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Abstract

In recent studies, neuroanatomical volume and shape asymmetries have been seen during the 

course of Alzheimer’s Disease (AD) and could potentially be used as preclinical imaging 

biomarkers for the prediction of Mild Cognitive Impairment (MCI) and AD dementia. In this 

study, a deep learning framework utilizing Siamese neural networks trained on paired lateral inter-

hemispheric regions is used to harness the discriminative power of whole-brain volumetric 

asymmetry. The method uses the MRICloud pipeline to yield low-dimensional volumetric features 

of pre-defined atlas brain structures, and a novel non-linear kernel trick to normalize these features 

to reduce batch effects across datasets and populations. By working with the low-dimensional 

features, Siamese networks were shown to yield comparable performance to studies that utilize 
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whole-brain MR images, with the advantage of reduced complexity and computational time, while 

preserving the biological information density. Experimental results also show that Siamese 

networks perform better in certain metrics by explicitly encoding the asymmetry in brain volumes, 

compared to traditional prediction methods that do not use the asymmetry, on the ADNI and 

BIOCARD datasets.
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1. Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder that is usually associated with a 

progressive and irreversible degradation of episodic memory and other domains of cognitive 

function in elderly populations. The global prevalence of AD was 26.6 million in 2006 and it 

is forecast to affect 1 out of 85 people worldwide by 2050 [1]. Early diagnosis of AD is 

crucial for improving the efficacy of potential treatments. The clinical trajectory of AD 

begins with a long preclinical stage and progresses to mild cognitive impairment (MCI) [2]. 

Individuals with MCI are at highly increased likelihood of developing AD dementia. The use 

of imaging biomarkers has been recommended for aiding diagnosis of individuals along the 

AD spectrum [3, 4]. Magnetic Resonance Imaging (MRI) can measure brain atrophy which 

is correlated with pathophysiological neuronal injury associated with AD [5, 6]. As a result, 

MRI analyses have attracted significant interest for developing imaging biomarkers to aid in 

diagnosis and prediction. Several MRI biomarkers have been proposed for identifying 

individuals in the early stages of AD. For example, studies found that MCI subjects have 

significantly greater atrophy rates compared to normal controls in the hippocampus, the 

entorhinal cortex, and the amygdala [7, 8, 9].

In addition to volumetric measures, morphometric patterns are another important potential 

feature for the diagnosis or prediction of individuals along the AD spectrum. Some MRI 

studies have indicated that the cortical atrophy rate is faster in the left hemisphere than the 

right [10,11]. For subcortical regions, volumetric asymmetry of the hippocampus has been 

observed in AD dementia patients [12, 13]. Shape asymmetry of subcortical structures was 

seen to predict the conversion from MCI to AD dementia more accurately than volumetric 

asymmetry in sub-cortical structures [14]. Furthermore, a recent longitudinal genetics study 

has shown that there is a significant association between the shape asymmetries in the 

amygdala, hippocampus, putamen, and AD-candidate single nucleotide polymorphisms 

(SNPs) in the genes TNKS and DLG2 [15]. PET imaging studies have also found 

asymmetric metabolic features in subjects along the AD spectrum [16,17,18], and have 

reported a positive correlation between the asymmetric spatial distribution of amyloid-β 
deposition and asymmetric hypometabolism in AD dementia subjects [19]. 

Histopathological data has further demonstrated asymmetry in AD [20]. These studies 

suggest that the lateralization of pathology and neurodegeneration associated to brain 

asymmetry in selected regions may be a potential biomarker of AD.
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There have been several recent studies that apply machine learning techniques to the task of 

discriminating between subjects with MCI or AD dementia and normal controls using 

neuroimaging. These algorithms can be classified between feature-based (utilizing 

anatomical or functional derived regions) and whole-brain. Feature-based methods have the 

advantage of greatly reducing the dimensionality of the classification task, by expertly 

extracting important features or regions-of-interest (ROIs) from structural MRI (sMRI). 

They, however, run the risk of losing important information present in the images that is not 

adequately represented by the extracted features. On the other hand, whole-brain methods 

use the entirety of the available data, at the cost of computational speed and a more complex 

feature search space that does not have the benefit of historical regional definitions, and are 

prone to learning covariates present in the sMRI. Support Vector Machines (SVMs) are a 

popular technique that use separating hyperplanes on the feature space for subject 

classification based on features extracted from sMRI. These perform dimensionality 

reduction on raw sMRI by extracting specific features that characterize the ontological 

features of the disease, such as tissue densities [21], sampled local image patches [22, 23], 

components from Independent Component Analysis (ICA) [24] or Principal Component 

Analysis (PCA) [25], LDA [26], and voxel-wise ROIs from sMRI images [27, 28]. Others 

have explored the use of alternate classifiers, such as Gaussian Process classification [29] 

and semi-supervised methods like low density separation [30]. Further studies have also 

looked at fusing multiple modalities of imaging with sMRI to improve discrimination [31, 

32, 33,34].

More recently, deep learning methods have rapidly emerged as a popular approach to 

discover multiple levels of representation across many medical imaging domains for 

downstream clinical applications. Some have utilized deep learning architectures to perform 

classification using the raw 3D sMRI using either pre-trained sparse autoencoders with 

convolutional neural networks (CNNs) [35], or trained 3D CNNs from scratch [36, 37]. 

Finally, others have also explored training CNNs on features extracted from 3D sMRI by 

using techniques such as sparse regression [38].

Methods that specifically utilize the shape asymmetry of the brain were also explored, such 

as shapeDNA, where brain structures were encoded by the eigenfunctions of the Laplace-

Beltrami operator calculated on the surfaces of the subcortical structures [39]. The shape 

asymmetries in these structures were measured by the Mahalanobis metric of the reweighted 

eigenvalues [40, 41]. This study also revealed preclinical changes in the shape asymmetry of 

subcortical brain structures (the hippocampus and amygdala) which provide better accuracy 

for the prediction of the convention of AD compared to volumetric asymmetry [14].

Although these studies report that anatomical shape asymmetries of subcortical structures 

provide better accuracy for detection of AD than anatomical volumetric asymmetries, 

whole-brain anatomical volumetric asymmetries can still serve as potential features for 

distinguishing between normal controls and those with MCI or AD dementia. Asymmetry in 

the shapes of certain paired structures implies that their surrounding regions might also have 

different shapes or volumes. In this study, Siamese networks were trained to encode a 

proposed alternative descriptor of whole-brain volumetric asymmetry for building 

classification models for MCI/AD diagnosis at both scan time and using the latest diagnosis.
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The proposed method has several advantages. Firstly, reducing high-dimensional MRI data 

into low-dimensional features greatly reduces the modeling complexity and computational 

time required for analysis, while preserving the biological information density. Secondly, 

Siamese networks explicitly capture the asymmetry between left and right hemisphere 

volumes for those with MCI or AD dementia and learn to ignore the asymmetries present in 

control subjects, resulting in higher specificity and balanced accuracy for prediction 

compared to methods that do not use volumetric asymmetry. Thirdly, the proposed non-

linear kernel trick self-normalizes within a subject’s volumetric features and is more robust 

to variance in subjects across different datasets and populations. Finally, instead of working 

in the image voxel domain where deep networks require very large datasets to guarantee 

convergence and generalization, Siamese networks search for decision boundaries in a low-

dimensional feature space, which has better guarantees for optimization while having 

comparable prediction performance.

2. Materials and methods

2.1. Dataset and preprocessing

Subjects and scans in this study were selected from the ADNI1, ADNI GO, ADNI 2, and 

BIOCARD databases [42,43]. In total, 3566 1.5T T1 scans across 819 subjects were selected 

from the ADNI database; and 744 1.5T T1 scans across 324 subjects were selected from the 

BIOCARD database. Data used in the preparation of this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 

ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

All MRIs were processed and parcellated by MRICloud [44], which is an automated 

segmentation pipeline that utilizes Large Diffeomorphic Deformation Metric Mapping 

(LDDMM) [45] to map each scan onto multiple atlases and then utilizes the Multi-Atlas 

Likelihood Fusion (MALF) algorithm [46, 47] to fuse the parcellation labels of atlases for 

each scan. A set of 26 adults atlases, age range 50–82 years-old, 20 of them cognitively 

normal and 6 subjects with AD, with variable patterns of brain atrophy (the so-called 

Adult50_90yrs_283labels_26atlases_M2_252_V9B) was used, in which 283 brain structures 

are defined with a multi-level hierarchical ontology [48,49]. In the pipeline, the raw images 

were automatically preprocessed (skull-stripped, orientation adjusted, intensity matched, and 

inhomogeneity corrected), prior to the LDDMM and MALF fusion step. Figure 1 illustrates 

the MRICloud workflow from images to volume features. Several past researches in our 

group have been extensively investigating and testing MRICloud pipeline, in terms of 

performance compared with human evaluators, stability to technical and biological effects, 

and test-retest reproducibility, such as [50] and [51]. In [50], it illustrates that there is no 

significant difference between the performance of MRICloud Tl-segmentation pipeline for 

1.5T and 3T scans either in normal subjects or in those with atrophy (Alzheimer’s disease). 

Furthermore, the reliability of MRICloud pipeline for Basal Ganglia segmentations in 

Liu et al. Page 4

Magn Reson Imaging. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu/


ADHD and Autism subjects rivals or outperforms other two state-of-the-art algorithm, 

Freesurfer and FSL [51].

The data from the automated segmentation underwent a quality control step. Data 

considered “low quality” was excluded; we opted by not performing any human correction 

on the segmentation as our aim is to report the results of an automated process, including its 

strengths and caveats. The sample size before and after quality control is described in Table 

1. The two most common issues were the following:

1. Failure in the very first step of linear transformation to MNI space, either 

because of particularities in the original orientation (for instance, too much 

translation in the z-axis), and/or because the images included too much of body 

(for instance, when the field of view extended too inferiorly in the z-axis, 

sampling shoulders).

2. Very enlarged spaces between skull and brain and/or changes in intensity in the 

diploe, affecting the cortical segmentation. Note that this is a common issue for 

all automatic segmentation tools. Indeed, this may create a bias (age- and 

atrophy-related) in the cohort. However, the bias would be in the opposite 

direction (the more atrophic subjects were excluded), therefore reducing the 

“false-positive” chances.

The associated diagnosis of each scan for each subject was split into three categories, based 

on the primary diagnoses used in these studies: AD dementia, MCI, and Normal Controls 

(NC), according to the ADNI and BIOCARD diagnosis protocols [42, 43]. Each scan had 

two different time-point labels: one labelled by the diagnosis at scan time or nearest scan 

time, the other labelled by the diagnosis from the latest diagnosis for each subject. The latest 

diagnosis can be different from the diagnosis at the last scan time. For example, if a normal 

subject converted to MCI after their latest scan time, the diagnosis at scan time for all their 

scans was labelled as normal, but the latest diagnosis was labelled as MCI for all their scans. 

In this study, models aimed at group discrimination were trained separately on (1) diagnosis 

at scan time and (2) latest diagnosis. For using the diagnosis-at-scan-time labels, the goal is 

to train the models to classify subjects based on their scans and the current clinical 

diagnosis. For using the latest diagnosis, the goal is to train the models to predict the subject 

diagnosis in subsequent years by measuring the anatomical symmetry changes seen in MRI 

before clinical onset.

Table 2 illustrates the demographics of the ADNI and BIOCARD datasets for each group 

(AD, MCI, NC) used in this study after segmentation quality control elimination. It should 

be noted that the characteristics of the subjects at enrolment differed for the two studies. For 

ADNI, subjects were NC, MCI or AD dementia at enrolment and the mean age of the 

samples was 75.19 years. For BIOCARD, all subjects were NC at enrolment, with a mean 

age of 57.26 years. Additionally, the follow-up times differed considerably. For the scans 

included in these analyses, the average follow-up time for ADNI was 2.02 years, whereas for 

BIOCARD the average follow-up time was 2.61 years. The average time between the latest 

scan and the latest clinical diagnosis was 11.12 years for BIOCARD, and for ADNI the 

latest diagnosis is the same as the diagnosis at the latest scan time in the study.
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2.2. Siamese networks

In this task, we trained a Siamese network to seek an encoding for asymmetric volumetric 

features that can be utilized to distinguish between groups of subjects categorized as NC, 

MCI or AD dementia. Siamese networks have previously been conventionally utilized in 

metric representative learning on paired images (such as faces [52, 53]) to distinguish 

whether paired images contain similar subjects.

Instead of directly learning asymmetry-encoding features on the 3D MRI domain, we trained 

Siamese nets on a set of selected volumetric features. The Siamese nets were trained to learn 

a metric that represents the volumetric asymmetry between normal controls and 

symptomatic subjects, i.e. MCI and AD dementia. We built two Siamese nets to predict (1), 

clinical diagnosis (normal v.s. symptomatic AD) at scan time and (2), latest diagnosis 

(normal v.s. symptomatic AD) for each subject beyond scan time. All MCI and AD 

dementia subjects were labelled as symptomatic.

The purpose of using the latest diagnosis labels for subjects is to build a separate preclinical 

prediction model that is better suited to predict subject conversion between normal and MCI 

or AD dementia. For example, even if the subject was classified in one category during their 

scan times, the Siamese network only focuses on classifying them based on the latest 

diagnosis labels, which may be made at a different time from when the last scan was taken.

Among the predefined 283 structures with volumetric features from the atlases in the 

MRICloud pipeline, we excluded extra cerebral structures (e.g., background, cranium) and 

those that are not represented bilaterally (e.g., subdural space, III ventricle) were not 

considered because they are either pathologically irrelevant or not abled to be presented as 

paired structures used in Siamese network. A subset of the paired (left and right 

hemispheric) ROIs was selected as training input features to build the Siamese network in 

Figure 2. A total of 274 features (137 pairs) of the whole brain ROIs were selected, 

including cortical structures, sub-cortical structures, white matter, gray matter, cerebrospinal 

fluid, Midbrain, Medulla and Cerebellum. A detailed list of ROI labels is provided in the 

supplementary material.

The non-linear kernel trick in Eq. (1) was applied to the paired volumetric features, (vL, vR), 

to normalize them (with respect to each other). This scheme is more invariant to covariates 

that may be present in normalization schemes that normalize across subjects.

Rker = tanh
vR

vL + ϵ − 1 ; Lker = tanh
vL

vR + ϵ − 1 (1)

where ϵ = 10−6.

The motivation behind the kernel trick lies in the fact that each structure has a different scale 

in volume, ranging from about 104 mm3 for the frontal lateral ventricle to about 600 mm3 

for the fornix. The absolute difference between the paired left and right hemisphere volumes 

varies dramatically and depends on the scaling of each feature. A 100 mm3 volumetric 

asymmetry, for example, may be critical for the fornix but would not amount to much, 
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relatively, for the lateral ventricles. By applying the kernel trick, each paired feature is 

centered and normalized relative to their ratios. The hyperbolic tangent function ensures that 

the kernel encodes the ratio of paired volumes linearly when the ratio is around 1, and non-

linearly compresses them when the ratio is larger than 2, which may happen for structures 

with small volumes due to mis-segmentation or being missed completely by the automatic 

segmentation pipeline.

All kernel features lie between [−1,1] and are centered at 0. Compared to other 

normalization methods used in deep learning architectures, such as batch normalization [54], 

this non-linear normalization kernel both accelerated the training of the deep network and 

depended only on individual subject information. Also, by not normalizing over the whole 

data batch the procedure is potentially more robust against population variation.

The Siamese network architecture is depicted in Figure 2. Initially, the left and right 

hemispheric kernel features, Lker, Rker were sequentially passed into the same n-layer neural 

network (n = 6), in order to be separately encoded into their corresponding asymmetry-

encoding features, fL, fR. Each layer is fully-connected and feed-forward with L2-

regularization on the weights and biases, followed by the ReLU non-linear activation 

function. Following this, the network was trained to optimize its parameters by optimizing 

the L2-difference between asymmetry encoding features fL, fR, using the contrastive loss 

function as defined in (Eq.2)

ℒ ∥ f L − f R ∥2 = (1 − y)2 ∥ f L − f R ∥2 + y2max(0, λ − ∥ f L − f R ∥2 ) (2)

where y ∈ {0,1} are diagnosis labels for {normal, symptomatic (MCI/AD dementia)} 

subject scans; and the margin parameter, λ =1, controls the degree of separation to enforce 

between asymmetry-encoding features. By training the Siamese network to minimize the 

contrastive loss, the model learns to embed the left and right features in the asymmetry-

encoding space so that the L2-difference is minimized between the asymmetry encoding 

features if the subject is a control. On the other hand, the L2-difference is maximized up to 

the margin λ if the subject is symptomatic. By minimizing the contrastive loss, the Siamese 

network learns an embedding where -

• Normal - the paired asymmetric encoding features fL, fR are very similar to each 

other

• Symptomatic - the paired asymmetric encoding features fL, fR are very dissimilar 

to each other.

At testing time, in order to make a prediction using the Siamese Net, the testing left and 

right features are passed through the trained network, and the L2 difference ∥ f L − f R ∥ are 

thresholded at λ/2, such that testing samples with L2 norm less than λ/2 are predicted as 

belonging to the controls, whereas testing samples with L2 norm higher than λ/2 are 

predicted as belonging to the diseased group.”

We used the ADAM optimization algorithm with a fixed learning rate of 1e-4 to train a 6-

layer fully-connected neural network with 1024 nodes per layer, with L2 regularization 
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imposed on the weights and biases [55]. The final asymmetry-encoding features were also 

1024-dimensional, in order to sufficiently capture high-dimensional, non-linear relationships 

between the asymmetry across the left and right hemispheric volumes. After tuning on the 

learning rate, the number of layers, the number of nodes per layer, and the parameters of the 

ADAM optimizer, we found that the parameters reported above performed best on 

classification accuracy on a held-out testing set with 5-fold cross-validation at the scan level.

2.3. Benchmarking methods

The performance of the Siamese network was compared to Linear Discriminant Analysis 

(LDA), Quadratic Discriminant Analysis (QDA), Random Forests (RF) and fully-connected 

feedforward neural networks in Table 3–11. These methods were trained using the 274-

dimensional features as inputs, with no distinction being made for the asymmetry 

information present in the features. We include further analysis performed using a 3D 

convolutional neural network previously shown to have good performance in the task of 

discriminating patients with AD from normal controls, using the sMRI scans in ADNI 

dataset. We use the 3D VGG-Net architecture with a learning rate of 1e-5, the ADAM 

optimizer, and a batch size of 12 trained over 50 epochs for the task of discriminating 

symptomatic AD vs. normal controls. The metrics used for comparison are described below.

Sensitivity (SEN) = TP
TP+FN

Specificity (SPEC) = TN
TN+FP

Positive Predictive Value (PPV)= TP
TP+FP

Balanced Accuracy (BACC)= SEN + SPEC
2

F1 Score (F1) = 2
SEN−1 + PPV‐1

Here, TP, FP, TN, and FN denote the count of True Positives, False Positives, True 

Negatives, and False Negatives in the validation set predictions, respectively. Due to the 

unbalanced number of samples in each class (normal vs. symptomatic), Balanced Accuracy 

(BACC) is a better metric for measuring performance than raw accuracy [56]. Based on 

parameter tuning trials, we found that Random Forests with 100 trees, a max-depth of 10, 

and using the Gini index for node-splitting performed the best. We consider feed-forward 

neural networks of the same shape as the Siamese Network, but trained on the 274-

dimensional features directly to perform binary classification between normal and MCI/AD 

using Binary Cross-Entropy Loss, with a learning rate of 1e-5. The ADAM Optimizer was 

used to optimize parameters, and the learning rate and optimization parameters were treated 

as hyperparameters and independently tuned for the lowest validation loss on a held out 

dataset.
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3. Results

4. Discussion

The MRICloud brain segmentation pipeline provides a high-throughput neuroinformatics 

workflow [44]: (1) it reduces the dimensionality of MRI features on the order of 106 image 

voxels to the order of 1000 atlas-defined structural volumetric features, and (2) it also 

preserves the biological information density contained in these MRIs. Due to the low 

dimensionality of the selected feature space in our study, the 274 volumetric features are 

therefore searchable. We also show that the Siamese network can accurately cluster these 

low-dimensional volumetric features by explicitly learning the asymmetry encoding, which 

can be seen in Figure 3, where we plot the first 3 tSNE dimensions for both of these feature 

spaces [57]. These results imply that the low-dimensional volumetric features preserve the 

biological information density present in the original MR images that may be associated to 

MCI and AD dementia. Compared to other deep learning methods, such as CNNs [35, 36, 

37, 38], according to Table 4 and Table 8, the Siamese network provides comparable 

prediction balanced accuracies (BACC), 0.9436 for the ADNI dataset and 0.9220 for the 

combined BIOCARD and ADNI datasets. Furthermore, in Table 11, the Siamese network 

outperforms the 3D CNN we built and trained on the ADNI dataset. These suggest that 

MRICloud’s high-throughput informatics allows us to greatly reduce the modeling 

complexity and computational time for training deep networks, by starting ML in the 

reduced feature space. Using volumetric data makes the Siamese network more robust to 

other CNN approaches that work on the full high dimensional MR image space of order 106 

voxels directly, as these approaches require very large training datasets to guarantee their 

convergence and generalization.

Considering the ADNI dataset, according to Table 3 and Table 4, the Siamese network has 

the best SPEC and BACC score for both diagnosis at scan time and the latest diagnosis with 

an acceptably comparable SEN, in comparison to the other benchmarking methods (LDA, 

QDA, RF, and Neural Net). Of course, diagnostic performance is a trade-off between 

sensitivity and specificity, therefore, we prefer the BACC. These results show that the 

Siamese network working on volumetric asymmetric features can be used to aid classifying 

symptomatic cases along the AD spectrum, according to Table 4, as the Siamese network 

has better BACC (0.9436) in detecting the latest diagnosis. We also report the QDA 

algorithm having very high SEN values in Table 3 – 8. This is due to the algorithm 

classifying almost every scan as symptomatic, which we believe is due to the larger number 

of symptomatic scans versus the number of control scans.

We also trained the Siamese network on the combined BIOCARD and ADNI datasets and 

the results reported in Table 7 and Table 8 show that the Siamese network continues to have 

higher SPEC and BACC for both categories of diagnosis labels, even though the values 

decrease compared to only using the ADNI dataset in Table 3 and Table 4. However, 

compared to other classifiers such as LDA and random forests, the drop in BACC is much 

less for the Siamese network, implying that the deep network is robust to minimizing batch 

effects across the two datasets. This consistency is likely from the self-normalized kernel 

features.
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Discriminating MCI from normal controls is more clinically relevant. Hence, we also trained 

all models to distinguish MCI cases from normal controls at the latest diagnosis basis on the 

ADNI dataset and the combined BIOCARD and ADNI datasets. The result is reported in 

Table 9 and Table 10. Table 9 illustrates that the Siamese network still has better SPEC 

(0.9887) and BACC score (0.9278) for just using ADNI dataset, compared to the other 

benchmarking methods. Furthermore, even for the combined BIOCARD and ADNI datasets, 

Table 10 indicates that Siamese has better SPEC (0.9760) and BACC (0.8980). These results 

imply that the Siamese network could have clinical potential to assist classifying MCI cases 

from normal controls.

We also propose the use of the Siamese network for downstream use in a clinical setting, 

where earlier scans from patients are used to train and fine-tune the algorithm for clustering 

of scans at later time points. In this setting, cross-validation is done by splitting the ADNI 

dataset such that earlier scans of patients belong to the training dataset, and later scans 

belong to the validation dataset. It is ensured that no scans from a patient can be present in 

the validation dataset if a later scan exists in the training dataset. This setting is more 

clinically practical, because early scans of subjects could always be used to train models to 

classifying the future diagnosis. For this proposed application of the Siamese network, Table 

11 still shows that the Siamese network has better SPEC (0.9430) and BACC (0.9280) in 

classifying scans at later time points in the comparison to the other benchmarks methods, 

including a 3D VGG-Net.

We report our results for diagnosis using Siamese networks for the BIOCARD dataset in 

Table 5 and Table 6, despite not having significantly better results compared to our baseline 

methods. We believe that this performance can partly be explained by the unbalanced nature 

of the BIOCARD dataset, since the subjects were all cognitively normal at baseline. The 

performance for labels with the latest diagnosis has better performance comparatively. 

However, the BIOCARD dataset in isolation may not have enough training samples to train 

a neural network robustly, since the majority of the subjects followed so far are still 

categorized as controls, with approximately one quarter having progressed to MCI and very 

few having progressed to AD dementia. Additionally, the ADNI dataset contains large 

numbers of individuals who were MCI or AD dementia at baseline, thus providing more 

information regarding scans from subjects with these diagnoses for the training samples. 

Another factor for the decreased performance could be the overall younger age for subjects 

in the BIOCARD study compared to the ADNI study; the mean age of the BIOCARD 

subjects at baseline is approximately 56 years whereas the mean age of the ADNI subjects at 

baseline is approximately 76 years. Significant asymmetric changes may not manifest in 

symptomatic subjects at this age for the Siamese network to detect.

Important research has led to a better understanding of the input-output behavior of a deep 

learning network, in order to improve interpretability [58]. Current algorithms calculate the 

importance of the input features to the prediction of the network by looking at the integrated 

gradients of the prediction made by the network with respect to the input features. This is 

because gradients with large positive values convey which input features, upon being 

changed, would contribute most to the prediction changing from one class to the other ([58], 

[59]). We use integrated gradients with the Siamese network to calculate the relative 
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importance of each paired volume to the prediction of a subject’s group, with results in 

Table 12.

Although shape asymmetry has been reported to have more accurate predictions for the 

convention of MCI to AD dementia compared to volumetric asymmetries [14, 41], whole-

brain volumetric asymmetry can still be used to assist detecting symptomatic cases along the 

AD spectrum via the proposed Siamese network. One possible reason might be that whole 

brain volumetric asymmetry potentially encodes shape asymmetry as well, as the 

asymmetric shapes of certain paired anatomical structures imply that their surrounding 

anatomical regions might also have different shapes or volumes.

Looking at the feature importance analysis in Table 12, the Siamese network considers the 

Fimbria to have the most importance for classifying subjects. The Fimbria is a very thin 

fiber bundle that covers the temporal region of the hippocampus. On the one hand, Fimbria 

is part of a circuit of core importance in AD; on the other hand, Fimbria is a hard-to-define 

structure, more prone to movement and sampling artifacts. Further analysis of the Fimbria 

segmentation revealed a number of scans / sides where the structure was not identified 

(“zero volume”, in Table 13). The asymmetry in these numbers likely drove the importance 

of the Fimbria in the models. From the biological point of view, this finding may be 

attributed to both shape and volumetric asymmetry, in the Fimbria itself or connected 

regions (e.g., hippocampus), even though these “connected structures” were not directly 

selected by the Siamese network. However, the lack of ground truth (e.g., macroscopic tissue 

evaluation or clear land-mark) impedes us to segregate biological from technical/artifactual 

effects, as it is usually the case for most of imaging methods. Nevertheless, this does not 

invalidate the point that a few structures (including Fimbria) were important features in the 

model, independently of the biological causality.

5. Conclusions

In this study, Siamese networks were shown to be successfully applied to the discrimination 

of controls vs symptomatic cases of AD using the proposed kernel-normalized whole-brain 

anatomical volumetric asymmetry-encoding features. The proposed Siamese framework 

explicitly encoded the differences of anatomical volumetric asymmetry between normal vs 

symptomatic AD cases and was seen to have better Balanced Accuracy and Specificity in the 

combined ADNI and BIOCARD datasets, as opposed to other discrimination methods 

working on the volumetric features, such as LDA, QDA, Random Forests and Neural 

Networks. Furthermore, compared to CNNs that are directly applied on MR image voxels of 

order O(106), the proposed Siamese framework has comparable prediction balanced 

accuracies for the ADNI dataset, with the advantage of having reduced modeling complexity 

and computational time for training, due to the low dimensionality of the volumetric 

asymmetry feature space. In future work, we plan to apply the proposed Siamese framework 

to different asymmetric features, such as shapes, voxel intensities, and cortical thickness, to 

seek other promising biomarkers associated with AD. In addition, more works need to be 

investigated to verify the connection between biomarkers in MRIs and clinical diagnosis 

associated with AD pathological features.
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Figure 1: 
This is an illustration for the MRICloud segmentation pipeline and volumetric feature 

extraction. Left panel is original MRI; the middle panel is the overlay with MRICloud 

segmentation labels and they are split by hemispheres; the right panel is an illustration for 

the volume size per structure per subject.
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Figure 2: 
Siamese Net Architecture, Lker, Rker are the left and right hemispheric kernel features which 

are sequentially passed into the same n-layer network (n = 6) to be separately encoded into 

their corresponding asymmetry-encoding features, fL, fR. The final error updates that are 

calculated for the weights of this neural network using backpropagation depend on the final 

contrastive loss term, which involves both the left and right feature terms. Each layer is 

fully-connected and feed-forward with L2-regularization on the weights and biases and 

followed by the ReLU non-linear activation function. ℒ ∥ f L − f R ∥2  is the contrastive loss 

function as defined in Eq. (2).
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Figure 3: 
Visualization of the top 3 tSNE dimensions; the left panel shows a plot of the top 3 tSNE 

dimensions trained on the input features to the Siamese network Vker, which are the 

concatenated Lker and Rker features; the right panel shows the top 3 tSNE dimensions trained 

on the asymmetry-encoding feature outputs from the Siamese network; these plots show that 

the Siamese network learns features that separate subjects into two potentially discriminative 

clusters in the tSNE domain after 200 epochs.
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Table 1:

Number of subjects and scans from the ADNI and BIOCARD datasets before and after Segmentation Quality 

Control Elimination.

Dataset
Before Segmentation Quality Control After Segmentation Quality Control

# Subjects # Scans # Subjects # Scans

BIOCARD 324 744 289 601

ADNI 819 3566 716 2703
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Table 2:

Demographic data for subjects and scans from the ADNI and BIOCARD datasets after Segmentation Quality 

Control Elimination. Age values and MMSE scores are displayed as mean (standard deviation).

Dataset Diagnosis 
Type

Scan Distribution Gender Ratio (M/F) Age Mean (SD) MMSE Mean (SD)

Normal MCI AD Normal MCI AD Normal MCI AD Normal MCI AD

BIOCARD Diagnosis 
at scan 

time

578 17 6 191/387 13/5 4/2 58.93 
(9..93)

62.24 
(9.10)

62.78 
(8.48)

29.65 
(0.70)

29.12 
(0.70)

27.00 
(1.55)

Latest 
Diagnosis

437 89 75 133/304 36/53 38/37 57.11 
(8.97)

63.64 
(10.42)

65.01 
(10.42)

29.69 
(0.65)

29.44 
(0.89)

29.37 
(1.06)

ADNI Diagnosis 
at scan 

time

839 1129 735 420/419 692/437 362/373 76.75 
(6.67)

76.18 
(6.71)

76.74 
(6.89)

29.12 
(1.12)

26.85 
(2.56)

22.23 
(4.42)

Latest 
Diagnosis

829 837 1037 434/395 478/359 562/475 76.99 
(6.72)

75.84 
(6.78)

76.57 
(6.72)

29.10 
(1.14)

27.24 
(2.51)

23.30 
(4.28)
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Table 3:

Comparison of performance between methods applied on the ADNI dataset with diagnostic labels from scan 

time. Values are displayed as mean (standard deviation).

ADNI (Diagnosis at Scan Time)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.7543 (0.0388) 0.3890 (0.0581) 0.5719 (0.0319) 0.7426 (0.0258)

QDA 0.9986 (0.0034) 0.0031 (0.0050) 0.5011 (0.0030) 0.8160 (0.0240)

RF 0.8696 (0.0863) 0.1983 (0.1262) 0.5340 (0.0298) 0.7770 (0.0357)

Neural Net 0.9487 (0.0133) 0.8572 (0.0244) 0.9036 (0.0119) 0.9431 (0.0073)

Siamese Net 0.8992 (0.0160) 0.9523 (0.0219) 0.9272 (0.0114) 0.9372 (0.0090)

3D CNN 0.6759 (0.0821) 0.4778 (0.1000) 0.5768 (0.098) 0.6213 (0.121)

Magn Reson Imaging. Author manuscript; available in PMC 2020 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 22

Table 4:

Comparison of performance between methods applied on the ADNI dataset with latest diagnostic labels. 

Values are displayed as mean (standard deviation).

ADNI (Latest Diagnosis)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.7558 (0.0393) 0.4102 (0.0673) 0.5831 (0.0366) 0.7488 (0.0304)

QDA 0.9980 (0.0030) 0.0030 (0.0050) 0.5012 (0.0030) 0.8184 (0.0220)

RF 0.8781 (0.0899) 0.1993 (0.1123) 0.5387 (0.0112) 0.7993 (0.0214)

Neural Net 0.9680 (0.0084) 0.8860 (0.0266) 0.9264 (0.0146) 0.9584 (0.0083)

Siamese Net 0.9244 (0.0403) 0.9615 (0.0199) 0.9436 (0.0259) 0.9512 (0.0270)

3D CNN 0.7781 (0.1210) 0.5601 (0.109) 0.6691 (0.0981) 0.6883 (0.1980)
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Table 5:

Comparison of performance between methods applied on the BIOCARD dataset with diagnostic labels from 

scan time. Values are displayed as mean (standard deviation).

BIOCARD (Diagnosis at Scan Time)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.4440 (0.2700) 0.9477 (0.0199) 0.6961 (0.1339) 0.3044 (0.1697)

QDA 1.0 (0.0) 0.0 (0.0) 0.5 (0.0) 0.0 (0.0)

RF 0.0 (0.0) 0.9996 (0.0010) 0.5 (0.0) 0.0 (0.0)

Neural Net 0.2904 (0.2422) 0.9915 (0.0083) 0.6424 (0.1223) 0.3660 (0.2681)

Siamese Net 0.1800 (0.2200) 0.9972 (0.0053) 0.5883 (0.1096) 0.2275 (0.2120)
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Table 6:

Comparison of performance between methods applied on the BIOCARD dataset with latest diagnostic labels. 

Values are displayed as mean (standard deviation).

BIOCARD (Latest Diagnosis)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.5799 (0.0820) 0.7367 (0.0515) 0.6581 (0.0488) 0.5052 (0.0700)

QDA 1.0 (0.0) 0.0 (0.0) 0.5 (0.0) 0.0 (0.0)

RF 0.0 (0.0) 0.9994 (0.0010) 0.5 (0.0) 0.0 (0.0)

Neural Net 0.6008 (0.0996) 0.9279 (0.0281) 0.7640 (0.0494) 0.6636 (0.0722)

Siamese Net 0.4356 (0.0294) 0.9808 (0.0174) 0.7080 (0.0403) 0.5811 (0.0747)
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Table 7:

Comparison of performance between methods applied on the combined ADNI and BIOCARD datasets with 

diagnostic labels from scan time. Values are displayed as mean (standard deviation).

ADNI and BIOCARD (Diagnosis at Scan Time)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.6943 (0.0311) 0.3265 (0.0434) 0.5104 (0.0218) 0.7101 (0.0322)

QDA 0.9934 (0.0031) 0.0016 (0.0030) 0.4975 (0.0020) 0.8010 (0.0210)

RF 0.8011 (0.0658) 0.1123 (0.1010) 0.4567 (0.0110) 0.7494 (0.0321)

Neural Net 0.9276 (0.0174) 0.8932 (0.0213) 0.9096 (0.0142) 0.9244 (0.0135)

Siamese Net 0.8588 (0.0161) 0.9616 (0.0118) 0.9103 (0.0090) 0.9096 (0.0080)
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Table 8:

Comparison of performance between methods applied on the combined ADNI and BIOCARD datasets with 

latest diagnostic labels. Values are displayed as mean (standard deviation).

ADNI and BIOCARD (Latest Diagnosis)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.7002 (0.0412) 0.3342 (0.0441) 0.5172 (0.0196) 0.7345 (0.0314)

QDA 0.9994 (0.0021) 0.0011 (0.0020) 0.5002 (0.0023) 0.8130 (0.0030)

RF 0.8132 (0.0453) 0.1654 (0.0109) 0.4893 (0.0031) 0.7866 (0.0034)

Neural Net 0.9296 (0.0099) 0.8840 (0.0205) 0.9067 (0.0104) 0.9284 (0.0092)

Siamese Net 0.8839 (0.0277) 0.9584 (0.0.015) 0.9220 (0.0120) 0.9259 (0.0144)
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Table 9:

Comparison of performance between methods applied on the ADNI dataset with latest diagnostic labels for 

the task of discrimination between MCI and Controls. Values are displayed as mean (standard deviation).

ADNI (Latest Diagnosis, MCI vs Controls)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.7506 (0.0210) 0.7411 (0.0450) 0.7515 (0.0219) 0.7501 (0.0318)

QDA 0.6301 (0.0420) 0.7500 (0.0501) 0.6860 (0.0310) 0.6610 (0.0464)

RF 0.6301 (0.1023) 0.7442 (0.0981) 0.6901 (0.0101) 0.6600 (0.0340)

Neural Net 0.9010 (0.0912) 0.9403 (0.0524) 0.9205 (0.0817) 0.9201 (0.0819)

Siamese Net 0.8662 (0.0239) 0.9887 (0.0451) 0.9278 (0.0812) 0.9231 (0.0431)
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Table 10:

Comparison of performance between methods applied on the combined ADNI and BIOCARD datasets with 

latest diagnostic labels for the task of discrimination between MCI and Controls. Values are displayed as mean 

(standard deviation).

ADNI and BIOCARD (Latest Diagnosis, MCI vs Controls)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.6490 (0.0360) 0.7691 (0.0291) 0.7362 (0.0280) 0.7092 (0.0189)

QDA 0.6356 (0.0286) 0.1995 (0.0417) 0.5894 (0.0172) 0.3232 (0.0522)

RF 0.6355 (0.0290) 0.1992 (0.0411) 0.5892 (0.0182) 0.3222 (0.0529)

Neural Net 0.8968 (0.0140) 0.8680 (0.0269) 0.8948 (0.0126) 0.8812 (0.0153)

Siamese Net 0.8201 (0.0601) 0.9760 (0.0143) 0.8980 (0.0295) 0.8901 (0.0410)
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Table 11:

Comparison of performance between methods applied on the ADNI dataset with latest diagnostic labels where 

for each patient, scans at initial time points constitute the training dataset, and scans at later time points 

constitute the validation dataset. Values are displayed as mean (standard deviation).

ADNI (Latest Diagnosis, First-Last Split)

Methods
Performance Metrics

SEN SPEC BACC F1

LDA 0.6881 (0.0110) 0.4009 (0.0210) 0.5445 (0.0341) 0.7012 (0.0200)

QDA 0.9866 (0.0240) 0.0002 (0.0080) 0.4934 (0.0194) 0.7988 (0.0653)

RF 0.7881 (0.0983) 0.2134 (0.0787) 0.5007 (0.0210) 0.7328 (0.0431)

Neural Net 0.9322 (0.0880) 0.8957 (0.0748) 0.9193 (0.0781) 0.9341 (0.0743)

Siamese Net 0.9130 (0.0211) 0.9430 (0.0011) 0.9280 (0.0412) 0.9330 (0.0112)

3D CNN 0.7319 (0.2110) 0.5453 (0.1878) 0.6134 (0.1039) 0.6679 (0.1050)
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Table 12:

Top 5 volumes selected from feature importance analysis for the Siamese network using integrated gradients; a 

higher value for the average integrated gradient over 100 trials of feature importance corresponds to a more 

important feature for prediction. The top 5 features are fimbria, lateral ventricle Inferior (LV Inferior), 

subcallosal anterior cingulate white matter (Subgenual WM ACC), lateral ventricle occipital (LV occipital, and 

superior parietal gyrus (SPG))

Volume Average Integrated Gradient Std. Deviation

Fimbria 0.0380 0.0113

LV Inferior 0.0202 0.0061

Subgenual WM ACC 0.0191 0.0083

LV Occipital 0.0165 0.0055

SPG 0.0127 0.0032
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Table 13:

The number of zero volumes for the Fimbria across scans

Dataset
Controls MCI/AD

Left Volumes Right Volumes Left Volumes Right Volumes

BIOCARD 65 14 44 10

ADNI 356 91 1271 681
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