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Abstract

Deep learning algorithms and in particular convolutional networks have shown tremendous 

success in medical image analysis applications, though relatively few methods have been applied 

to infant MRI data due numerous inherent challenges such as inhomogenous tissue appearance 

across the image, considerable image intensity variability across the first year of life, and a low 

signal to noise setting. This paper presents methods addressing these challenges in two selected 

applications, specifically infant brain tissue segmentation at the isointense stage and 

presymptomatic disease prediction in neurodevelopmental disorders. Corresponding methods are 

reviewed and compared, and open issues are identified, namely low data size restrictions, class 

imbalance problems, and lack of interpretation of the resulting deep learning solutions. We discuss 

how existing solutions can be adapted to approach these issues as well as how generative models 

seem to be a particularly strong contender to address them.
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1. Introduction

Neurodevelopmental disorders (NDDs) are a diverse group of conditions that are 

characterized by deficiencies in brain functions including cognition, communication, 

behavior and motor skills resulting from atypical brain development. Attention-deficit/

hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and intellectual disability 

are examples of disorders that fall under the umbrella of NDD [1]. Such conditions can be 

chronically disabling resulting in significant long-term impairment to the adult life of those 

children who suffered them. Due to the lack of biomarkers to diagnose NDD or to 

differentiate among them, these disorders are still currently identified based on clinical 

interviews and behavioral observations. Therefore, NDDs share common needs that include 

(i) the development of a clinically-useful, early presymptomatic test for identifying infants 

who will develop neurodevelopmental disorders, which will enable more efficient early 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Magn Reson Imaging. Author manuscript; available in PMC 2020 December 01.

Published in final edited form as:
Magn Reson Imaging. 2019 December ; 64: 171–189. doi:10.1016/j.mri.2019.06.009.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intervention in infancy, (ii) the bijective assessment of disease severity through inspecting 

associated dysfunctional brain systems and contrasting them to typically functional ones, 

thereby leading to accurate long-term disease prognosis that will help to accelerate the 

evaluation of potentially applied interventions.

Advances in Magnetic Resonance Imaging (MRI) enabled the non-invasive visualization of 

the infant’s brain through acquired high-resolution images. The increasing availability of 

large-scale datasets of detailed infant brain multi-modal MR images, e.g., T1-weighted 

(T1w), T2-weighted (T2w), diffusion-weighted MRI (dMRI), and resting-state functional 

MR (rsfMRI) images, affords unique opportunities to accurately study early postnatal brain 

development leading to insights into the origins and abnormal developmental trajectories of 

NDDs. However, the processing and analysis of MR infant brain images are typically far 

more challenging as compared to the adult brain setting. As illustrated in Figure 1, an infants 

brain MRI suffers from reduced tissue contrast, large within-tissue inhomogeneities, 

regionally-heterogeneous image appearance, large age related intensity changes and severe 

partial volume effect due to the small brain size. Since most of the existing tools were 

designed for adult brain MRI data, infant-specific computational neuroanatomy tools are a 

relatively recent development. As shown in Figure 2, a typical pipeline for early prediction 

of NDDs from infant structural MRI (sMRI) consist of three main steps. (i) Image 

preprocessing, tissue segmentation, and regional labeling, and extraction of image-based 

features [2, 3, 4]. (ii) Surface reconstruction, surface correspondence, surface parcellation, 

and extraction of surface-based features [5, 6, 7]. (iii) Feature preprocessing, feature 

extraction, machine learning model training, and prediction of unseen subjects [8, 9, 10, 11].

As acquiring such multi-modal MR infant brain images becomes more common, the 

collections of medical imaging data available to researchers are increasing in number, size, 

and complexity. For instance, the Baby Connectome Project (BCP) is aiming to acquire 

longitudinal high-resolution multi-modal MRI data from more than 500 typically-developing 

children from birth to 5 years of age [12]. Hence, this necessitates the development of 

methods that can utilize information extracted from these large datasets. In the realm of big 

data, artificial intelligence (AI) and machine learning are often used interchangeably. 

However, AI has a broader notion than machine learning, which tackles the use of computers 

to mimic the humans cognitive functions. As illustrated in Figure 3, machine learning is a 

subset of AI that focuses on the design and development of algorithmic techniques that 

allow computer systems to evolve function or behavior by learning from large data. Classical 

machine learning algorithms have a variety of applications that have been tailored to the 

medical imaging field [13, 14, 15]. However, most necessitate the creation of ”hand crafted” 

image features through careful engineering and specific domain expertise. Also, such 

traditional machine learning algorithms tend to not generalize well to new, previously 

unseen data [16]. This problem is amplified in medical imaging applications due to the 

inherent anatomical variability in brain morphology, discrepancies in acquisition settings 

and MRI scanners, and variations in the appearance of pathological tissues. In recent years, a 

machine learning technique referred to as deep learning [16, 17] has gained wide popularity 

in many artificial intelligence applications due to its ability to overcome limitations of 

classical machine learning algorithms.
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Deep learning is sometimes referred to as ”deep neural networks,” referring to the many 

layers involved compared to traditional neural networks that may only have a single layer of 

data (Figure 4). Such a deep network architecture enables the extraction of a complex 

hierarchy of features from input data via self-learning as opposed to the engineered feature 

extraction in classical machine learning algorithms. Deep learning shows impressive 

performance and generalizability through training on a large amount of data [18, 19, 20]. 

This success is due mostly to the rapid progress in computational power, in particular 

through graphics processing units (GPUs), which enabled the fast development of complex 

deep learning algorithms. Several types of deep learning architectures have been developed 

for different tasks including object detection, speech recognition, and classification mainly 

in computer vision. In turn, the success of deep learning in computer vision computer vision 

lead to its use in medical image analysis, for image segmentation [21], image registration 

[22], image fusion [23], lesion detection [24], and computer-aided diagnosis [25]. In this 

paper, we provide an example based overview of recently developed deep learning 

techniques with applications to the field of infant brain MR segmentation and NDDs 

prediction. Also, we will discuss some of the remaining performance gaps that have the 

potential to be fulfilled by new advancements in the field of deep learning.

2. Deep Learning for Infant Brain Tissue Segmentation

Accurate segmentation of infant MRI into regions of different tissue classes, such as white 

matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), is a crucial early processing 

step in extracting imaging biomarkers [26, 27]. Due to the ongoing myelination and 

maturation processes in the first year of life [28], we can roughly distinguish four stages of 

distinct appearance of the brain in MR images [29], namely, (i) a neonate/infantile stage 

where WM-GM contrast is inverse as compared to adults (≤ 4 months), (ii) an isointense 

stage (5 – 9 months) when contrast between WM and GM is low or absent, and (iii) an early 

adult-like stage (≥ 10 months) when WM-GM contrast appears similar to the adult stage 

(iv). As shown in Figure 1, at the neonate stage (0−3 months) and at adult-like stages, T1w 

and T2w MRI typically show reasonable contrast that enables accurate separation of 

different structure, though at lower signal to noise ratio (SNR) and contrast-to-noise ratio 

(CNR) at the neonate stage.

2.1. Brain tissue segmentation at neonatal stage:

The segmentation of a neonatal brain (≤ 1 month) is challenging due to the lower SNR and 

CNR caused by the shorter scanning time imposed by expected motion constraints and the 

small size of the neonatal brain. Moreover, the CSF-GM boundary has a similar intensity 

profile to the mostly unmyelinated WM leading to severe partial volume (PV) effects. 

Additionally, the large variability caused by the rapid brain development and the ongoing 

WM myelination process impose additional challenges in developing accurate segmentation 

tools [30]. Over the years, several non-deep learning based methods were proposed to 

accurately segment neonatal brains, which can be mainly categorized into parametric [31, 

32, 33], classification [34, 35], multi-atlas fusion [36, 37], deformable models [38, 39]. 

Neonatal tissue segmentation methods were evaluated in the NeoBrainS12 2012 MICCAI 

Grand Challenge (http://neobrains12.isi.uu.nl), where T1w and T2w images were provided 
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with corresponding manually segmented images. Most methods showed accurate 

segmentation results, where classification-based approaches showed highly accurate results 

but more sensitive compared to other methods. However, the segmentation of myelinated vs 

unmyelinated WM remains a challenge as most methods failed to produce accurate results 

consistently [30]. This can be attributed mainly to the lack of accurate manually segmented 

atlases that describe these regions efficiently. To improve the current segmentation results, 

deep learning techniques particularly using convolutional neural networks (CNNs) are being 

investigated. However, only a few studies (Moeskops et al. [40] and Rajchl et al. [41]) 

attempted to utilize CNNs for such task, which can also be attributed to the lack of adequate, 

accurate manually segmented data needed to train deep learning models. Ongoing efforts 

through projects such as BCP and dHCP are promising to solve this problem by enabling the 

availability of publicly available annotated datasets.

2.2. Brain tissue segmentation at isointense stage:

Another time point where traditional segmentation methods are still challenged is around six 

months of age. At this age stage, both T1w and T2w scans show a high overlap between the 

intensity distributions of both WM and GM (isointense), which imposes a significant 

challenge for accurate tissue segmentation [38]. In addition to the extremely low tissue 

contrast between WM and GM, isointense infant MRI images still suffer from a generally 

lower signal-to-noise and higher partial volume effects as compared to adult scans. Due to 

the necessity to acquire isointense infant MRI scans during nature sleep of the subject, 

additional complicating factors affecting image quality such as short acquisition times and 

increased motion artifacts are present. Finally, biological factors such as spatially variable 

myelination rates across the brain further complicate the segmentation of isointense infant 

brain MRI data. In this paper, we will focus on this particularly difficult task of accurately 

segmenting infant MRI brain images at the isointense stage as methods developed for this 

time point have high potential for successful translation to other time points including the 

neonatal stage. To solve this problem, many traditional segmentation methods have been 

proposed. Atlas-based approaches [38, 42, 43, 44, 45] incorporate a-priori knowledge about 

the location of different brain structures through the use of a single atlas or more commonly 

multiple atlases. In the multi-atlas setting, atlases are first deformably registered to the 

subject image, and labels are then combined using a label fusion strategy. In addition to 

tissue segmentation, such methods are commonly also applied for the segmentation of 

subcortical structures [46]. Atlas-based segmentation techniques show reasonable accuracy 

in many applications. Nevertheless, they are still challenged by registration errors caused by 

low contrast and intensity inhomogeneities present in the infant population. A variety of 

techniques have been proposed as a refinement step to overcome some of the limitations 

associated with atlas-based approaches. Probabilistic methods [47, 48] will formulate the 

segmentation as an energy minimization problem in which shape or spatial priors constrain 

voxel probabilities. On the other hand, deformable-based models [49] will refine contours 

produced by atlas-based approaches to better match computed image edges. These 

refinement methods typically require large labeled datasets that generally are not available 

and are harder to generalize to multi-tissue segmentation.
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Longitudinal approaches have also been proposed where images of the same subjects 

scanned at an older, adult-like stage are employed via longitudinal co-registration [11, 50]. 

Such methods rely on the on the availability of follow up scans which might not be practical. 

Recently, alternative have been proposed that do not need such follow up data, such as the 

anatomy-guided joint tissue segmentation and topological correction framework for 

isointense infant MRI proposed by Li [51]. This approach adaptively integrates information 

from both intensity images and estimated tissue probability maps, as well as employs prior 

anatomical information in the form of a signed distance map to the outer cortical surface to 

correct topological errors. Although the results obtained by this method show reasonable 

accuracy compared to previous work, the method is still limited by choice of anatomical 

priors and the reliance on engineered, potentially non-optimal discriminative features that 

are harder to generalize to more massive datasets. Therefore, there is a need for techniques 

that can automatically learn general features from the infant data in a data-driven manner. 

Recently, manually labeled six months data has become available through different resources 

including segmentation challenges such as such as the iseg 2017 MICCAI Grand Challenge 

(http://iseg2017.web.unc.edu). In this challenge, researchers were invited to propose and 

evaluate their methods to segment WM, GM, and CSF on 6-month infant brain MRI scans. 

Most of the top performing methods were based on deep learning techniques. In particular, 

deep learning methods based on CNNs have demonstrated outstanding performance in 

solving the segmentation of isointense infant brain MRI. Below, we review some of the 

commonly used CNN architectures used for such a segmentation task.

Convolutional neural networks (CNN): Unlike conventional deep neural networks 

where inputs are always in vector form, CNNs maintain and utilize the structural and spatial 

information among neighboring pixels or voxels in the input 2D or 3D images. Also, a CNN 

limits the degrees of freedom of the deep learning model through exploiting a local receptive 

field, weights sharing, and sub-sampling techniques (see Supplementary Figure 1). Hence, 

this will result in models that can learn from limited datasets commonly present in medical 

applications in a way that is less prone to the problem of overfitting. Although CNNs were 

first introduced in 1989 [52], it did not gain interest until the introduction of deep CNN 

architectures, such as AlexNet [18] that accomplished remarkable results in the ImageNet 

[53] competition in 2012. AlexNet represents a currently typical CNN architecture that 

consists of a sequence of layers of convolution, pooling, activation, and fully connected 

(dense or classification) layers (see Supplementary Figure 2). In the image classification 

task, AlexNet almost halved the error rates of the formerly best-performing methods [53]. 

Since then, CNN architectures are increasingly deeper, which resulted in improved error 

rates, often achieving human performance levels [54, 19, 55]. A convolutional layer is 

designed to detect localized features extracted at different locations in the input feature maps 

using learnable kernels or filters. The output of such convolutional layers is passed through 

non-linearities introduced by an activation function. A rectified linear unit (ReLU) and its 

alterations, such as Leaky ReLU, are among the most commonly used activation functions. 

These functions enabled the training of deeper models in a way that avoids vanishing 

gradient problems typically found when using the more traditional tanh and sigmoid 

activation functions. Pooling layers are used to downsample the feature maps using the 

maximum or the average of the predefined neighborhood as the value passed to the next 
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layer. To classify an input image, the output scores of the final CNN layer are then related to 

a loss function (e.g., a cross-entropy loss that maps scores into a multinomial distribution 

over class labels). The network’s parameters are learned by iteratively minimizing the loss 

function with parameters being updated (e.g., using stochastic gradient descent SGD) via 

back-propagation until convergence is reached.

Patch-based convolutional neural networks: As mentioned above, CNN based deep 

learning methods have accomplished great success in medical image segmentation, 

including isointense infant brain tissue segmentation. The most straightforward approach 

employs a patch-based CNN architecture in which an NxN patch centered at each pixel is 

extracted from the input image and then used to train a CNN classification model to classify 

patches, represented by the center pixel, into the correct tissue class (i.e., WM, GM or CSF). 

Zhang et al. [56] first proposed using such patch-based CNN architecture to segment 

isointense stage infant brain images in which complementary and multi-modality 

information from T1w, T2w, and FA images are utilized as inputs to generate the final 

segmentation maps The input to the CNN architecture is the three input feature maps that 

correspond to the T1w, T2w, and FA 2D image patches (see Supplementary Figure 3). It is 

then passed through three convolutional layers with increasing width before a fully 

connected layer is applied with a softmax activation function to obtain class probabilities of 

the center pixel in the input patch.

The patch size selection limits the performance of such patch-based approaches. In 

particular, patch size selection leads to a trade-off between localization and classification 

accuracy. Using large patches improves classification accuracy but leads to increasing 

localization errors caused by the additional pooling layers. On the other hand, utilizing 

smaller patches leads to better localization and lower classification performance due to the 

limited context information and increased sensitivity to noise. Additionally, these methods 

are hard to train due to the large number of parameters involved, and since CNNs need to be 

applied to a massive number of locations, such methods are very computationally expensive. 

The performance of patch-based architectures can be improved using a multi-scale approach, 

where multiple patch sizes are utilized to construct multiple pathways, and the output of 

these pathways is combined using a fully connected layer with a softmax activation function 

[40]. The larger scales keep implicit information about the voxel location in the scan, while 

the smaller scales provide detailed information about the local neighborhood of the voxel 

(see Supplementary Figure 4). Note that the kernel size is adaptive in that larger kernels are 

used for the larger patches. Although such an approach addressed the patch size selection 

problem, the use of sliding windows results in regions being processed independently in a 

computationally inefficient way due to the many redundant convolutions and pooling 

operations.

Fully convolutional neural networks: To overcome the problems mentioned above, a 

fully convolutional neural network (FCN) architecture can be utilized. An FCN can be 

trained end-to-end with convolutional layers to produce dense pixel outputs with much less 

network parameter as it avoids the use of fully connected layers [57]. Specifically, the 

architecture of FCN is similar to that of a typical CNN with the last fully connected layer 
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replaced by a convolutional layer with a large receptive field. Using FCN results in a 

significant reduction in the number of trained parameters and allows for learning 

representations and decisions based on local spatial context unlike the global context 

captured by the fully connected layers. Thus, FCNs can simplify and accelerate both the 

learning and the inference of segmentation deep neural networks. In particular, in this 

architecture type, a classification is given for each voxel of the input image similar to 

semantic segmentation. They include an encoder network that extracts compact high-level 

features using convolutional and pooling layers, and a decoder network that upsamples the 

higher-level features extracted by the encoder typically once using a fixed interpolation 

method [57]. This produces pixel-wise class probabilities that can be used to classify pixels 

and produce the required segmentation. Nie et al. [58] proposed multiple fully convolutional 

networks (mFCNs) to segment the isointense infant brain image using multimodal 

information of T1w, T2w, and FA images. Separate FCN networks were used for each 

modality, and instead of merely combining three modality data from the original low-level 

feature maps, a deep architecture was employed to effectively fuse their high-level 

representation from three modalities to produce the final segmentation (see Supplementary 

Figure 5). Due to the imbalance of voxels assigned to each category, a weighted loss 

function was used giving weights that are inversely proportional to the fraction of voxels of 

the corresponding tissue class. Although such method avoided some of the drawbacks of the 

patch-based methods, its particular implementation relied on 2D slice data that does not 

account for the anatomical context in the slicing direction. Also, this method assumes that 

the high-level representations from different modalities provide complementary information, 

which is not always the case.

Dilated convolutions: To incorporate larger anatomical context, Moeskops et al. [59] 

explored the use of dilated convolutions for the segmentation of isointense stage infant brain 

MR images. Dilated CNNs are a particular type of CNN proposed for image segmentation 

that can realize a large receptive field while limiting the number of trainable parameters 

[60]. Dilated convolutions add another parameter to convolutional layers called the dilation 

rate (see Supplementary Figure 6). Dilation rate controls the spacing between the kernel 

elements, and hence, for instance, a 3 × 3 kernel with a dilation rate of 2 will have a 

receptive field similar to that of a non-dilated 5 × 5 kernel, while only using nine parameters 

instead of 25. The proposed FCN network utilized a triplanar (axial, sagittal and coronal 

planes) dilated convolutions and 3D convolutions in four network branches, where the 

dilated branches use layers of 3 × 3 kernels with increasing dilation factors. All network 

branches used 2-channel input from the T1w and the T2w images.

U-Net: Zeng et al. [61] proposed an approach where a context guided, multi-stream, two-

stage 3D FCN architecture is employed. As shown in Figure 5, the first stage FCN-1 is used 

to learn tissue-specific probability maps from the input T1w and T2w images. After 

obtaining an initial segmentation, a distance map is computed for each brain tissue to model 

the spatial context information. The second stage FCN-2 is used to obtain the final 

segmentation based on the computed spatial contact information and the original multi-

modality MR images. The design of both FCN-1 and FCN-2 are inspired by a famous FCN 

architecture that was developed for biomedical image segmentation called U-Net [62]. The 
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U-Net modifies the original FCN architecture by utilizing both long and short skip 

connections similar to the ones introduced in residual networks. This enables the network to 

learn from fewer training images and produce more precise segmentation [19] (see 

Supplementary Figure 7). Similar to U-Net, both FCN-1 and FCN-2 consist of an encoder 

part (contracting path) that learns compact feature representations and a decoder part 

(expanding path) that generates the segmentation results from the learned representations. 

The decoder part is applied to each modality separately, and high-level information from all 

modalities are fused at the beginning of the decoder path. To alleviate the potential gradient 

vanishing problem during training, which is more difficult for full 3D image data, two 

auxiliary branch classifiers were injected into the network in addition to the classifier of the 

main network. To solve the problem of having to train the network from scratch with limited 

annotated data, transfer learning ideas have been leveraged by pre-training the network on a 

related segmentation task.

Other CNN approaches: Dolz et al. [63] proposed the use of an ensemble of 3D CNN 

for the segmentation of isointense infant MR brain images. Encouraged by the recent 

success of dense networks [20], in which each layer is connected to every other layer in a 

feed-forward fashion, a semi-dense architecture was proposed to connect all convolutional 

layers directly to the network end as shown in Figure 6. This semi-dense architecture allows 

efficient gradient flow during training, while also reducing the number of trainable 

parameters (one order of magnitude fewer parameters than a 3D U-Net architecture). The 

network investigated the use of parametric ReLU (PReLU) [64], which is a parametric 

version of a leaky ReLU that prevent saturation by learning an additional scaling coefficient. 

Bottleneck layers (1 × 1 × 1 convolutions) was used instead of fully connected layers to limit 

the number of parameters and ensure the fully convolutional nature of the network. Different 

strategies for combining information from multiple MR modalities, specifically, early fusion 

(Figure 6 (a)) and late fusion (Figure 6 (b)) strategies were investigated regarding improving 

network robustness. The final segmentation was obtained by a majority voting of 10 of the 

previously described FCNs, which was shown to enhance the generalization of the proposed 

segmentation method. Ensemble predictors were employed to identify which images have 

uncertain segmentations, and moreover which brain regions need to be inspected and 

corrected manually by experts.

Finally, Nie et al. [65] extended their previous work [58] by extending the conventional FCN 

architectures to a full 3D framework. In the proposed 3D architecture, fewer pooling layers 

were used to mitigate the loss of localization information, while using more convolutional 

layers at the smallest convolution filters at 3 × 3 × 3 to be able to capture details better. 

Similar to skip connections in the U-Net architecture, coarse feature maps were aggregated 

with dense feature maps produced by the deconvolution layers using an information pass-

through (PT) mechanism which aims to model small structure tissues better. The designed 

PT operation involves the use of extra convolutional layers to fuse low-level and high-level 

features after the concatenation layers, which helps to produce more precise segmentation 

results. The authors also introduced an alternative mechanism to the PT operation that is 

referred to as convolution and concatenate (CC) subprocedure, in which the low-level 

representations are mapped to higher-level layers through a convolution operation followed 
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by the concatenation of both levels of representation. These extra convolutional layers 

impose additional challenges during training, and hence batch normalization (BN) [66] 

layers are added to speed up the convergence of the network. An additional advantage of the 

proposed method is its ability to produce accurate segmentations with much faster testing 

speed compared to other competing 3D CNN architectures.

3. Deep Learning for Early Disease Prediction in Infants

Early prediction of NDDs is one of the main goals of precision medicine applied to the 

developing, pediatric population. An early prediction of NDDs is expected to have a 

significant impact as it allows for early and more effective interventions, which in turn is 

expected to result in an improved prognosis. The development of sophisticated, noninvasive 

3D medical imaging technologies such as MRI provides a way to extract biomarkers to 

assist in the early diagnosis of NDDs. Neuroanatomical abnormalities in the cerebral cortex 

are widely investigated by examining cortical brain morphometric measures such as cortical 

thickness and cortical surface area. Such cortical measures are usually extracted from finely-

sampled cortical surfaces, forming a high-dimensional feature list with 100,000 or more 

features corresponding to the number of vertices in the cortical mesh (Figure 7). Using such 

cortical features, several studies have shown that the brain undergoes a tremendous change 

during the first year of life [67, 68]. For example, in studying ASD, It was demonstrated that 

infants who will later develop ASD show a variety of age-specific, brain differences between 

6–24 months, as well as demonstrating early brain changes that correlate with ASD outcome 

and related behaviors measured at 24 months [69, 70, 71, 72, 73]. Although significant, 

these group-level differences and brain-behavior correlations do not allow for individual-

level outcome prediction critical for application to clinical practice. It would be particularly 

beneficial if such extracted neuroimaging markers could predict the intervention that most 

be most beneficial to child’s prognosis [74]. To achieve this goal, many studies have used 

traditional machine learning methods with MRI data to classify individuals with NDDs, 

particularly ASD or to understand their patterns of behavior [26, 75, 76, 77]. However, there 

is a lack of studies that prospectively classify infants before the onset of the core features of 

the disorder due to a number of challenges when learning from MRI brain images; including 

(i) reliable extraction of relevant features from the cortical surface that are specific to the 

investigated disease, (ii) determination of the optimal parsimonious subset of cortical 

features needed for an accurate disease diagnosis, (iii) learning directly from a high-

dimensional feature space in an end-to-end fashion without the need for a suboptimal 

separate dimensionality reduction step, (iv) design of classifiers that are able to utilize multi-

modal biomarkers in predicting disease severity, and (v) identification of the regional brain 

regions and their interactions that contribute the most to the classifier performance.

There has been a limited effort to utilize deep learning techniques to tackle these challenges, 

which can be attributed to the lack of benchmarking infant MRI datasets. Indeed, there is a 

need for challenges sponsored by medical imaging conferences to encourage benchmarking 

and the development of new deep learning algorithms for early prediction of NDDs. Below, 

we will review recent efforts to apply deep learning techniques in the early prediction of 
ASD, which can be extended to serve as an application target for future benchmarking.
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Can ASD be predicted from presymptomatic MRI data?

A recent study showed that brain imaging in infants at high familial risk (HR) (by their 

having an older sibling with ASD) could predict a diagnosis of ASD with 80% positive 

predictive value (PPV) from earlier MRI data. This work utilized cortical surface features 

extracted from T1w and T2w brain images acquired at 6 and 12 months of age in order to 

accurately predicted ASD diagnosis at 24 months using a deep learning technique [11]. By 

comparison, behavioral features (even those measured as late as 18 months of age) have not 

produced individual-level diagnostic prediction that is of sufficient accuracy to be clinically 

useful [78].

In this prediction framework [11], brain tissue segmentation was computed using a standard 

expectation-maximization, atlas-moderated tissue classification [79] and cortical surfaces 

were then reconstructed from the 12-month MRI segmentations with an adapted version of 

the CIVET workflow [10]. The cortical surfaces consisted of 81,920 high-resolution triangle 

meshes (40,962 vertices) in each hemisphere, and cortical surface correspondence across-

subjects was established via spherical registration to an average surface template [10]. The 

local surface area (SA) is computed at the middle surface, i.e., the surface that runs at the 

mid-distance between WM and outer GM surfaces to avoid over or under-representation of 

gyri or sulci [80]. The local cortical thickness (CT) is computed using the Euclidean distance 

between corresponding white and outer gray surface points [10]. Based on the extracted 

features, machine learning classifiers can be used to predict diagnostic outcomes. Such 

classifiers undergo a learning process in which they learn the correct category labels for each 

set of features. However, it is difficult to train stable classifiers using the high-dimensional 

feature space present in this study without overfitting.

Dimensionality reduction:

One possible solution to overcome such an overfitting problem is to employ a supervised or 

unsupervised dimensionality reduction technique [81]. Unsupervised methods run the risk of 

losing relevant information while supervised methods tend to be more biased and therefore 

harder to generalize. Alternatively, if possible, dimensionality can be reduced by first 

summarizing the features via prior anatomical knowledge, such as summarizing vertex-wise 

cortical features via a cortical subdivision that divides the cortex into a mosaic of 

anatomically and/or functionally distinct, spatially adjacent areas using prior parcellation 

atlases [82]. The objective of dimensionality reduction is three-fold: improving the 

prediction performance of the predictors, providing faster and more cost-effective predictors, 

and providing a better understanding of the underlying process that generated the data.

In the framework proposed in [11], the dimensionality of CT and SA measurements were 

first summarized using the Brodmann-based automatic anatomic labeling atlas, namely AAL 

[83, 84]. A deep learning model was then used as a second dimensionality reduction (Figure 

8 (a)). The input feature vector was first binarized using a trained binary masking operation 

to allow performing an initial, unsupervised autoencoder training procedure on individual 

two-layer greedy networks [85] (Figure 8 (b)). As shown in Figure 8 (c), a supervised 

training step is then applied to the autoencoder via a single classification layer with a single 

output representing the binary diagnosis label. The weights of the full network were fine-
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tuned using backpropagation treating the deep network as a traditional feed-forward neural 

network. After this supervised training step is completed, the last layer is removed, and the 

number of nodes in the last hidden layer represents the final dimension of the reduced 

dimension output. Finally, the reduced representation generated by the trained deep learning 

network along with the binary training labels is then used to train a two-class support vector 

machine (SVM) classifier.

Understanding the prediction:

While an accurate prediction can be clinically relevant; it is also crucially important to 

provide information on how the prediction is made and how that generates a better 

understanding of the disease. To that end, identifying which input features defined in the 

high dimensional feature vector have the most significant impact on the generated lower 

dimension representation is highly relevant, yet a highly challenging problem for deep non-

linear dimensionality reduction approaches. To solve this problem, the authors proposed an 

approach to rank the contribution of different features based on the learned weight matrices 

in the fully trained deep learning network. In particular, the proposed approach works 

backward over the deep learning network recognizing only those nodes in the previous layer 

(e.g., l − 1) that denote greater than 50% of the weight contribution layer l, and this process 

is repeated till the input layer is reached.

Results:

The recently reported results in Hazlett et al. [11] confirm that deep learning models can 

efficiently utilize morphological information from sMRI scans at 6 and 12 months to predict 

ASD diagnosis at 24 months at a clinically relevant level (88% sensitivity, 95% specificity, 

81% positive predictive value and 97% negative predictive value). The proposed prediction 

pipeline outperformed other competing methods that utilized traditional machine learning 

methods to perform the dimensionality reduction step, including sparse learning [86] and 

principal component analysis [87]. Moreover, the proposed methods were shown to perform 

better than using an entirely deep learning architecture that combined both the 

dimensionality reduction and the classification stages in the proposed pipeline into one 

stage.

Improving the prediction:

In a separate study on the same dataset, Shen et al [88, 73] showed that excessive volume of 

CSF in the subarachnoid space surrounding the cortical surface(i.e., extra-axial CSF or EA-

CSF) is present in those infants who will later develop ASD already at 6-month of age. 

Collectively these two studies suggest that a substantially improved prediction performance 

is possible at an early age of 6-month by extending the approach in Hazlett et al.[11]. 

Directions to improve current prediction performance include (i) adding further cortical 

features, other than CT and SA, such as EA-CSF (ii) employing alternative cortical 

parcellations other than AAL, (iii) adapting a training scheme that accounts for the inherent 

sampling imbalance between the groups (kids at high familial risk for ASD have a 1 in 5 

chance to develop ASD), and (iv) extending the deep learning approach to include recent 

advanced techniques. Ongoing experiments are being conducted by our group to investigate 

all of these suggestions. Local measures of EA-CSF are thereby computed by summing 
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probabilistic CSF volume along Laplacian streamlines [9]. Instead of summarizing local 

cortical features the geometrically based AAL atlas, the functionally-based atlas by Gordon 

et al [89] is used. To account for class imbalance during the training phase, we utilize the 

oversampling technique such as SMOTE [90]. Finally, adding dropout and weight decay 

techniques can be used to regulate the network and overcome overfitting problems [91].

Convolutional networks on surfaces:

Despite the high accuracy levels obtained in [11], one limitation of this work is its reliance 

on a prior cortical parcellation to reduce the dimensionality of the high dimensional cortical 

features, which is particularly problematic in infant studies as currently only adult 

parcellations are employed due to the scarcity of infant cortical surface parcellations. Hence, 

there is a need for data-driven classifiers that can directly learn from a high-dimensional 

feature space without needing a separate feature reduction step. One way to address this 

problem is to exploit CNNs ability to extract hierarchical abstractions directly from raw 

high-dimensional data with almost no prior knowledge and with fewer parameters. However, 

it is challenging to extend the use of CNNs to applications where the input features live in 

irregular non-Euclidean domains such as cortical brain surfaces. These challenges stem from 

the missing notion of a grid on a non-Euclidean surface, in addition to the need to adapt the 

convolutional filters locally while sliding across the input surface. Recently, Mostapha et. al 

[92] proposed a novel data-driven approach to extend classical CNNs to non-Euclidean 

manifolds such as cortical brain surfaces (see Figure 9). The proposed CNN architecture 

introduced a general definition of surface kernels using a locally constructed localized grid, 

which in turn can be used to extract corresponding patches on the manifold. A local system 

of geodesic coordinates is utilized to establish a localized grid at each surface point in a way 

that adapts to the intrinsic shape of the underlying manifold. In addition to the this newly 

developed surface convolution, novel surface subsampling and bottleneck layers are also 

introduced. To control the number of training parameters and to be able to learn higher-level 

representations, repeated surface subsampling is performed using adaptive edge collapsing 

that maintains an optimal approximation of the original geometry, local curvature, and 

geodesic distance information. Moreover, bottleneck layers are used to control the number of 

features maps to avoid the possibility of overfitting when training from a limited size 

dataset.

The usability of the proposed surface-CNN framework was confirmed in a separate study of 

Alzheimer’s where significant differences in CT were expected. In particular, the proposed 

surface-CNN framework outperformed competing methods employing a variety of 

parcellation atlases or using traditional machine learning methods such as sparse coding to 

perform the required feature reduction before applying deep learning models.

Convolutions via 2D surface mapping:

based Rather than applying convolutional networks directly on the surface, one can also 

define a mapping to bring the data into a space where conventional CNN methods can be 

applied. For example, closed surface data can be mapped onto a regular 2D image structure 

called a geometry image [93] (see Figure 10). This allows the straightforward use of 

conventional image-based CNN architectures to learn directly from the high-dimensional 
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input features without the complexities of the above-described surface CNN. However, 

experiments with geometry images of features living on surfaces show that the performance 

level achieved by such a simplified convolutional approach is still significantly inferior to 

convolutional learning directly on the manifold [92]. This is most likely due to the non-

isometric nature to the mapping into the 2D image space, that results in a surface specific 

distortion of the surface feature maps. As shown in Figure 11, to demonstrate the 

generalizability of the proposed methods, the surface-CNN architecture was used to 

investigate early prediction of ASD using features extracted from 6-month subcortical brain 

surfaces (rather than cortical surfaces). Mainly, we examined the predictive ability of 

different morphological features such as local thickness and curvature information, which 

were derived from subcortical brain surfaces reconstructed using the SPHARM-PDM 

pipeline [7]. The obtained experimental results again confirm the superior performance of 

the surface-CNN framework compared to alternative methods that include the simplified 

geometry images CNN approach.

Dimensional outcome prediction:

The above prediction focused on the diagnostic categorical outcome. The next step beyond 

diagnostic categories is to predict continuous dimensions of disease-related features. In 

particular, high risk (HR) infants who develop ASD will have a range of outcomes along 

multiple dimensions such as language, cognitive function, and joint attention. Also, 

approximately one-third of HR infants that do not develop ASD will still develop clinically-

relevant cognitive and behavioral impairment. While these impairments are below a 

diagnostic cutoff, these infants may be particularly responsive to presymptomatic 

intervention. Indeed, current efforts are made by our group to utilize MRI data of HR 

individuals in the first year of life to predict individual scores on later measures of cognition 

and behavior in several relevant domains. The capability of infant MRI brain imaging to 

predict later scores on dimensions of cognition and behavior, at an individual level, will 

facilitate the development and implementation of targeted, individualized, presymptomatic 

interventions in HR infants. Success with this goal would open up the possibility of testing 

personalized (versus one-size-fits-all) treatment approaches based on predicted individual 

profiles of social communication, language, motor, and cognitive ability. Evidence for the 

efficacy of presymptomatic interventions is currently scarce as no such interventions are 

effectively possible without an early predictive identification. Still, multiple randomized 

controlled trials indicate that early interventions such as joint attention-based interventions 

improve joint engagement and language outcomes in ASD [94, 95]. If presymptomatic MRI 

predicts an individuals scores on dimensional measures of a given intervention target (e.g., 

joint attention), treatment could target this domain of functioning more specifically.

In recent preliminary findings, traditional machine learning techniques such as support 

vector regression (SVR) [96] combined with an adapted (rank prediction) reliefF feature 

filtering [97] showed ability to predict standardized scores of language ability at 24-months 

using a combination of behavioral measures (MSEL [98] and AOSI [99]) and MRI-based 

measures including SA, CT, functional connectivity, and diffusion tractography in 6-month-

old infants. However, there is still a need for deep learning approaches that can learn to 

predict such continues measures in a data-driven way without the need for the additional 
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feature reduction step. In our ongoing research, we have preliminary findings that the deep 

learning identified ASD-related features to indirectly predict continuous scores of social 

ability at 24 months [100].

Multi-task learning for dimensional prediction:

Encouraged by the above described results, we are currently investigating the use of multi-

task learning (MTL) framework to directly predict continuous ASD-related scores using a 

combination of various cortical measurements. In addition to our ability to learn directly 

from high-dimensional feature space on cortical surfaces using our surface-CNN framework, 

MTL can leverage useful information contained in multiple related tasks of predicting 

different continuous scores to help improve the generalization performance of all the tasks, 

especially in the presence of limited datasets [101]. As shown in Figure 12, in deep neural 

networks, MTL is typically done with either hard or soft parameter sharing of hidden layers. 

In hard parameter sharing, the hidden layers are shared between all tasks while several 

output layers are used for each task separately [102]. Hard sharing strategy is more 

commonly used since forcing the network to learn different tasks simultaneously will lead to 

relying on generalized representations which reduce the chance of overfitting on our original 

task [103]. On the other hand, soft parameter sharing allow each task to has its model and 

parameters, while regularization techniques (e.g., L2 norm [104] or trace norm [105]) 

employed to keep the models parameters similar. Different multi-task deep learning methods 

have shown success in various medical image analysis application including image 

segmentation [106] and early prediction of degenerative diseases [107, 108]. However, more 

research needs to be done to employ similar ideas in infant brain images effectively.

4. Open challenges in infant MRI

With recent development in the field of deep learning, many innovative methods have been 

proposed to improve infant MRI brain image processing and analysis as presented above. 

The success of deep learning is attributed to its ability to discover general morphological and 

textural features in a data-driven way that can handle different variabilities in infant MRI 

brain images that stem from complex brain anatomy and tissue appearance, imaging 

acquisition protocols, and pathological heterogeneity. In this section, we will discuss some 

of the open challenges to utilizing deep learning in MRI applications and discuss future 

directions to tackle these challenges.

4.1. Data size:

In pediatric applications, available datasets are particularly small, as recruiting in such a 

vulnerable population is significantly more difficult than in adults or adolescents. This limits 

the ability of the deep learning methods to achieve their full power, especially when 

compared to their success in computer vision applications that utilize large-scale datasets 

such as ImageNet. In infant MRI brain imaging, the lack of publicly available datasets and 

high-quality labeled data imposes additional challenges that need to be addressed. 

Nevertheless, despite the small training datasets, deep learning employed for medical 

imaging data report reasonably satisfactory performance levels in numerous tasks [109]. To 

address the question of how much data is needed for training in medical image analysis, 
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recent research indicates that the required dataset size really depends on the expected 

variability seen in the process being studied, and massive datasets are not always necessary 

[110]. Indeed, accurate classification can be accomplished with small medical imaging 

datasets due to the general image appearance homogeneity across different patients, 

contrasted with the near-infinite diversity of natural images (e.g., different breeds of dogs, 

colors, and camera poses) [111]. However, in the presence of NDDs in infant data, the 

heterogeneous nature of the MR images in the first year of life imposes challenges similar to 

that in natural images, and hence limited datasets have been a considerable obstacle in 

developing useful deep learning prediction models in the infant age range. Currently, there 

has been an effort to making data available through public research data repositories (e.g., 

NDAR for autism research), which will allow deep learning models to discover more 

generalized features in NDDs. Meanwhile, similar to computer vision tasks, attempts have 

been made to reduce the need for additional training data by carefully designing the deep 

learning framework (e.g., smaller filters for deeper layers) [54], different architecture 

groupings [112], or hyperparameter optimization [113].

To avoid the challenge of training deep learning models from scratch in the context of 

limited datasets, an alternative is to fine-tune a deep learning model that has been pre-trained 

using, for example, a large dataset of labeled natural images a technique referred to as 

transfer learning. In a recent study by Tajbakhsh et al. [114] showed that indeed that 

transferring knowledge from natural images to medical images is, in fact, possible, even with 

the relatively big difference between the source and target distributions. In their experiments 

on different applications and different imaging modalities, they demonstrated that fine-

tuning deep CNNs are beneficial for medical image analysis, showing performance levels 

similar to fully trained CNNs and even outperforming fully trained networks in case of 

limited datasets. Moreover, the level of fine tuning (i.e., number of layers to be re-trained) 

was shown to be different from one application to another depending on similarities between 

applications and the amount of labeled data available for tuning. Nevertheless, it is still 

challenging to effectively utilize such 2D pre-trained networks for 3D infant MRI 

applications as such approach would ignore anatomical context in directions orthogonal to 

the 2D plane [115]. Recently, to solve this problem, Xu et. al [116] proposed to combine 3D-

like contextual information by stacking successive 2D slices to form a multi-channel image, 

which is used as an input for an FCN pre-trained on ImageNet for natural image 

classification. Such approach showed success in providing a fast segmentation of both 

neonatal and adult brain 3D MR images, but renders the results sensitive to the head 

orientation of the subject in the MRI .

Alternatively, applying random transformations to the original data can effectively increase 

the dataset sizea technique called data augmentation, which is a useful technique through 

simple transformations, such as flipping, rotation, translation, and cropping or even adding 

noise to the image [117]. Data augmentation aids in increasing the effective size of training 

samples and hence reduce overfitting by presenting random variations to the original data 

during training [18, 118, 119]. However, augmenting infant MRI datasets is still challenging 

due to the highly heterogeneous nature of the infant’s brain, especially in the presence of 

neurodevelopmental disorders. Hence, there is still a need to develop data augmentation 

methods that are tailored to deal with additional challenges presented in infant data.
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4.2. Class imbalance:

Another challenge is the problem of the class imbalance in the medical applications [120]. 

Class imbalance refers to the number of training examples being skewed towards typical as 

compared to atypical or pathological cases. This problem is exacerbated when developing 

diagnostic or predictive approaches for infants with NDDs as prevalence rates are commonly 

small in NDDs (e.g., in ASD ≤ 2% for general population and ≤ 20% for high-risk 

population). It has been recognized that the class imbalance problem has a substantial 

negative impact on training deep learning models. With imbalanced datasets, deep learning 

models tend to focus on learning the classes with a large number of examples, which leads 

to poor performance for the classes with a small number of examples. In a diagnostic setting 

based on medical image data, misclassification costs are typically unequal and classifying a 

diseased sample (minority class) as typical (majority class) implies significant consequences 

that should be avoided. Currently, there is no standardization or consensus on the effects of 

the class imbalance issues and how to mitigate this problem optimally, which could affect 

the reproducibility and accuracy of medical imaging research.

In classical machine learning, the class imbalance is a well-studied issue, and several 

methods have been proposed to solve this problem [120, 121]. However, the methods used to 

address the class imbalance in case of traditional shallow models, are not always applicable 

to deep learning applications on complex medical application. Current literature shows a 

lack of studies addressing this issue for deep networks, as compared to classical machine 

learning algorithms. Current method for addressing class imbalance can be classified into 

three main types [122] (i) methods that operate on training set by altering its class 

distribution, (ii) methods that work on the classifier or algorithmic level while keeping the 

training dataset unchanged, and (iii) hybrid methods that that combine the two previously 

described categories.

Oversampling: On the data level, oversampling methods are commonly used in deep 

learning, which in its basic form is called random minority oversampling in which samples 

from the minority classes are randomly replicated [123]. However, such simple 

oversampling method can lead to overfitting, and hence more advanced methods are needed, 

such as SMOTE or synthetic minority over-sampling technique [90]. In this method, 

artificial samples are created by interpolating neighboring data points, which has shown 

success in balancing training set in infant MRI applications [124, 125, 126]. Local synthetic 

instances (LSI) is an alternative method to SMOTE, which was proposed by Brown et al. 

[127] to augment high dimensional small sample size (HDSSS) infant MRI data to generate 

instances that are guaranteed to be near to real data instances. Recently, several extensions to 

SMOTE have been proposed, which may be promising to handle infant MRI datasets better. 

Such extensions include focusing on critical data points that are on the boundary between 

classes [128]. To decreases the between-class along with within-class imbalance, cluster-

based oversampling methods will first cluster the samples in the dataset and then oversample 

each cluster independently [129]. Other methods utilize boosting techniques to identify hard 

examples that in turn will be used to generate the required synthetic data [130]. Also, 

oversampling methods have been proposed for deep learning frameworks that ensure a 

uniform class distribution of each mini-batch [131].
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Undersampling: Alternatively, undersampling can be used to solve the class imbalance 

problem by randomly removing samples from majority classes until a classes balance is 

reached [132]. However, in the context of limited datasets in infant MRI datasets, this 

technique is less popular as it discards a portion of available, highly valuable data. Some 

modifications have been proposed to overcome that by only removing redundant examples 

close to the boundary between classes [133] or relabeling of some majority classes samples 

[134]. This can be achieved in deep learning models by using a weighted version of the loss 

function by introducing a balancing factor to impose the learning of minority classes 

samples [135]. Another modification of deep learning models to be cost sensitive is to adapt 

the learning rate in a way that is allowing examples that induce higher costs to contribute 

more to the update of weights [136]. The results obtained by this approach are similar to the 

oversampling described above.

One class learning: Another algorithmic strategy to achieve classes balance in 

challenging infant MRI datasets is what is referred to as one-class learning. In this strategy, 

the focus is to train models to recognize positive samples instead of discriminating between 

classes. This can be achieved using deep learning autoencoders that are trained to perform 

autoassociative mapping, and then new samples can be classified using a defined 

reconstruction error (e.g., squared sum of errors, Euclidean or Mahalanobis distance) [137, 

138].

Various hybrid approaches that combine multiple techniques from the previously described 

methods have been proposed to solve the class imbalance problem. For instance, 

SMOTEBoost is a method that combines boosting ideas with and SMOTE oversampling 

[139]. Recently, a technique that was introduced and successfully applied to CNN training 

for medical image segmentation task is two-phase training [140]. In this method, the 

network is first trained on a balanced dataset typically using an oversampling method, and 

then the output layers are fine-tuned on the original (imbalanced) data while keeping the 

same hyperparameters used in the first phase.

4.3. Interpretation:

Deep learning algorithms have already exceeded human performance levels in many image 

recognition tasks, and it is probable that they will perform similarly in medical image 

analysis applications that involve infant MRI data. Such performance levels were achieved 

through highly flexible models with millions of weights that can learn an internal 

representation of the input data by optimizing a loss function. However, it is still challenging 

to compute an interpretation of how particular weights or inputs are contributing to the final 

model performance. Such interpretations are particularly crucial for successfully deploying 

deep learning models for early prediction of NDDs in a clinical setting.

In classification applications in the field of medical image analysis, features importance is 

typically determined and visualized by plotting the weights of a linear classifier [141] or 

plotting the p-values associated with these weights [142]. Such an approach ignores the 

connection to the input image and has been shown to lead to misleading interpretations and 

also not applicable to non-linear deep learning models [143].
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Recently, methods for interpretation and understanding of deep learning models are 

increasingly proposed [144, 145]. One way to provide insights into what deep learning 

models are via generating interpretable visualizations that capture the high-level concepts 

learned by the trained network. Two approaches have been proposed to achieve that, (i) 
finding input images that maximize a class score at the output layer in order to visualize how 

the network represents a specific class [146, 147, 148] or (ii) visualizing feature maps that 

explain the network classification or decision in response to a particular input image. The 

second approach is better suited for models trained on infant MRI datasets and in particular 

in NDDs, which is are heterogeneous diseases in nature and hence require subject-specific 

interpretations.

Saliency maps: One method to achieve this sample specific interpretation is via 

visualizing a class saliency map that is specific to a given image and class [147]. This is 

accomplished by determining how sensitive a class score is to a small perturbation in pixel 

values, which is computed by a single backpropagation pass to calculate the partial 

derivative of the class score with respect to the input pixels. The usefulness of such saliency 

maps was confirmed by employing them for weakly supervised object segmentation using 

classification CNNs. Another interpretation framework, called DeepLIFT, was proposed by 

Shrikumar et al. [149] in which importance scores are assigned based on explanations made 

based on differences between the output and some reference output regarding differences of 

the inputs from the corresponding reference inputs. This idea of using differences from a 

reference point permits information propagation even in the case of zero gradients, which is 

useful in case of deep networks with saturating activations like sigmoid or tanh. Another 

visualization method that was applied to MRI brain images was presented by Zintgraf et. al 

[150] in which conditional, multivariate modeling was used. In this method, the importance 

of input pixels was estimated via the correct class probability as a function of a patch 

occluding corresponding parts of the input image. Thus, the significance of a feature can be 

estimated based on how the output class probability changes when this feature is unknown 

or occluded. Such a method could be further improved by using more sophisticated 

generative models for conditional sampling, and also by incorporating spatial information 

(in infant MRI images for example) into the conditional distributions.

Layer-wise feature activity maps: Other class of methods try to understand individual 

decisions made by the classifier while assuming a black-box classifier or assuming a 

particular structure of how decisions are made [151, 152, 153, 154]. A popular method 

introduced by Zeiler et al. [149] was explicitly designed for understanding CNNs through 

visualizing feature activity in intermediate layers. This is accomplished using a 

deconvolutional network described in [155], which has similar components to a CNN model 

(i.e., filtering and pooling operations) but in the reverse direction to map feature maps to 

corresponding input images. Unlike deconvolutional networks, no weights are learned and 

only used to probe the already trained CNN. Deconvolution operations are performed by 

using the transpose of the filters learned in the CNN model, while the non-invertible max-

pooling operations are reversed through keeping a record of the locations of the maxima 

inside each pooling region in a set of variables also called switches.
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The obtained visualizations of intermediate feature layers were also shown to have a 

diagnostic role by helping to identify problems with the model and to come up with 

alternative architectures leading to better results. One limitation of this method is that it can 

only visualize a single activation at each layer, and there is still a need for methods that can 

visualize the joint activity present in a layer.

The interpretation methods described above can produce valuable insights into what infant 

predictive deep learning models have learned; however, there is little agreement on how 

these methods should be evaluated for benchmarking. One way is to evaluate interpretability 

in the context of a given application or using a proxy to provide a quantifiable evaluation 

[156]. Understanding how the model works is especially essential in medical applications 

where the underlying biological pathology of the studied disease is often still under research, 

as well as making the wrong decisions can be costly [157] as it may lead to incorrect or 

suboptimal subsequent interventions.

5. Towards Generative Models

Although discriminative deep learning models have recently reached near-human-level 

performance in a variety of tasks, the robustness of state-of-the-art deep classifiers is still an 

open question as it was shown that such models could be unstable to small perturbations in 

the input data [158]. Such lack in generalization performance can be attributed to the 

difference between discriminative models and generative models [159]. Discriminative 

models generalize well only when labeled data is plentiful [160], which is a critical limiting 

factor in the context of infant medical applications, where collecting vast amounts of 

annotated balanced training data is significant, rarely achieved challenge. In this context, 

generative modeling that can exploit unlabeled data in addition to labeled data can provide a 

relief to resolve this problem. However, traditional generative models have shown an 

inability to scale up to high dimensional datasets [161].

Recent advances in parameterizing generative models via deep learning models, combined 

with advancement in stochastic optimization techniques, have allowed scalable modeling of 

complex, high-dimensional data. Over the years, many revolutionary deep generative models 

have been proposed, which includes restricted Boltzmann machine (RBM) [162], deep 

Boltzmann machine (DBM) [163], deep belief networks [164], variational autoencoders 

(VAE) [165] and generative adversarial networks (GAN) [166]. Regardless of what type of 

generative model, the aim is to learn the underlying, unknown true data distribution from the 

training set, which in turn is used to generate new data points with some variability. It is 

rarely possible to learn the exact distribution of the given data implicitly or explicitly, and 

thus instead, the goal is to model a distribution that is closely similar to the exact data 

distribution. To achieve that, the power of neural networks is leveraged in learning a function 

that can approximate the model distribution to the exact distribution. Deep generative 

models are promising to provide solutions for problems associated with limited and 

imbalanced datasets. Currently, the utilization of these methods to solve the challenges 

associated with learning from infant MRI datasets is still limited. Below, we will discuss 

current deep generative models and describe how they can be adapted to provide relief to the 

existing infant MRI datasets challenges.
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Currently, VAE and GAN are the most commonly used architectures due to their ability to 

provide efficient and accurate models. VAEs explicitly try to approximate the true data 

distribution using a Bayesian inference encoder network and a decoder network, which 

provides a probabilistic version of an autoencoder. In particular, VAE adds a constraint to 

encoding the input data, namely that the encoded latent space variables are forced to 

approximate a normalized Gaussian distribution. The decoder network will then map this 

latent space into output data, and the combined network is trained by maximizing the lower 

bound of the data log-likelihood. One advantage of using VAEs is that there is there is a 

clear and recognized way to evaluate the quality of the model using the estimated log-

likelihood. However, due to the strong assumptions and approximations involved, they may 

lead to suboptimal models, and the generated images tend to be more blurred than those 

coming from GANs [166]. GANs and their extensions have shown to provide novel ways to 

tackle challenging medical image analysis problems such as medical image de-noising, 

reconstruction, segmentation, simulation, and classification. Furthermore, GANs ability to 

create synthetic images at extraordinary levels of realism promises to solve the scarcity 

problem of labeled data in the medical imaging field. Unlike VAE, GAN implicitly specifies 

probabilistic models that describe a stochastic procedure to directly generates data. Such a 

framework for constructing generative models can provide images that are sharp and 

compelling without having to specify a likelihood function. GANs contain two 

simultaneously-trained, competing models, which may be deep learning models such as 

CNNs. GANs training is based on a game theoretic scenario, where two players are 

competing in a zero-sum game. One network is a generator that generates synthetic images, 

while the other is called a discriminator with the task of determining if input images are real 

training images or if they are synthetic images from the generator. In this adversarial 

arrangement, the generator is trained by optimizing a minimax objective together with a 

discriminator, where it is desired at the end of training that the discriminator is no longer 

able to identify the difference between a real and a synthetically generated image.

An advantage of this GAN setting is that both generator and discriminator can be trained 

with backpropagation, without the need for unwieldy inference and Markov chains. Though 

GANs show such essential advantages over other generative models, training GANs is 

difficult as it may lead to oscillatory behavior and suffer from a problem referred to as mode 

collapse in which all latent space inputs are mapped to the same data point [167]. Due to 

vanishing gradients during training, GANs may also produce unstable models that generate 

different outputs for the same input. As shown in Figure 13, other conditional variants along 

with a variety of extensions have been proposed to overcome the limitations of the vanilla 

GAN architecture, and have been successfully applied in the field of medical image analysis.

GAN variations:

For example, the Deep Convolutional GAN (DCGAN) [168] architecture was proposed in 

which both the generator and discriminator utilize FCN architecture. DCGAN employ batch 

normalization and leaky ReLU to stabilize the performance of the network; however, it still 

does not address the mode collapse issue. In the conditional GAN (cGAN) architecture 

proposed by Mirza et al. [169], the generator is presented with random noise as well as some 

prior information, which was shown to improve training stability and quality of the 
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generated output. Fast and high-quality style transfer, i.e., the task of recomposing images in 

the style of other images, can be accomplished using another conditional GAN architecture 

is called the Markovian GAN (MGAN) [170]. MGAN architecture utilize pre-trained CNN 

networks such as VGG19 to extract features to help to preserve the original image content 

while transferring the style excellently. To discover the underlying connection between two 

image domains, another GAN variant called cycleGAN was proposed by Zhu et al. [171] in 

which a cycle training algorithm is applied to unpaired data to extract key features of one 

image domain needed for a translation to another image domain. The auxiliary classifier 

GAN framework was introduced by Odena et al . [172] as an alternative to cGAN 

architecture, where the discriminator is tasked with reconstructing the prior information 

instead of feeding it to providing the generator and the discriminator networks. To overcome 

the mode collapse and instability problems when training GANs, the Wasserstein-GAN 

(WGAN) [173] architecture that uses the Earth Mover (ME) or Wasserstein-1 distance 

instead of the Jensen-Shannon (JS) divergence from the original GAN framework to 

compare the data distributions of generated and real images. Regardless of these theoretical 

advantages offered by WGAN, it is expected to lead to slow convergence in practical 

scenarios. The Least Squares GAN (LSGAN) [174] is another GAN variant that was 

proposed to solve the instability problem of GANs by adding some parameters to the loss 

function to overcome gradient vanishing.

GAN in medical image analysis:

Various GAN-based architectures have been proposed to solve medical imaging problems 

[175, 176]. For example, GANs were used to solve the scarcity of balanced labeled data in 

medical imaging by synthesizing medical images unconditionally or conditionally. 

Unconditional GANs have shown an ability to synthase realistically looking medical images, 

which can help with challenges such as the lack of labeled data, class imbalance, data 

augmentation [177] and data simulation [178]. For Example, DCGAN with vanilla training 

was shown to be able to learn to generate high-resolution 2D T1-w MRI brain images from 

even a small number of samples [179]. On the other hand, conditional GAN frameworks 

were utilized to perform image synthesis by conditioning both on prior knowledge such as 

metadata, rather than noise alone. In Nie et al. citenie2017medical, CT brain images were 

synthesized from corresponding MR brain images using a network that combined both a 

cascade of 3D FCN with a GAN and to remove the need for paired training data. Wolterink 

et al. [180] proposed to use cycleGAN architecture to achieve the same. Recently, Yang et al. 

[181] proposed a 2D MRI cross-modality generation framework that leverages a cGAN 

architecture, which can cope with various MRI prediction tasks. The proposed generative 

framework was shown to provide an efficient alternative to previously developed 

discriminative based deep learning MRI translation methods [182, 183].

A GAN architecture can also provide a viable alternative for current segmentation 

techniques utilizing U-Net architecture for the generator and a combined multi-task loss 

function. Xue et al. proposed a U-Net GAN-based framework called SegAN [184] in which 

pixel dependencies are learned using a multi-scale loss function. Also, GANs training 

strategy was adopted by Moeskops et al. [185] to enhance the performance of their FCN 

segmentation approach, and similarly Zhao et al. [186] showed that synthetic images 
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information could enhance the segmentation of the bony structure in brain MRI images 

using a proposed architecture called Deep-supGAN. Anomaly detection is another area of 

medical imaging where GANs can be leveraged to overcome the need for a significant 

amount of labeled training data. In particular, GANs can be first trained on normal images, 

and then applied on diseased images leading to incomplete reconstructions that can be used 

to recover image regions of an anomaly. An example of that is given in. [187, 188, 189] in 

which an unsupervised GAN-based architecture called AnoGAN [190] was adapted and 

applied to MRI brain images to discover brain regions associated with the investigated 

disease which in turn can be used for classification purposes. Finally, GANs can also be 

used to identify images with lack of adequate image quality or coverage as a way to 

automatically identify unuseable images [191]. Though recently GANs been effectively 

utilized for various tasks in medical image analysis, there is still a lack of studies adapting 

and applying such techniques in infant data either in the original Euclidian image domain or 

in non-Euclidian feature domains. Given the potential of GANs, in our research, we work 

towards precisely that.

6. Conclusions

While deep learning based methods have made significant strides in medical imaging 

applications, there are still some open problems, and relatively few methods have been 

applied in infant MRI data. MR images at infancy display many challenges due to the 

inhomogeneous tissue appearance across the image, the considerable variability of image 

appearance in scans from neonates up to 1-year-old subjects, as well as the low signal to 

noise setting. On the one hand, these challenges may explain the relative scarcity of 

publications. On the other hand, these challenges are difficult to address with non-deep 

learning methods, and the potential of deep learning likely allows researchers to overcome 

them. The reward for such success, particularly concerning applications to predictive 

analysis in neurodevelopmental disorders, is significantly high and is expected to allow for 

presymptomatic treatment interventions that could significantly alleviate disease symptoms 

later on.

In this document, we presented the current success in applying deep learning approaches in 

the infant MRI setting in two example applications, infant brain tissue segmentation at the 

isointense stage and presymptomatic disease prediction in ASD. Both applications are 

excellent examples where traditional approaches of image analysis and machine learning are 

not strong enough, but deep learning approaches are highly successful due to their ability to 

learn nonlinear, complex relationships in variable, heterogeneous input data.

Open challenges exist such as low data size restrictions, class imbalance problems, and lack 

of interpretability of the resulting deep learning solutions. We discussed how existing 

solutions could be adapted to approach these issues as well as how generative models in 

particular seem to be a particularly strong contender to address the first two of these 

challenges. These solutions have though yet to be significantly applied in infant MRI data. 

Such research is ongoing in our lab as well as other labs around the world.
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Figure 1: 
T1w images of a typically-developing infant, scanned longitudinally at 0, 3, 6, 12 and 24 

months of age.

Mostapha and Styner Page 33

Magn Reson Imaging. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
A typical pipeline for a machine learning approach for early prediction of 

neurodevelopmental disorders (NDDs) using infant structural MR brain images(sMRI). 

Please note that this workflow employs infant-specific processing and analysis steps.
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Figure 3: 
Venn diagram illustrating the relationship of deep learning, machine learning and artificial 

intelligence.
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Figure 4: 
Architectures of two feed-forward fully-connected neural networks. A classical neural 

network containing one hidden layer and a deep neural network (deep learning) that has two 

or more hidden layers. Modern deep neural networks can be based on tens to hundreds of 

hidden layers.

Mostapha and Styner Page 36

Magn Reson Imaging. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Illustration of the two-stage 3D FCN architecture proposed by Zeng et al. [61] for the 

isointense infant brain segmentation in multi-modality MR images. The first stage FCN will 

produce an initial segmentation that in turn is used to model the spatial context map for each 

brain tissue using distance maps. The final segmentation is obtained in the second stage 

using both the spatial contact information and the original T1w and T2w images. Image 

courtesy of [61].
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Figure 6: 
An illustration of the ensemble of semi-dense 3D FCN proposed by Dolz et al. [63], where 

information from T1w and T2w images are fused using (a) early fusion strategy and (b) late 

fusion strategy. Image courtesy of [63].
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Figure 7: 
An example deep learning-based framework for the early prediction of NDDs using high-

dimensional cortical measurements extracted from infant MRI brain images.
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Figure 8: 
The two-stage prediction pipeline proposed by Hazlett et al. [11] for early prediction of 

ASD.
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Figure 9: 
CNN extension to cortical surfaces proposed by Mostapha et. al [92]. Several surface 

convolutional blocks are applied to each hemisphere in parallel followed by fully connected 

and dropout layers.
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Figure 10: 
An alternative to the CNN extension presented in Mostapha et. al [92], surfaces can be re-

meshed onto a completely regular structure called a geometry image [93] which allow 

learning using conventional CNN architectures.
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Figure 11: 
The surface-CNN architecture proposed by Mostapha et. al [92] was applied for the early 

prediction of ASD using features extracted from 6-month subcortical brain surfaces.
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Figure 12: 
The two most commonly used ways to perform multi-task learning (MTL) in deep neural 

networks.
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Figure 13: 
Illustration of some examples of the generative adversarial networks (GAN) variants utilized 

for different tasks in medical image analysis.
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