections caused by the ongoing outbreak, and are conclusively not derived from the 17DD 

vaccine strain (which belongs to the West African YFV genotype; Fig. 3A and Fig S6).

Viral genomes are a valuable source of information about epidemic dynamics (e.g. (39)) but 

are rarely used to investigate specific YFV outbreaks in detail. Here we show how a suite of 
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three analytical approaches, which combine genetic, epidemiological and spatial data, can 

provide insights into YFV transmission.

First, we used a Bayesian method (40) to explore potential covariates of fluctuations in the 

effective population size of the YFV outbreak in 2017. After confirming that genetic 

divergence in the outbreak clade accumulates over the timescale of sampling (Fig. 3B, Fig. 

S6), we tested which epidemiological time series best describe trends in inferred YFV 

effective population size. We find that effective population size fluctuations of the YFV 

outbreak are well explained by the dynamics of both human and NHP YFV cases (inclusion 

probability=0.37 for human cases and =0.63 for NHP cases) (Table S8). These two YFV 

time series explain the genetic diversity dynamics of the ongoing outbreak 103 times better 

than CHIKV incidence (inclusion probability <0.001), which represents transmission by 

Aedes spp. vectors. One benefit of this approach is that epidemiological data contribute to 

estimation of the outbreak timescale. By incorporating YFV incidence data into evolutionary 

inference, we estimate the time of the most recent common ancestor (TMRCA) of the 

outbreak clade to be late-Jul 2016 (95% Bayesian Credible Interval, BCI: Mar-Nov 2016) 

(Fig. 3C, Fig. S7), consistent with the date of the first PCR-confirmed case of YFV in NHP 

in MG (Jul 2016). The uncertainty around the TMRCA estimate is reduced by 30% when 

epidemiological and genomic data are combined, compared to genetic data alone (Fig. 3C).

Second, in order to better understand YFV transmission between humans and NHP we 

measured the movement of YFV lineages between the NHP reservoir and humans, using a 

phylogenetic structured coalescent model (41). Although previous studies have confirmed 

that YFV is circulating in five neotropical NHP families (Aotidae, Atelidae, Callitrichidae, 

Pitheciidae, Cebidae; Fig 4A), thus far NHP YFV genomes during the 2017 outbreak have 

been recovered only from Alouatta spp. (family Cebidae) (33). In this analysis we used the 

TMRCA estimate obtained above (Fig. 3C) to inform the phylogenetic timescale (Fig 4B). 

All internal nodes in the outbreak phylogeny whose host state is well supported (posterior 

probability >0.8) are inferred to belong to the NHP population, consistent with an absence of 

urban transmission and in agreement with the large number of NHP cases reported in 

southeast Brazil (20). Despite this, we argue that hypotheses of human-to-human 

transmission linkage should not be tested directly using phylogenetic data alone, due to the 

large undersampling of NHP infections. Notably, the structured coalescent approach reveals 

significant changes in the frequency of NHP-to-human host transitions through time, rising 

from zero around Nov 2016 and peaking in Feb 2017 (Fig. 4C). Remarkably, this 

phylogenetic trend matches the time series of confirmed YFV cases in MG (Figs. 1A,B), 

demonstrating that viral genomes, when analysed using appropriate models, can be used to 

quantitatively track the dynamics of zoonosis during the course of an outbreak (42).

Third, we measured the outbreak’s spatial spread using a phylogenetic relaxed random walk 

approach (43) (Supplementary Materials; Table S9). When projected through space and time 

(Figs. 4D-E; Movie S1), the phylogeny shows a southerly dissemination of virus lineages 

from their inferred origin in MG towards densely populated areas, including Rio de Janeiro 

and São Paulo (where YF vaccination was not recommended until Jul 2017 and Jan 2018, 

respectively). We estimate virus lineages move on average 4.25 km/day (95% BCI: 2.64 to 

10.76 km/day) (44). This velocity is similar when human YFV terminal branches are 
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removed (5.3 km/day) and therefore most likely reflects YFV lineage movement within the 

sylvatic cycle and not the movement of asymptomatic infected humans. These rates are 

higher than expected given the distances typically travelled by NHPs in the region (45), and 

suggest the possibility YFV lineage movement may have been aided by human activity, e.g. 

transport of infected mosquitoes in vehicles (46) or hunting or illegal trade of NHPs in the 

Atlantic forest (47, 48). The epidemic wavefront (maximum distance of phylogeny branches 

from the inferred epidemic origin) expanded steadily between Aug 2016 and Feb 2017 at an 

estimated rate of ~3.3 km/day. Therefore by the time YF was declared a public health 

emergency in MG (13 Jan 2017; dashed lines in Figs. 4B-D), the epidemic had already 

expanded ~600km (Fig. 4D) and caused >100 cases in both humans and NHP (Fig. 1). 

Notably, the first detection in humans in Dec 2016 was concomitant with the outbreak’s 

spatial expansion phase (Fig. 4D) and the rise in estimated NHP-to-human zoonoses (Fig. 

4C); both were likely driven by an increase in the abundance of sylvatic vectors. Thus the 

outbreak lineage appeared to circulate among NHP in a widening geographic area for several 

months before human cases were detected.

Epidemiological and genomic surveillance of human and animal populations at risk is 

crucial for the early detection and rapid containment of YFV transmission. The YFV 

epidemic in Brazil continues to unfold with an increase in cases since December 2017. 

Longitudinal studies of NHP are needed to understand how YFV lineages disseminate across 

South America between outbreaks, and how epizootics are determined by the dynamics of 

susceptible animals in the reservoir. To achieve the WHO’s goal to eliminate yellow fever 

epidemics by 2026, YF surveillance demands a global, coordinated strategy. Our results and 

analyses show that rapid genomic surveillance of YFV, when integrated with 

epidemiological and spatial data, could help anticipate the risk of human YFV exposure 

through space and time and monitor the likelihood of sylvatic versus urban transmission. We 

hope that the toolkit introduced here will prove useful in guiding yellow fever control in a 

resource-efficient manner.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Spatial and temporal epidemiology of YFV and CHIKV in Minas Gerais, MG.
(A) Time series of human YFV cases in MG (676 cases across 61 municipalities) confirmed 

by serology, RT-qPCR or virus isolation during the first YFV epidemic wave (Aug 2016 to 

Oct 2017). (B) Same as panel A, but showing NHP YFV cases (313 cases across 90 

municipalities), confirmed by RT-qPCR. (C) Same as panel A, but for human CHIKV cases 

(3668 cases across 129 municipalities). (D) Geographic distribution of human YFV cases in 

MG. (E) Geographic distribution of NHP YFV cases in MG. Fig. S2 shows the 

corresponding geographic distribution of CHIKV cases. (F) Association between the 

number of human and NHP cases in each municipality of MG (Pearson’s r=0.62; p<0.0001; 

non-parametric Spearman’s rank ρ=0.32; p<0.05).
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Fig. 2. Age and sex distribution of YFV cases in Minas Gerais, 2016-2017.
Red bars show the proportion of observed YFV cases in Minas Gerais that occur in each age 

class, in (A) males and (B) females. These empirical distributions are different from those 

predicted under two models of urban cycle transmission (M1 = white bars and M2 = orange 

bars; see text for details).
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Fig. 3. Molecular phylogenetics of the Brazilian YFV epidemic.
(A) Maximum likelihood phylogeny of complete YFV genomes showing the outbreak clade 

(red triangle) within the SA1 genotype (see Figs. 4 and S6 for details). SA2, WAfr and EAfr 

indicate the South America II, West African, and East Africa genotypes, respectively. For 

clarity, five YFV strains introduced to Venezuela from Brazil (49) are not shown. The scale 

bar is in units of substitutions per site (s/s). Node labels indicate bootstrap support values. 

RO 2002 = strain BeH655417 from Roraima. MG 2003 = two strains from the previous YF 

outbreak in MG in 2003. 17DD = the vaccine strain used in Brazil. AO 2016 = YFV 
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outbreak Angola in 2015-2016 (13). (B) Root-to-tip regression of sequence sampling date 

against genetic divergence from the root of the outbreak clade (see Fig. S6A). Sequences are 

coloured by sampling location. (C) Violin plots showing estimated posterior distributions 

(white circle=mean) of the time of the most common ancestor (TMRCA) of the outbreak 

clade. Estimates were obtained using two different datasets (grey=SA1 genotype, 

red=outbreak clade) and under different evolutionary models: a=uncorrelated lognormal 

relaxed clock (UCLN) model with a skygrid tree prior with covariates (specifically, the time 

series data shown in Figs. 1A-C; see Fig. S7); b=UCLN model with a skygrid tree prior 

without covariates; c=fixed local clock model (see Supplementary Materials).
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Fig. 4. Spatial and evolutionary dynamics of YFV outbreak.
(A) Frequency of detection of YFV in non-human primates in the Americas (50). Circle 

sizes represent the proportion of published studies (n=15) that have detected YFV in each 

primate family and region. SA=South America (except Brazil), CA=Central America, 

CB=Caribbean, BR1=Brazil (before 2017), BR2=Brazil (this study). (B) Maximum clade 

credibility phylogeny inferred under a two-state (human and NHP) structured coalescent 

model. External node symbols denote sample type. Grey bars and labels to the indicate 

sample location (RJ=Rio de Janeiro, ES=Espírito Santo, BA=Bahia, others were sampled in 

MG). Internal nodes whose posterior state probabilities are >0.8 are annotated by circles. 
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Node labels indicate posterior state probabilities for selected nodes. Internal branches are 

coloured blue for NHP, red for human. Fig. S8 shows a fully annotated tree. (C). The 

average number of YFV phylogenetic state transitions (from NHP to human) per month. 

Solid line=median estimate. Shaded area=95% BCI. (D) Expansion of the YFV epidemic 

wavefront estimated using a continuous phylogeographic approach (35). At each timepoint 

the plot shows the maximum spatial distance between phylogeny branches and the inferred 

location of outbreak origin. Solid line = median estimate. Shaded area = 95% BCI. (E) 
Reconstructed spatiotemporal diffusion of the YFV outbreak. Phylogeny branches are 

arranged in space according the locations of phylogeny nodes (circles). Locations of external 

nodes are known, whilst those of internal nodes are inferred (44). DF=Distrito Federal, 

GO=Goiás, SP=São Paulo. Shaded regions show 95% credible regions of internal nodes. 

Nodes and uncertainty regions are coloured according to time.
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