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Abstract Stem cells provide a new strategy for the

treatment of cardiac diseases; however, their effec-

tiveness in dilated cardiomyopathy (DCM) has not

been investigated. In this study, cardiosphere-derived

cells (CDCs) were isolated from infants

(£ 24 months) and identified by the cell surface

markers CD105, CD90, CD117 and CD45, which is

consistent with a previous report, although increased

CD34 expression was observed. The molecular

expression profile of CDCs from infants was deter-

mined by RNA sequencing and compared with adult

CDCs, showing that infant CDCs have almost com-

pletely altered gene expression patterns compared

with adult CDCs. The upregulated genes in infant

CDCs are mainly related to the biological processes of

cell morphogenesis and differentiation. The molecular

profile of infant CDCs was characterized by lower

expression of inflammatory cytokines and higher

expression of stem cell markers and growth factors

compared to adult CDCs. After intramyocardial

administration of infant CDCs in the heart of DCM

rats, we found that infant CDCs remained in the heart

of DCM rats for at least 7 days, improved DCM-

induced cardiac function impairment and protected the

myocardium by elevating the left ventricular ejection

fraction and fraction shortening. However, the effec-

tiveness of transplanted CDCs was reversed later, as

increased fibrosis formation instead of angiogenesis

was observed. We concluded that infant CDCs, with

higher expression of stem cell markers and growth

factors, exhibit non-durable heart protection due to

limited residence time in the heart of DCM animals,

suggesting that multiple administrations of the CDCs

or post-regulation after transplantation may be the key

for cell therapy in the future.

Keywords Cardiosphere-derived cells (CDCs) �
Dilated cardiomyopathy (DCM) � RNA sequence �
Doxorubicin

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10616-019-00328-z) con-
tains supplementary material, which is available to authorized
users.

Siyuan Wang and Weidan Chen have contributed equally.

S. Wang � W. Chen � L. Ma � M. Zou �
W. Dong � H. Yang � L. Sun � X. Chen (&) �
J. Duan (&)

Heart Center, Guangzhou Women and Children’s Medical

Center, Guangzhou Medical University, No. 9 JinSui

Road, Guangzhou 510120, Guangdong, China

e-mail: zingerchen@163.com

J. Duan

e-mail: duanjinzhu@163.com

S. Wang � W. Dong � H. Yang � L. Sun � J. Duan
Guangzhou Institute of Pediatrics, Guangzhou Women

and Children’s Medical Center, Guangzhou Medical

University, No. 9 JinSui Road,

Guangzhou 510120, Guangdong, China

123

Cytotechnology (2019) 71:1043–1052

https://doi.org/10.1007/s10616-019-00328-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-3392-742X
https://doi.org/10.1007/s10616-019-00328-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10616-019-00328-z&amp;domain=pdf
https://doi.org/10.1007/s10616-019-00328-z


Abbreviations

CDCs Cardiosphere-derived cells

DCM Dilated cardiomyopathy

GEO Gene expression omnibus

CSps Explant-derived cardiospheres

LVEF Left ventricular ejection fraction

LVFS Left ventricular fractional shortening

LVEDD Left ventricular end-diastolic diameter

LVESD Left ventricular end-systolic diameter

LVEDV Left ventricular end-diastolic volume

LVESV Left ventricular end-systolic volume

TOF Tetralogy of Fallot

PA Pulmonary atresia

PS Pulmonary stenosis

Introduction

Dilated cardiomyopathy (DCM) is a serious life-

threatening disorder that is characterized by enlarge-

ment of the left ventricular chamber associated with

systolic dysfunction (Kopecky and Gersh 1987). The

incidence of DCM is approximately 80/100,000

(Tavazzi 1997), and nearly 50% of paediatric car-

diomyopathies are DCM (Towbin et al. 2006).

Because a refractory paediatric condition can eventu-

ally lead to heart failure, heart transplantation remains

the ultimate treatment for DCM (Silva and Canter

2010). Due to the invasive and costly nature of heart

transplantation, alternative therapies with higher

accessibility are imperative for paediatric DCM.

Cellular therapies hold significant promise for

patients with heart disease. Among the stem cells,

cardiosphere-derived cells (CDCs) have emerged as a

candidate cell type for regenerative therapy post-

myocardial infarction (Smith et al. 2007), as these

cells have been reported to improve cardiac function in

DCM (Aminzadeh et al. 2015). However, the effec-

tiveness of CDCs on heart repair has been challenged

by some studies (Kasai-Brunswick et al. 2017).

Therefore, the efficacy of CDCs in DCM is still

unclear.

Some researchers showed that the total number of

CDCs is the most abundant in newborns and infants

(Mishra et al. 2011), and the CDCs from newborns

have much stronger repair ability in preventing

adverse cardiac remodelling, maintaining myocardial

function and promoting angiogenesis (Simpson et al.

2012). However, contradictory results emerged

recently and showed a stronger repair ability of CDCs

from adults instead of CDCs from young patients

(Walravens et al. 2018). Elucidation of the molecular

characteristics of infant CDCs may provide us insight

into the mechanism underlying these conflicts.

In the present study, we determined the key

molecular characteristics of infant CDCs and investi-

gated the effectiveness of infant CDCs in a doxoru-

bicin-induced DCM rat model, which can provide

useful information to optimize the strategy for stem

cell therapy in DCM.

Materials and methods

Isolation and identification of infant CDCs

Different infant myocardial tissue was collected from

paediatric congenital heart surgery from the Heart

Center of the Guangzhou Women and Children’s

Medical Center (detail in supplement Table 1). The

procedures involving infant myocardial tissue were

approved by the Ethics Committee of Guangzhou

Women and Children’s Medical Center (number

2018102201). Infant CDCs were isolated following

the protocol previously described (Smith et al. 2007).

In brief, the tissue samples were cut into smaller

biopsy-sized pieces and placed onto a fibronectin-

coated flask and covered with 1 ml of complete

explant medium (IMDM, 20% foetal bovine serum

(FBS), 1% penicillin–streptomycin, 1% L-glutamine,

0.1 mM 2-mercaptoethanol). Once these outgrowth

cells were approximately 70–80% confluent, small,

round and bright cells derived from explants were

harvested and seeded into a poly-D-lysine coated flask

and cultured in cardiosphere-growth medium (35%

IMDM and 65% DMEM/F-12 mix, 3.5% FBS, 1%

penicillin–streptomycin, 1% L-glutamine, 0.1 mM

2-mercaptoethanol, 1 unit/mL thrombin, 2% B-27

supplement, 80 ng/mL bFGF, 25 ng/mL EGF and

4 ng/mL cardiotrophin-1). After the formation of the

cardiospheres, cardiospheres (CSps) were then col-

lected from poly-D-lysine-coated flasks and replated

onto fibronectin-coated surfaces to produce adherent

CDCs. The CDCs were identified with antibodies

against CD105, CD90, CD117 (c-kit), CD34 and

CD45 (BioLegend, USA) by flow cytometry.
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RNA sequencing

Total RNA from three infant CDCs samples was

isolated using QiAamp RNA Blood mini kits accord-

ing to the manufacturer’s instructions and then sent to

Novogene Co., Ltd. (Beijing, China) for sequencing

on an Illumina HiSeq 4000 platform.

Establishment of the DCM model

SPF-grade male Sprague-Dawley rats (average body

weight 150 ± 20 g) were purchased from the Guang-

dong Animal Experiment Center (Foshan, Guang-

dong, China). The rats were intraperitoneally

administered doxorubicin (3.5 mg per kg body

weight) once a week for 4 consecutive weeks. The

development of DCM was examined and verified by

echocardiography. All the procedures involving the

rats were approved by the Ethics Committee in Animal

Research of GuangzhouMedical University according

to the university regulations for animal research.

Infant CDCs transplantation

The DCM rats were randomly divided into the PBS

and CDCs groups. A total of 2 9 106 infant CDCs

cells in 50 ll PBS were administered with a microsy-

ringe into the left ventricular anterior free wall at five

locations. PBS served as a control of CDCs adminis-

tration. Immunosuppression with cyclosporine A was

started 2 days before cell administration at a dose of

10 mg/kg/day and maintained for 10 days for both

groups.

Bioluminescence

Bioluminescence of infant CDCs after transplantation

in vivo followed the protocol previously described

(Kasai-Brunswick et al. 2017). In brief, infant CDCs

were transfected with luciferase 2 and mCheery

lentivirus, and then, the luciferase 2- and mCheery-

transfected CDCs were intramyocardially adminis-

tered to animals. In vivo bioluminescence was per-

formed using In-Vivo FX PRO (Bruker Corporation,

US) after intraperitoneal injection of 150 mg/kg of

D-luciferin.

Echocardiographic analysis

Animals were anaesthetized by isoflurane, and their

cardiac function was examined by using a Vevo2100

Echocardiography System (America). The left ven-

tricular long-axis view and the apical four-chamber

view were examined by two-dimensional andM-mode

echocardiography. All animal experiments were con-

ducted following the Ethics Committee in Animal

Research of Guangzhou Medical University.

Immunohistochemistry

The rat heart was fixed for 4 h with 2% paraldehyde

and then replaced with 10% sucrose and 30% sucrose

before embedding with O.C.T. The primary antibodies

used in these assays included rabbit anti-rat CD31 and

rabbit anti-rat Tunel, all purchased from Abcam

(Cambridge). The images were taken by using a Leica

DMi8 microscope (Leica, Germany) and analysed by

using Image-Pro Plus 6.0 software (USA).

Statistical analysis

Values are expressed as the mean ± SEM. Data

analyses were performed using the independent-sam-

ples T test for comparisons between two groups.

Statistical analysis was performed with SPSS 19.0. A

value of P\ 0.05 was considered significant.

Results

CDCs isolated from infants were characterized

by lower expression of inflammatory cytokines

and higher expression of stem cells and growth

factors

All myocardial tissue was collected from paediatric

congenital heart surgery of individuals aged

B 24 months (Supplement Table 1), and CDCs were

isolated by tissue explants. The small, round and

bright cells derived from explants were collected for

culture on a poly-D-lysine-coated flask, where they

formed cardiospheres (CSps) and were then trans-

ferred to a fibronectin-coated flask, giving rise to

CDCs (Fig. 1a). Flow cytometry showed a similar

result as previous research that showed that the infant

CDCs expressed all the key cell surface markers:
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CD105 (99.07% – 0.40%), CD90 (61.22% – 7.59%),

CD45 (0.33% – 0.05%) and CD117 (1.36% –
0.43%), except that CD34 (14.96% – 4.61%) was

higher than previously reported (Fig. 1b, supplement

Table 2). There was no significant difference observed

in the expression of cell-surface markers among the

infant CDCs isolated from different congenital heart

diseases (Fig. 1c). The expression of cell surface

markers remained consistent in infant CDCs even after

multiple generations of culture and cryopreservation

(supplemental Fig. 3a-b). These results indicated that

the characteristics of infant CDCs exhibited less

variability among infant patients and were very

stable during isolation, amplification and storage,

which is important for clinical applications.

To identify more details about the biological differ-

ences between infant CDCs and adult CDCs, we

performed RNA sequencing of infant CDCs and com-

pared them with the RNA sequence data of adult CDCs

available in the GEO database (access number

GSE81827). The RNA sequence data of adult CDCs

were provided by Emma Harvey who divided adult

CDCs into two subgroups based on angiogenesis

characteristics: good supporterCDCs andpoor supporter

CDCs (Harvey et al. 2017). The cluster heatmap

(Fig. 1d) showed almost completely altered gene

expression patterns between infant CDCs and adult

CDCs (including good supporter CDCs and poor

supporter CDCs). The upregulated genes in infant CDCs

were downregulated in adult CDCs; in contrast, the

downregulated genes in infant CDCs were highly

expressed in adult CDCs. We analysed the GO terms

of biological processes enriched in upregulated and

downregulated genes in infant CDCs and found that the

enriched upregulated genes in infant CDCs were mostly

related to cell morphogenesis and differentiation

(Fig. 1e). However, the enriched downregulated genes

in infant CDCs were mostly related to cell metabolism,

such as mitochondrial translation and ATP synthesis

coupled electron transport. (Figure 1f). The difference in

the biological processes GO terms between infant CDCs

and adult CDCs suggests that infant CDCs have more

stem cell characteristics and may possess better transd-

ifferentiating ability than adult CDCs.

The vascular supportive function of CDCs is

important for therapeutic potential, so it is critical to

find CDCs with robust vascular function. Emma

Harvey reported that poor supporter CDCs have an

enhanced inflammatory profile that leads to a reduced

capability to support the tubule formation of endothe-

lial cells, whereas good supporter CDCs have a robust

vascular supportive ability and high proliferative

potential with lower expression of inflammatory

cytokines such as CCL20, CSF2, IL8, IL1B, etc.

(Harvey et al. 2017). Compared with adult good

supporter CDCs, infant CDCs expressed relatively

lower expression of inflammatory cytokines (Fig. 1g),

which indicates stronger angiogenesis support.

Although researchers showed a better regenerative

capacity of neonatal CDCs in vivo, Ann-Sophie

Walravens recently reported that adult CDCs possess

a more notable regeneration ability than young CDCs

for higher expression of immunomodulatory markers,

cell cycle markers and stem markers and growth

factors (Walravens et al. 2018). We singled out these

genes from our RNA sequence result for comparison

of adult and infant CDCs (Fig. 1h). We observed an

altered expression of these markers between infant

CDCs and adult CDCs, which indicated that infant

CDCs overall displayed a lower activation of

immunomodulatory and cell cycle pathways but had

a higher potential capacity for proliferation and

transdifferentiation. Compared with the results of

Ann-Sophie Walravens, the main discrepancy is the

expression of stem cell markers and growth factors.

She suggested that most of these genes showed much

cFig. 1 Characteristic identification and RNA-sequencing anal-

ysis of infant CDCs. a Isolation and culture of CDCs from infant

patients shown as explant culture (left panel), cardiosphere

culture (middle panel) and cardiosphere-driven cell culture

(right panel). Scale bars = 100 lm. b Cell surface markers of

infant CDCs were analysed by flow cytometry. (n = 3).

c Expression of cell surface markers of infant CDCs isolated

from different congenital heart diseases (all graphs show the

mean ± S.E.M. *p\ 0.05, n = 3, TOF, tetralogy of Fallot; PA,

pulmonary atresia; PS, pulmonary stenosis). (d) Heatmap of

Spearman correlations with the differences observed among

adult good supporter CDCs, adult poor supporter CDCs and

infant CDCs. (The colour bar is included. Red = upregulated;

Blue = downregulated) e The top 10 GO terms of biological

processes enriched in upregulated gene of infant CDCs shown as

d. f The top 10 GO terms of biological processes enriched in

downregulated genes of infant CDCs are shown in d. g Differ-

ential expression of inflammatory cytokines related to the

angiogenesis support in infant CDCs versus adult good

supporter CDCs based on the RNA-sequencing assay.

h Heatmaps of immunomodulatory genes, cell cycle markers

and stem cell markers and growth factors among adult good

supporter CDCs, poor supporter CDCs and infant CDCs. (Color

figure online)
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higher expression in adult CDCs than in young CDCs,

which may be the reason that adult CDCs exhibited a

better transdifferentiating ability in their hands. How-

ever, our results showed that most of these genes had

higher expression in infant CDCs than in adult CDCs,

which is consistent with a previous report that neonatal

CDCs have a stronger regeneration ability. Thus, the

expression level of stem cell markers and growth

factors is an important index to evaluate the therapeu-

tic potential of CDCs.

Infant CDCs exhibit non-durable heart protection

in dilated cardiomyopathy rats

To track the bioluminescent signal in vivo, infant

CDCs were transfected with luciferase 2 and mCheery

lentivirus. Figure 2a shows representative biolumi-

nescent images after intramyocardial administration

of infant CDCs. The rats were pre-administered

cyclosporine A for immunosuppression. The biolumi-

nescent signal was detectable in the thoracic region at

day 5 post-administration. Seven days after adminis-

tration of infant CDCs, the heart was taken for frozen

sections and examined by fluorescence microscopy.

The fluorescent images showed that infant CDCs

could still be observed in the heart (Fig. 2b), indicat-

ing that infant CDCs could survive in rats for at least

7 days after intramyocardial administration.

To examine whether infant CDCs could attenuate

the deterioration of cardiac function in DCM, we

established a DCM rat model by administration of

doxorubicin for 4 consecutive weeks. Infant CDCs or

PBS were intramyocardially administered to DCM

rats, and cardiac function in DCM rats was determined

weekly by echocardiography. One week later, there

was a significant increase in the left ventricular

ejection fraction (LVEF) (79.85 ± 5.6 vs

73.03 ± 5.92%) and left ventricular fractional short-

ening (LVFS) (49.81 ± 5.83 vs 43.52 ± 5.15%).

Moreover, the left ventricular end-diastolic diameter

(LVEDD), left ventricular end-systolic diameter

(LVESD), left ventricular end-diastolic volume

(LVEDV) and left ventricular end-systolic volume

(LVESV) were significantly reduced in the CDCs

group rats compared with the rats in the PBS group

(p\ 0.05) (Fig. 2c). However, the cardiac function

improvement was non-durable and finally reverted

back, as no significant difference was observed

between the CDCs treatment and PBS treatment

groups, suggesting that the effectiveness of infant

CDCs may be related to the short residence time of

transplanted infant CDCs.

To understand the potential reason for the tempo-

rary effect of CDCs in DCM, we investigated fibrosis,

apoptosis and angiogenesis in the heart 4 weeks post-

administration of infant CDCs. The staining of the

endothelial cell marker CD31 and TUNEL staining

showed no significant difference between the CDCs

group and the PBS group (Fig. 2e–f). However, there

was an (p\ 0.05) enhancement in the fibrotic area by

Masson trichrome staining (Fig. 2d), suggesting that

increased fibrosis formation and decreased neovascu-

larization are the main reasons that compromise the

effectiveness of CDCs transplantation in the heart of

DCM rats.

Discussion

As one of the well-studied progenitor cells from the

heart, CDCs have been reported to improve cardiac

function in different cardiovascular diseases (Cambier

et al. 2018; Gallet et al. 2016; Hensley et al. 2017;

Ishigami et al. 2017; Lapchak et al. 2018; Lo et al.

2016; Makkar et al. 2012; Middleton et al. 2017;

Nana-Leventaki et al. 2019), animal models (Amin-

zadeh et al. 2015; Hensley et al. 2017; Kasai-

Brunswick et al. 2017; Lapchak et al. 2018; Suzuki

et al. 2014) and clinical trials (Makkar et al. 2012). In

this study, we isolated and identified the infant CDCs

surface markers CD105, CD90, CD117, CD34 and

CD45. We found that the expression of infant CDCs

surface antigens was mostly the same as adult CDCs,

except that CD34 was higher than previously reported

(supplemental Table 2). Ann-Sophie Walravens

recently reported that adult CDCs possess more

notable regeneration than young CDCs, which indi-

cates that cell surface markers are not enough to

predict the therapeutic potential of CDCs. Our results

showed that infant CDCs have lower inflammatory

cytokine expression profiles and higher expression of

stem cell markers and growth factors, which may be

used as indexes to evaluate the therapeutic potential of

CDCs.

The paracrine effect is the combined effect of

different factors released from stem cells and is

thought to be an important mechanism for stem cell

therapy, including antiapoptotic effects on resident
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myocytes, upregulation of angiogenesis, modulation

of inflammatory processes, promotion of cardiomy-

ocyte cell cycle re-entry, and induction of secondary

humoural effects in the host tissue. Compared with

adult CDCs, we observed that infant CDCs have lower

expression of inflammatory cytokines, such as CCL20

(strongly chemotactic for lymphocytes), CSF2 (con-

trols the production, differentiation, and function of

granulocytes and macrophages), CXCL1 (neutrophil

chemoattractant activity), IL32 (proinflammatory

cytokine), IL1B (delays myofibroblast activation),

etc. and higher expression of growth factors and stem

cell markers from CDCs such as GATA4 (proper

mammalian cardiac development), KLF4 (key factor

that is essential for inducing pluripotent stem cells),

VEGFA (mediating vascular permeability, induc-

ing angiogenesis, vasculogenesis and endothelial cell

growth, promoting cell migration, and inhibit-

ing apoptosis), IGF1 (anabolic effects), FGF2 (in-

volved in a variety of biological processes,

including embryonic development, cell growth, mor-

phogenesis, tissue repair), etc. (Figure 1g and h). We

speculate that the non-durable heart protection of

infant CDCs in DCM rats may be due to the expression

of these factors and markers. However, if these

paracrine effects are not durable, the functional

improvement will not last for a long time when the

transplanted cells die.

One study reported that mouse CDCs can persist for

3 months in a DCM mouse model (Aminzadeh et al.

2015). In our hands, we found that infant CDCs can

only survive for approximately 1 week in the heart

even when cyclosporine A was pre-administered for

immunosuppression. Four weeks later, we did not

observe a significant difference in angiogenesis and

cell apoptosis but did detect increased fibrosis.

Research has shown that inflammation can accel-

erate the formation of fibrosis (Frangogiannis 2015).

The relapse of cardiac function deterioration with

more fibrosis formation may be due to the complex

inflammatory environment. After cardiac injury, infil-

trated macrophages play an important role in fibrosis

formation. How CDCs exert their protection in

myocardial infarction remains unclear. Geoffrey de

Couto reported that infarct macrophages can acquire

cardioprotective phenotypes that promote survival of

ischaemic cardiomyocytes and that these protective

effects are conferred by CDCs (de Couto et al. 2015).

DCM is characterized by a continued severe

functional decline and is a more aggressive disease

than other heart diseases, such as ischaemia reperfu-

sion. The serious and aggressive disorder of DCMmay

inhibit angiogenesis and endogenous cell repair,

including the formation of cardioprotective macro-

phages, which may be the reason for fibrosis formation

after transplantation of infant CDCs in DCM.

Conclusions

This study demonstrates that infant CDCs express

more stem cell markers and growth factors than adult

CDCs and that these cells can improve cardiac

function in DCM for a transient time, suggesting that

multiple administrations of the CDCs or post regula-

tion after transplantation may be the future direction to

improve the effectiveness of CDCs in DCM.
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