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Abstract

Genetic mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis 

(ALS) and frontotemporal dementia (FTD). Importantly, TDP-43 proteinopathy, characterized by 

aberrant phosphorylation, ubiquitination, cleavage or nuclear depletion of TDP-43 in neurons and 

glial cells, is a common prominent pathological feature of various major neurodegenerative 

diseases including ALS, FTD, and Alzheimer’s disease (AD). Although the pathomechanisms 

underlining TDP-43 proteinopathy remain elusive, pathologically relevant TDP-43 has been 

repeatedly shown to be present in either the inside or outside of mitochondria, and functionally 

involved in the regulation of mitochondrial morphology, trafficking, and function, suggesting 

mitochondria as likely targets of TDP-43 proteinopathy. In this review, we first describe the 

current knowledge of the association of TDP-43 with mitochondria. We then review in detail 

multiple mitochondrial pathways perturbed by pathological TDP-43, including mitochondrial 

fission and fusion dynamics, mitochondrial trafficking, bioenergetics, and mitochondrial quality 

control. Lastly, we briefly discuss how the study of TDP-43 proteinopathy and mitochondrial 

abnormalities may provide new avenues for neurodegeneration therapeutics.
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Introduction

Neurodegenerative diseases are a group of clinically heterogeneous disorders characterized 

by progressive loss or dysfunction of neurons in the central nervous system (CNS) or 

peripheral nervous system (PNS) during aging, including Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), 

and frontotemporal dementia (FTD) (Lin and Beal, 2006). Although considerable progress 
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has been made to understand how pathological changes in the diseased brain cause 

neurodegeneration, effective treatments for these devastating diseases are very limited. As a 

common feature, extracellular or intracellular inclusions containing abnormal accumulation 

of aggregate-prone proteins characterize many neurodegenerative diseases. In the past 

decade, TDP-43, encoded by the TARDBP gene, has emerged as a key player in the 

pathogenesis of diverse neurodegenerative diseases.

TDP-43 has been identified as a major component of the ubiquitinated cytoplasmic 

inclusions deposited in neurons and glial cells in ALS and FTD (Arai et al., 2006; Neumann 

et al., 2006). Importantly, TDP-43 gene mutations can cause ALS, together establishing the 

direct link between TDP-43 and neurodegenerative diseases (Kabashi et al., 2008; Pesiridis 

et al., 2009; Rutherford et al., 2008; Sreedharan et al., 2008; Van Deerlin et al., 2008). 

Neurodegenerative diseases associated with aberrant TDP-43 aggregation have been 

collectively referred to as “TDP-43 proteinopathies”, the term of which is also used to 

described characteristic histopathological presence of detergent-resistant ubiquitinated, 

hyperphosphorylated, and truncated species of TDP-43, in addition to its redistribution from 

the nucleus to cytoplasm (Geser et al., 2009; Mackenzie et al., 2007). Although the 

formation of cytoplasmic inclusions suggests likely gain of toxic function (Lee et al., 2011), 

increasing evidence suggests that pathological TDP-43 mediates neurodegeneration through 

both gain and loss-of-function mechanisms by interrupting multiple pathways including 

RNA metabolism (Lagier-Tourenne et al., 2010; Polymenidou et al., 2011; Tollervey et al., 

2011), protein translation (Buratti and Baralle, 2008; Freibaum et al., 2010), stress-induced 

response (Colombrita et al., 2009; Dewey et al., 2011; McDonald et al., 2011), autophagy 

(Bose et al., 2011; Xia et al., 2016), endocytosis (Liu et al., 2017; Schwenk et al., 2016), 

ubiquitin-proteasome system (UPS) (Hanson et al., 2010; Kim et al., 2009), and 

mitochondrial function (Wang et al., 2013; Wang et al., 2016; Xu et al., 2010).

TDP-43-linked neurodegenerative diseases are generally multifactorial and involve diverse 

pathogenic mechanisms such as glutamate excitotoxicity (Li et al., 1997; Sasaki et al., 

2000), oxidative stress (Pedersen et al., 1998; Smith et al., 1994), neuroinflammation 

(Henkel et al., 2004), and mitochondrial dysfunction (Beal et al., 1997; Gibson et al., 1998) 

in addition to the widely studied TDP-43 proteinopathy. Among them, mitochondrial 

dysfunction has been extensively studied in the past decade. As prominent early pathological 

features, mitochondrial abnormalities are closely associated with pathologically related 

TDP-43 in ALS and FTD patients and experimental models (Izumikawa et al., 2017; 

Magrane et al., 2014; Salvatori et al., 2018; Wang et al., 2013; Wang et al., 2016). In this 

review, we first describe the association of TDP-43 with mitochondria, then review in detail 

the possible mechanisms by which pathological TDP-43 causes mitochondrial 

abnormalities, and finally discuss future perspectives of mitochondrial related research for 

TDP-43 proteinopathy.

TDP-43 mitochondrial association

As a member of heterogeneous ribonucleoproteins (hnRNPs) family, TDP-43 is composed 

of two DNA/RNA recognition and interaction motifs (RRM1, 106–177aa and RRM2, 192–

259aa), an N-terminal domain (NTD, 1–102aa), and a carboxyl-terminal glycine-rich 
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domain (CTD, 274–414aa) (Buratti and Baralle, 2001; Kuo et al., 2009). The nuclear 

localization sequence (NLS, 82–98aa) resides in NTD. Although TDP-43 bears a putative 

nuclear export sequence (NES, 235–250aa), most recent studies suggest that the nuclear 

export of TDP-43 is predominantly driven by passive diffusion (Pinarbasi et al., 2018; 

Winton et al., 2008). The CTD consisting of two prion-like regions flanking the middle 

hydrophobic fragment, has been demonstrated to undergo liquid-liquid phase separation 

(LLPS) to facilitate the formation of membrane-less organelles such as RNA and stress 

granules (Choi et al., 2018; Conicella et al., 2016; Lei et al., 2018; Li et al., 2018; McGurk 

et al., 2018; Molliex et al., 2015; Sun et al., 2019; Wang et al., 2018a).

Under the physiological condition, the majority of TDP-43 resides in the nucleus and is 

involved in a wide range of cellular processes such as RNA processing 2018, cryptic splicing 

(Humphrey et al., 2017; Jeong et al., 2017; Ling et al., 2015), RNA transport (Alami et al., 

2014; Pesiridis et al., 2011), and microRNA biogenesis (Buratti et al., 2010; Kawahara and 

Mieda-Sato, 2012; King et al., 2014) through its DNA/RNA binding ability. Besides its 

nuclear localization, TDP-43 can also be present in the cytoplasm and co-localize with 

subcellular compartments such as endoplasmic reticulum (ER) (Li et al., 2015; Walker et al., 

2013), mitochondria (Wang et al., 2013; Wang et al., 2016), mitochondria-associated 

membranes (MAMs) (Stoica et al., 2014), RNA granules (Alami et al., 2014), and stress 

granules (Colombrita et al., 2009; Liu-Yesucevitz et al., 2010) to regulate ER-mitochondrial 

tethering, mitochondrial protein translation, mRNA transport, and translation.

Studies by our group and others have independently demonstrated the association of TDP-43 

with mitochondria (Fig. 1A). It was firstly reported that exogenously expressed wild type or 

ALS-associated mutant TDP-43 could be detected in mitochondrial-enriched fractions from 

NSC-34 motor neuron-like cells (Hong et al., 2012). Consistently, we provided evidence 

showing the presence of endogenous TDP-43 in highly purified mitochondria from NSC-34 

cells without ER contamination (Wang et al., 2013). Using HEK293 cells, human and mouse 

brain and spinal cord tissues, we further showed that at least a portion of TDP-43 could 

localize in the inner membrane of mitochondria, and contains several putative mitochondrial 

import sequences (Wang et al., 2016). However, the following confirmatory studies are 

largely controversial. For example, TDP-43 was suggested only present in membranes 

associated with mitochondria in HEK293 or HeLa cells and mouse brains (Kawamata et al., 

2017). In contrast, a most recent study using NSC-34 cells reported that full-length and 

truncated forms of TDP‐43 could differentially reside in the matrix and intermembrane 

space of mitochondria (Salvatori et al., 2018), while the study using mouse cortical and 

hippocampal tissue showed truncated but not full-length TDP-43 in mitochondria (Davis et 

al., 2018) (Fig.1A).

There may be several possible reasons for these contradictory findings including methods 

used to isolate or enrich mitochondria, antibodies used to detect truncated or full-length 

TDP-43, and the likely variable expression of mitochondrial associated TDP-43. Along this 

line, it is worthwhile to note that mitochondria associated TDP-43 was found highly 

phosphorylated in ALS/FTD patient derived neurons or fibroblasts according to our and 

recent studies (Genin et al., 2018; Wang et al., 2016), together suggesting the likely crucial 

role of altered posttranslational modifications for TDP-43 mitochondrial accumulation in 
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diseases. Nevertheless, while alternative or novel approaches are to be developed to 

determine the exact sub-mitochondrial localization of full-length or truncated TDP-43, all 

previously published studies unanimously support the direct association of TDP-43 with 

mitochondria. As the characteristic pathological features of TDP-43 proteinopathy include 

impaired nucleus-cytoplasm-trafficking and aberrant posttranslational modifications of 

TDP-43, future studies might investigate whether and how ubiquitin ligases, kinases, 

proteases, and other factors involved in TDP-43 posttranslational modifications and nucleus-

cytoplasm-trafficking contribute to TDP-43 mitochondrial association.

TDP-43 and mitochondrial fission and fusion dynamics

Mitochondria are dynamic organelles that undergo continuous fission and fusion (Nunnari et 

al., 1997). Unopposed fission results in division, while unopposed fusion causes elongation 

(Bleazard et al., 1999; Sesaki and Jensen, 1999). Studies in the past decade have revealed 

that mitochondrial fission and fusion dynamics are essential for various aspects of 

mitochondrial function including respiratory complex assembly (Cogliati et al., 2013), ATP 

production (Benard et al., 2007), Ca2+ homeostasis (Frieden et al., 2004; Szabadkai et al., 

2004), and reactive oxygen species (ROS) production (Yu et al., 2006). Mitochondria fission 

and fusion are tightly controlled by several key regulators including dynamin-like protein 1 

(DLP1/Drp1) and its recruiting factors on mitochondria such as Mff and Fis1 (Loson et al., 

2013), mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), and optic atrophy protein 1(OPA1) (Detmer 

and Chan, 2007). Mitochondrial morphological alterations manifested as fragmented 

mitochondria with damaged inner membrane structures have been increasingly reported as 

prominent early features in various major neurodegenerative diseases including ALS (Sasaki 

et al., 2007) and AD (Wang et al., 2009) (Fig. 1B and 1C).

Xu et al. firstly reported mitochondria aggregation in transgenic mice overexpressing wild 

type TDP-43 (Xu et al., 2010). And, the subsequent studies observed swollen mitochondria 

with damaged cristae structures in cultured NSC34 cells expressing ALS-associated mutant 

TDP-43 (Hong et al., 2012; Lu et al., 2012). Consistently, we and others further 

demonstrated that mitochondria indeed became fragmented accompanied by loss of 

mitochondrial inner membrane structure in cultured primary motor neurons or transgenic 

mice expressing ALS-associated mutant TDP-43 (Gautam et al., 2019; Magrane et al., 2014; 

Wang et al., 2013). Although ALS patients-derived primary fibroblasts without TDP-43 

mutation did not show any mitochondrial morphology changes (Codron et al., 2018), ALS 

patient-derived lymphoblastoid cell lines or fibroblasts bearing TDP-43 mutation also 

exhibited damaged and swollen mitochondria (Gautam et al., 2019; Onesto et al., 2016). 

Noteworthily, the morphology changes seen in TDP-43 experimental models are in good 

agreement with studies repeatedly reporting altered expression of mitochondria fission and 

fusion regulators such as Drp1, Fis1, MFN1, and OPA1 (Davis et al., 2018; Joshi et al., 

2018; Xu et al., 2010). Although the mechanisms by which TDP-43 regulates mitochondrial 

dynamics remains elusive, our previous study reported that mutant TDP-43-induced 

mitochondrial fragmentation could be alleviated by the overexpression of Mfn2, suggesting 

the likely involvement of Mfn2 dependent fusion. This notion is indeed supported by one 

most recent study showing the possible physical interaction between TDP-43 and Mfn2 

(Davis et al., 2018). However, it is worth noting a puzzling finding in this study: Mfn2 
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expression was increased rather than reduced by overexpression of wild type TDP-43 in 

brains, indicating that wild type and mutant TDP-43 may perturb mitochondrial dynamics 

through different mechanisms.

In addition to neurofibrillary tangles (NFTs) and senile plaques (SPs), cytoplasmic TDP-43 

inclusions have been implied as the likely third proteinopathy in patients with AD (James et 

al., 2016; Uryu et al., 2008). While both Tau and Aβ, the major components of NFTs and 

SPs, have long been reported to disturb mitochondrial dynamics (Silva et al., 2011), there 

are limited studies about TDP-43 and mitochondrial dynamics in AD-related experimental 

models. The recent study reporting increased expression of Mfn2 by TDP-43 also 

demonstrated that overexpression of wild type TDP-43 caused giant and swollen-structured 

mitochondria in hippocampal neurons in APP/PS1 transgenic mice for AD (Davis et al., 

2018). Although it is still unclear how these findings are reconciled with previous studies 

showing mitochondrial fragmentation and reduced expression of Mfn2 in AD patients and 

experimental models (Wang et al., 2009; Wang et al., 2008), the co-existence of multiple 

pathological features in AD and many other neurodegenerative diseases suggest the likely 

synergistic effects of TDP-43 and other proteinopathies on mitochondria dynamics, which 

are relatively unexplored and worthy of further detailed investigation.

TDP-43 and mitochondrial trafficking

In response to various physiological and pathological states, mitochondria are transported by 

motor-adaptor complexes to sites with bioenergetics requirements, which is vital for 

neuronal function and survival (Sheng and Cai, 2012). Failure of proper positioning of 

mitochondria in dendrites or axon terminals has long been implicated in neurodegenerative 

diseases and proposed as the potential cause of synaptic loss, a prominent early pathological 

feature well preceding neurodegeneration (Burte et al., 2015). In addition to changed 

mitochondrial morphology, impaired mitochondria transport was also consistently noted in 

cell and animal models expressing wild type or disease-associated mutant TDP-43 (Fig. 1B 

and 1C). In cultured primary motor neurons, overexpression of wild type TDP-43 resulted in 

impaired mitochondrial anterograde and retrograde transport in both axon and dendrites, 

which could be exacerbated by ALS-associated mutations (Wang et al., 2013). 

Unexpectedly, loss of TDP-43 also decreased mitochondrial trafficking in both axons and 

dendrites similar to TDP-43 overexpression (Wang et al., 2013), indicating the likely 

involvement of different pathways for TDP-43 mediated mitochondrial transport. Consistent 

with our findings, loss of fly TDP-43 caused an overall increase in stationary mitochondria 

in axon, which could be rescued by ectopic expression of fly TDP-43 or human TDP-43 

(Baldwin et al., 2016), further suggesting that the mitochondrial trafficking related function 

of TDP-43 should be conserved between flies and mammals. Importantly, mitochondrial 

transport defects appeared to be early pathological features of TDP-43 transgenic mice, well 

proceeding the onset of symptoms and even morphological abnormalities (Magrane et al., 

2014). Interestingly, human induced pluripotent stem cells (iPSCs)-derived motor neurons 

bearing TDP-43 mutation showed drastic slow moving speed at proximal and distal axons in 

an age-dependent manner without detectable cytoplasmic inclusions or phosphorylated 

TDP-43 accumulation, further indicating that mutant TDP-43 may cause mitochondrial 

toxicity independent of proteinopathy (Kreiter et al., 2018).
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On the basis of the facts that cytoskeleton is essential for the intracellular transport and 

positioning of mitochondria, membrane vesicles, and membrane-less RNA granules from 

neuronal cell body to the distal axonal terminals (Chetta et al., 2015), and that aberrant 

aggregates of cytoskeletal proteins are neuropathological signatures of many 

neurodegenerative diseases (Baskaran et al., 2018; Schwenk et al., 2016), it could be 

anticipated that loss of cytoskeleton integrity caused by pathological TDP-43 might 

contribute to abnormal mitochondrial transport (Oberstadt et al., 2018). Along this line, by 

mediating the splicing and translation of mRNA targets, TDP-43 has also been reported to 

be functionally associated with other microtubule related proteins such as Futsch/MAP1B 

(Coyne et al., 2014; Godena et al., 2011), NFL (Strong et al., 2007), STMN2 (Klim et al., 

2019; Melamed et al., 2019), and Tau (Gu et al., 2017a; Gu et al., 2017b; Lagier-Tourenne et 

al., 2012). In addition, cytoplasmic TDP-43 has been reported to regulate RNA granules 

trafficking through microtubule network (Alami et al., 2014). Therefore, although there is no 

evidence showing TDP-43-regulated mitochondrial transport directly through cytoskeleton, 

further studies will be interesting to characterize the functional role of reported TDP-43 

targets in mediating mutant TDP-43 induced mitochondrial transport defects.

TDP-43 and mitochondrial function

The mitochondrial oxidative phosphorylation system (OXPHOS) utilizes substrates derived 

from glucose, fatty acids, and amino acids to produce reducing equivalents that are delivered 

to the respiratory chain to generate adenosine triphosphate (ATP). The respiratory chain 

consists of four protein complexes (complex I–IV), three of which (I, III, and IV) couple 

electron transfer to proton pumping across the mitochondrial inner membrane to generate a 

transmembrane electrochemical potential. The complex V, named ATP synthase, synthesizes 

ATP from ADP and inorganic phosphate using the energy provided by the proton 

electrochemical gradient. In addition to generate ATP, mitochondria are also required for a 

wide range of cellular processes such as the synthesis of key metabolites, Ca2+ hemostasis, 

inflammation and apoptosis. Thus, it is not surprising that mitochondrial functional 

abnormalities have been extensively studied in many neurodegenerative diseases, including 

ALS (Beal et al., 1997; Mattiazzi et al., 2002) and AD (Gibson et al., 1998; Ojaimi et al., 

1999; Parker et al., 1990) (Fig. 1C).

Several groups have independently reported mitochondrial OXPHOS deficits in TDP-43-

associated experimental models. For example, reduced mitochondrial complex I activity and 

mitochondrial transmembrane potential as well as increased expression of mitochondrial 

uncoupling protein 2 (UCP2) were firstly noted in NSC-34 cells overexpressing wild type or 

mutant TDP-43 (Lu et al., 2012). In support of these original findings, we and the recent 

study in HEK293 or NSC34 cells have independently found that the portion of full-length 

TDP-43 inside of mitochondria can bind mitochondria-transcribed messenger RNAs 

(mRNAs) encoding subunits (ND3/6) of OXPHOS complex I to specifically impair its 

assembly and function (Salvatori et al., 2018; Wang et al., 2019; Wang et al., 2016), whereas 

truncated TDP-43 lacking the M1 mitochondrial localization sequence is restricted to the 

intermembrane space and has no effect on ND3/6 expression or mitochondrial function 

(Salvatori et al., 2018). In addition, TDP-43 has also been reported to maintain 

mitochondrial function by stabilizing the processing intermediates of mitochondrial 
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polycistronic transcripts encoding the components of electron transport and ribosomal RNAs 

(Izumikawa et al., 2017). Moreover, ALS patient-derived lymphoblastoid cell line with 

TDP-43 mutation exhibited perturbed mitochondrial function including increased basal 

oxygen consumption rate and decreased spare respiratory capacity (SRC), which refer to 

mitochondrial ability to generate energy (Pansarasa et al., 2018). The role of mitochondria 

for TDP-43 is further supported by observations that TDP-43 cellular toxicity in yeasts 

could be altered by manipulating mitochondrial function (Braun et al., 2011; Park et al., 

2019). However, despite increasing evidence suggesting mitochondria as targets or 

mediators of TDP-43 toxicity (Davis et al., 2018; Genin et al., 2018; Hibiki Kawamata, 

2017; Izumikawa et al., 2017; Salvatori et al., 2018; Wang et al., 2016; Woo et al., 2017), 

there are considerable discrepancies as to its impact on mitochondrial function. For example, 

although reduced mitochondrial membrane potential was observed, oxygen consumption, 

ATP production, and OXPHOS complex activity remained unchanged in human fibroblasts 

bearing TDP-43 (Onesto et al., 2016). Similarly, despite altered mitochondrial calcium 

capacity, oxygen consumption, ATP production, and mitochondrial membrane potential 

were all reported unchanged in HEK293 cells or transgenic mouse expressing mutant 

TDP-43 (Kawamata et al., 2017). To resolve these discrepancies, our future investigation 

might need novel tools or techniques to pinpoint the time-course change of mitochondrial 

function locally and systematically in different neuronal compartments in response to 

TDP-43 expression. In addition, as TDP-43 has been reported to interfere in ER–

mitochondria associations (Stoica et al., 2014), which are important for calcium 

homeostasis, lipid metabolism, autophagy, and even protein transport (Pinton, 2018; Wang et 

al., 2018b), the possible indirect ability of TDP-43 to regulate mitochondrial function should 

also be considered.

TDP-43 and mitochondrial quality control

Mitochondrial AAA proteases are required for the maintenance of mitochondrial 

proteostasis and functional integrity (Quiros et al., 2015). And, genetic mutations in 

mitochondrial AAA proteases have been shown associated with neurodegeneration (Patron 

et al., 2018). Interestingly, mitochondrial proteases have recently been proposed as an 

alternative proteostasis mechanism to counteract cytosolic protein aggregates (Ruan et al., 

2017). It was shown that during heat shock in yeast, TDP-43 could be imported into 

mitochondria for degradation by mitochondrial proteases (Ruan et al., 2017). While 

proteases responsible for mitochondria-imported TDP-43 remain unknown, one most recent 

study showed that DJ-1, a putative protease localized both in cytoplasm and mitochondria, 

protected against oxidative stress-induced cell death through the suppression of cytoplasmic 

TDP-43 aggregation, suggesting that DJ1 may alleviate TDP-43-caused toxicity through 

degrading both cytoplasmic and mitochondrial TDP-43 (Lei et al., 2018). In addition to the 

selective turnover of misfolded proteins by mitochondrial proteases, the general 

mitochondria quality control involves mitophagy, a mechanism by which damaged 

mitochondria are engulfed in autophagosomes to be degraded through the autophagic-

lysosomal pathway (Chen and Chan, 2009). Similar to mitochondrial proteases, mutations in 

mitophagy-related genes are also closely associated with neurodegenerative disease (Pickrell 

and Youle, 2015; Youle and Narendra, 2011). Overexpression of TDP-43 has previously 
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been shown to induce mitophagy in NSC34 cells (Hong et al., 2012). And, mutant TDP-43 

transgenic mice exhibited mitochondrial accumulations fused with lysosomes, further 

supporting the possible link between TDP-43 and mitophagy (Gautam et al., 2019). In 

support of this notion, it has been reported that mitochondrial associated TDP-43 interacts 

with mitochondrial outer membrane protein prohibitin 2 (PHB2) and voltage-gated 

dependent anion channel 1 (VDAC1), which are crucial receptors for Parkin-mediated 

mitophagy (Davis et al., 2018). Although whether TDP-43 is involved in PINK1/Parkin 

mediated mitophagy remains elusive, Parkin has been reported to mediate poly-

ubiquitination of TDP-43, and overexpression of Parkin could reverse TDP-43-induced cell 

toxicity (Hebron et al., 2014; Hebron et al., 2013; Wenqiang et al., 2014). Likewise, TDP-43 

also modulates the expression of Parkin and PINK1, leading to compromised mitochondrial 

functions and mitophagy (Sun et al., 2018). Augmenting mitophagy by neuronal PINK1 

overexpression reduces Aβ pathology and improves mitochondrial and synaptic dysfunction 

in APP mice (Du et al., 2017). Therefore, it may be anticipated that enhancing mitophagy 

may be a potential strategy to alleviate TDP-43-induced cytotoxicity.

Conclusions

Like mitochondrial dysfunction (Lin and Beal, 2006), TDP-43 proteinopathy is a common 

prominent pathological feature of various major neurodegenerative diseases including ALS, 

FTD, and AD. We have reported that the inhibition of TDP-43 mitochondrial localization is 

sufficient to alleviate mitochondrial dynamic abnormalities, neuronal loss, and behavioral 

deficits in different mutant TDP-43 transgenic mice (Wang et al., 2016; Wang et al., 2017). 

Therefore, targeting TDP-43 mitochondrial association may be a promising novel 

therapeutic approach for neurodegeneration. However, the pathogenic mechanisms linking 

mitochondrial abnormalities with TDP-43 proteinopathy, and related neurodegeneration are 

still poorly understood. Consdiering recent discrepant studies reporting the sub-

mitochondrial localization of TDP-43 and the interaction of TDP-43 with different 

mitochondrial pathways, mitochondria-associted TDP-43 or TDP-43 fragments may 

synergistically mediate mitochondrial and neuronal function through multiple pathways 

involving but not limited to mitochondrial dynamics, trafficking, bioenergetics, and quality 

control. As mitochondria are increasingly implicated as critical targets of Aβ, tau, α-

synuclein, and many other neurodegenerative disease-associated proteinopathies, 

mitochondria, therefore, possibly lie at the convergence of a diverse range of 

proteinopathies. Future research into TDP-43 mitochondrial association in the context of 

multiple proteinopathies may help us clarify whether and how TDP-43 is physically and 

functionally associated with mitochondria and contributes to disease progression, and 

importantly, provide new therapeutic targets for these devastating diseases.
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Highlights

This review describes our current knowledge of the physical and functional association of 

TDP-43 with mitochondria.
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Fig.1. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration.
(A) TDP-43 mitochondrial association. OMM, outer mitochondrial membrane; IMM, inner 

mitochondrial membrane; IMS, intermembrane space. (B) Mitochondria are dynamic 

organelles that undergo continuous fission, fusion, and trafficking, which are critical for the 

maintenance of mitochondrial function in neurons. The majority of TDP-43 resides in the 

nuclei and involves in a wide range of cellular processes such as RNA processing, cryptic 

splicing, RNA transport, and microRNA biogenesis in healthy neurons. (C) In disease-

affected neurons, TDP-43 forms inclusions in the cytoplasm, usually accompanied by 

depletion of nuclear TDP-43. Abnormal mitochondria with altered morphology, inner 

structure, and OXPHOS activity can be noted in neurons bearing TDP-43 proteinopathy.
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