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Abstract

Recent developments in sensor technology and computational analysis methods enable new 

strategies to measure and interpret lung acoustic signals that originate internally, such as breathing 

or vocal sounds, or are externally introduced, such as in chest percussion or airway insonification. 

A better understanding of these sounds has resulted in new instrumentation that allows for highly 

accurate as well as portable options for measurement in the hospital, in the clinic, and even at 

home. This review outlines instrumentation for acoustic stimulation and measurement of the lungs. 

We first review the fundamentals of acoustic lung signals and the pathophysiology of the diseases 

that these signals are used to detect. Then, we focus on different methods of measuring and 

creating signals that have been used in recent research for pulmonary disease diagnosis. These new 

methods, combined with signal processing and modeling techniques, lead to a reduction in noise, 

and allow improved feature extraction and signal classification. We conclude by presenting the 

results of human subject studies taking advantage of both the instrumentation and signal 

processing tools to accurately diagnose common lung diseases. This paper emphasizes the active 

areas of research within modern lung acoustics, and encourages the standardization of future work 

in this field.
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I. INTRODUCTION

The stethoscope has been developed and used for almost two centuries to allow physicians to 

evaluate the health of the lungs by listening to breath sounds using a technique called 

auscultation [1]. Other physical exam procedures, such as percussion, which involves 

tapping on the patient’s chest, and tactile fremitus, which involves assessing the way that 

vocal vibrations travel through the chest, have also remained core components of the 

respiratory physical exam [2; 3]. These methods are commonly employed in the preliminary 

diagnosis of lung pathologies due to their quick and inexpensive utility. Utilizing acoustic 

findings, trained physicians are able to differentiate between normal and pathological lungs 

in patients suffering from diseases such as pneumonia, pleural effusion, pneumothorax, 

chronic obstructive pulmonary disease (COPD), and asthma [2; 4; 5; 6; 7].

In spite of the clinical utility of the respiratory physical exam, these techniques suffer from 

subjectivity leading to interobserver variability in patient diagnoses [8; 9]. Further 

challenges include the training required to recognize the specific signals necessary to make a 

diagnosis. However, over the years, studies into the physics of the lungs have given us a 

holistic understanding of their response to acoustic stimuli, including factors such as how 

sound travels through the lung tissue (parenchyma) and the specific characteristics of the 

lung sound signals under healthy and pathologic conditions [10; 11; 12; 13].

This understanding has enabled acoustic methods to advance beyond the stethoscope to 

employ different hardware and software tools. This paper has been organized to quickly 

review basic sound types associated with the lung and provide an overview of the physics 

that govern sound transmission in the respiratory system (Sections II-IV). This is followed 

by presenting the diverse methods and procedures required for proper measurement of 

pulmonary acoustics for disease diagnosis, while focusing on presenting recent work in the 

field (Sections V-X). Recent advances include the use of microphone arrays [14; 15] and 

ultrasound [16; 17], as well as more so phisticated signal processing methods for processing 

and classification [18] such as wavelet analysis and support vector machines (SVM) [6].

Approaches rooted in these recent advances have been used for analysis of breath sounds, as 

well as other internal signals, such as vocal vibrations, together with the introduction of 

external stimuli into the lungs via the throat or chest. While thorough reviews of breath 

sound analysis have been conducted [19; 20; 21], to our knowledge a broader review of 

different acoustic analysis techniques for lung disease has not been performed. For this 

purpose, we review automatic classification methods that have been developed and tested in 

tandem with various acoustic signals both internal and external. This paper surveys current 

acoustic methods, including both measurement and actuation hardware; evaluates signal 

processing methods used to process and analyze measured sound; reviews selected human 

subject studies for validation of various methods; and outlines future challenges in the field.

II. PATHOPHYSIOLOGY AND ACOUSTICS OF COMMON LUNG DISEASES

Due to both infectious and non-infectious diseases, the lung can become abnormally 

occupied by air and fluid. Structural changes induced by disease cause alterations in acoustic 
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transmission of frequencies through the thoracic cavity [22]. For the purposes of this review, 

we focus on pneumonia, pleural effusion, pneumothorax, chronic obstructive pulmonary 

disease (COPD), and asthma, as these diseases have pronounced acoustic findings and the 

majority of the research in the field has focused on these disorders. The diseases focused in 

this review can be grouped into two broad categories based on their pathophysiology: fluid 

and air accumulation. Pneumonia is the result of a lung infection which leads to 

inflammation and the accumulation of exudate (a protein-rich fluid) in the lungs [23]. The 

accumulation of this fluid provides the physiological basis for the acoustic physical exam 

findings of abnormal breath sounds and dullness to percussion [24]. The term consolidation 

refers to the area of lungs with fluid accumulation. Pleural effusion is similar to pneumonia 

in that it also results in the accumulation of fluid; however, the location of the fluid 

accumulation is in the cavity surrounding the lungs, called the pleura [25]. In addition to 

fluid, air can also abnormally occupy the chest cavity and lead to the collapse of the lungs in 

an acute disease called pneumothorax [26]. The presence of this air measurably changes the 

acoustic properties of the lungs [27]. Asthma and COPD are inflammatory disorders which 

affect the larger airways; this inflammation leads to the characteristic wheezes and other 

pathological breath sounds associated with these diseases [28; 29]. This inflammation also 

preferentially inhibits exhalation, leading to a trapping of air in the chest cavity, which may 

affect the resonance of the chest [30]. Unlike pneumothorax, which also results from air 

accumulation, asthma and COPD are chronic in nature.

III. Types of Acoustic Signals

In this review, we break down the analysis of lung acoustics into two categories: analysis of 

“internal” signals, in particular, analysis of the sounds produced during breathing and from 

the vocal chords; and “external” signals, like those that result from chest percussion and 

airway insonification [2]. The types of acoustic signals are summarized in Fig. 1. A 

summary of the frequency ranges, signal types and analysis techniques for both internal and 

external signals is provided in Table I.

A. Internal: Breath sounds

Respiratory sounds occur as the result of air flowing through the lungs and are categorized 

as normal or abnormal (adventitious). Normal respiratory sounds are defined here as those 

that are in healthy airways by physiological unforced breathing. These sounds are generally 

subdivided into tracheobronchial and vesicular; the former originate in the trachea and larger 

bronchial airways, and the latter may originate in small branches of the airway tree further 

from the trachea or from other mechanisms at distal regions of the lung parenchyma [55]. 

Absence or deficiency of normal breath sounds or manifestation of adventitious sounds may 

be an indicator of pulmonary disease.

Adventitious respiratory sounds have been classified into several different types, depending 

on their spectral-temporal characteristics and their location [2; 3]. A variety of lung 

pathologies and injuries result in adventitious respiratory sounds and/or alter sound 

transmission pathways, with both spectrally and regionally differing effects that, if properly 

quantified, may provide additional information about the severity and location of the trauma 
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or disease. We briefly review the different types of breath sounds and their spectral 

characteristics in this section, and refer the reader seeking more detailed explanations to the 

definitions and spectral characteristics set forward by the European Respiratory Society 

(ERS) [56].

1) Crackles: Crackles, also termed “crepitations” or “rales,” are short, discontinuous, and 

non-stationary sounds that can be detected at inspiratory and/or expiratory cycles [57]. Key 

features often extracted from crackles include their duration, wave form, and timing, which 

can be correlated to several pathologies, such as COPD, pneumonia, fibrosis, or 

bronchiectasis [28; 55; 57; 58].

2) Wheezes: Wheezes are adventitious continuous sounds that are typically heard at end of 

the inspiratory phase or in the early expiratory phase. They are often detected in subjects 

affected by obstructive diseases, in particular asthma and COPD [28; 58; 59; 60], as well as 

in sickle cell patients experiencing an acute pain crisis [57]. Their dominant spectral content 

is usually between 100 to 1000 Hz, with higher harmonics above 1 kHz.

3) Rhonchi: Rhonchi are musical low-pitched sounds characterized by a sinusoidal 

waveform [28]. The duration is generally higher than 100 ms and frequency content lower 

than 300 Hz. They are associated with abnormal airway collapsibility and the creation of 

breaches in fluid films [28]. Rhonchi can be considered indicators of airway lumen 

constriction associated with thickening of the mucosa, edema or bronchospasm (e.g. 

resulting from bronchitis and COPD) [28].

4) Stridor: Stridor, often considered a type of wheezing, refers to intense continuous 

monophonic sounds best heard over extra-thoracic airways. Stridor is usually considered an 

indicator of upper airway obstruction. Signal analysis reveals that stridor tends to have a 

sinusoidal waveform, with a fundamental frequency generally above 500 Hz [28; 61].

5) Squawks: Squawks are defined as a mixed sound since they are characterized by a crackle 

followed by a short musical component resembling a wheeze [28]. They are likely to occur 

in fibrotic pulmonary disorders. Acoustically, their waveform is similar to that of short 

wheezes, but they are often preceded by a crackle. Mean squawk duration is approximately 

90–320 ms.

6) Bronchial: Bronchial breath sounds are blasting sounds, audible throughout inspiration 

and expiration, with a frequency range of 600–1000 Hz [21]. Although normal when heard 

over the neck, close to the bronchus, when bronchial sounds are heard over the lung fields it 

is usually due to a reduction in the amount of parenchyma through which the sounds pass 

resulting from disease [11]. Generally, they have a higher frequency content with respect to 

normal sounds; this is because consolidation causes a reduction of the low-pass filtering role 

of the alveolar region.

B. Internal: Vocal sounds

Vocal sounds can be viewed as internal to the body but are also an external stimulus to the 

airways and lungs. Vocal sounds consist of a fundamental frequency and several overtones 

that make up higher frequencies. In healthy patients, auscultation of vocal sounds often 
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appear muffled due to poor transmission of sound in air-filled lungs, which filters out higher 

frequencies often with a peak at 130–250 Hz [42; 62]. Consolidation has been found to 

increase this transmission to 400 Hz [63]. Auscultation of vocal sounds has been used to 

exploit its frequency content and response, and is a valuable tool as certain vocal findings 

have been found to precede abnormal breath sounds [63]. Different methods of initiating 

vocal sounds have been explored by researchers, pairing different methods of actuation such 

as ultrasound or sound delivered via speakers with different types of sensors; however, as 

they are based on the same principles, it is often up to the physician to decide which method 

to use [11].

1) Pectoriloquy: Pectoriloquy refers to an abnormal increase in the clarity of whispered 

vocal sounds during auscultation due to the presence of lung consolidation, which increases 

the sound speed and thus lowers the damping of the vocal signal due to the efficiency of 

sound transmission through fluid. A study comparing different methods of diagnosing 

pneumonia, including auscultation of percussion, breath sounds, pectoriloquy, and 

bronchophony, showed that pectoriloquy had the lowest inter-rater agreement and was rarely 

detected by physicians [64; 65].

2) Bronchophony: Bronchophony applies the same principles of pectoriloquy, but is spoken 

instead of whispered. Egophony is a specific type of bronchophony. When a patient speaks 

the letter “E” it is normally heard on the chest wall as a muffled “E” in healthy patients, but 

in the presence of consolidation, it sounds like a spoken “A” [63]. “E” consists of a 

fundamental frequency between 100–400 Hz and overtones ranging from 2000–3500 Hz, 

while “A” consists of a higher fundamental frequency of up to 600 Hz [62]. Increased 

density in the parenchyma from pleural effusion or lung consolidation transmits the higher 

frequencies of “A” better than the lower frequencies of “E” with no significant transmission 

above 1000 Hz, and may stifle transmission from 100–300 Hz, causing the apparent “A” 

sound [62]. In several studies, egophony was found to have increased the likelihood of 

diagnosing pneumonia but had highly variable positive predictive values, from 20–56% [66].

3) Fremitus: For vocal fremitus, the input to the chest is the speech signal at the vocal chords 

and the output is the sound heard at the chest wall. To generate the speech in a standard way, 

the patient is asked to vocalize a constant sound, such as EEE [2]. The vibrations initiated by 

fremitus are decreased in the presence of conditions such as bronchial asthma, emphysema, 

obstruction, pleural effusion, and pneumothorax. Air trapping or accumulation decreases the 

transmission of lower frequency vibrations, while consolidation and inflammation increases 

transmission [67]. For these reasons, fremitus is often more useful in male patients, and has 

been observed to be ineffective in obese patients [63; 67]. Wipf et al. found that, along with 

pectoriloquy, vocal fremitus was rarely detected in patients with pneumonia[64]. Another 

study corroborates these findings, but suggests that it is difficult to calculate the reliability of 

fremitus because it occurs infrequently [65]. For pleural effusion, fremitus has been shown 

to have a high sensitivity (82%), specificity (86%), and negative predictive value (95%) for 

diagnosis, though the positive predictive value was low (56%) [68].
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C. External: Airway insonification

The process of analyzing abnormalities in lung structure can also be done electronically, by 

introducing external sound through the oral cavity or the endotracheal tube [26; 27; 44; 48; 

50; 54; 69]. Sounds introduced to the oral cavity have ranged from 50–2000 Hz [48; 50; 69], 

while sounds introduced through the endotracheal tube have ranged from 20–1600 Hz [27; 

54]. A transfer function with the chest as the output has been used to characterize the 

structure and/or content of the parenchyma. By utilizing a fixed input signal, the specific 

frequencies of interest can be isolated and the differences between patients’ vocalization 

discussed above can be avoided [63; 67].

D. External: Chest insonification

In addition to the vocal tract, sound can also be introduced directly to the chest, which can 

be done via percussion, electronic actuators, and ultrasound. Percussion is a term that refers 

to exciting a tissue with an impulsive force [22]. The input is a percussive stroke generated 

manually by a finger or automatically by an external tool; the output is the sound heard at 

the chest wall [22]. If the vibrations from the percussive stroke are less damped, they persist, 

known as a resonant or tympanic note. This occurs due to a significant acoustic mismatch 

between the gas-filled lungs and chest wall, causing reflections at the lung–chest wall 

interface, and thus longer vibrations. In contrast, flat percussive notes, which die out quickly, 

are caused by similar tissue beneath the chest wall, such as over the heart or due to the 

presence of fluid, which decreases the amount of acoustic mismatch [11].

In previous studies, dullness from percussion has been shown to be associated with 

increased likelihood of pneumonia, though its measurement is hindered by low inter-rater 

agreement [64; 65]. Auscultatory percussion, first described by Guarino, is a variation of 

direct percussion in which one side of the body is percussed and the sound assessed with a 

stethoscope at a distance or on the other side of the body [23]. Bohadana et al. expanded 

Guarino’s findings in a study of 98 patients with abnormal chest films; in the blinded study, 

direct percussion and auscultatory percussion were compared, demonstrating that both were 

about equally effective at detecting pleural effusions, but that neither technique could detect 

intrapulmonary masses less than 6 cm in diameter [70]. In a follow-up study, the same 

researchers recorded data from several sensors to create a sound map of the backs of three 

healthy subjects and four patients with large intrapulmonary lesions (from 6–10 cm), finding 

that scapulae play a large role in sound transmission for percussion of the sternum and that 

intrapulmonary lesions were not detectable [71]. This limitation in part arises from the low 

bandwidth of manual percussion sounds (less that 100 Hz), and in part due to the 

characteristic transmission of sound through bony structures as well as through the lung 

parenchyma.

Automated methods have attempted to address these limitations by expanding the bandwidth 

of the input signal to 1000 Hz and recording from areas that exclude the scapulae. Recent 

studies have introduced a frequency range of 50–1000 Hz at the chest to measure changes in 

velocity and arrival time, the transfer function, or reflections of sound waves [11; 43; 44; 

47]. Apart from an impulsive signal, a controlled input signal such as a chirp can be input at 
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the chest wall to analyze any abnormalities in its transmission through the chest structure 

[43; 47; 72].

In addition to audible range stimulation, ultrasound provides input into the chest of 

frequencies above 20 kHz, with most clinical ultrasound systems in the range of 2 to 10 

MHz [16]. As the sound travels into the tissue, a reflection beam called an echo is formed; 

production and detection of echos is the basis for all diagnostic ultrasound systems [16]. If 

two adjacent tissues have different acoustic impedances, they will produce an echo. If the 

difference between the two tissues is very large, as is the case in the chest–lung interface, not 

enough ultrasound signal will remain to image beyond this interface, creating challenges for 

thoracic imaging [16]. Despite these challenges, several methods utilizing the artifacts of the 

ultrasound image can be used to great effect for pulmonary diagnosis, these methods are 

explored in Section V.E.

IV. PHYSICS OF THE HUMAN THORAX

The human thorax is comprised of four different types of materials with significantly 

different acoustic properties: hard tissue (bone), soft tissue (muscle, fat, etc.), air in the 

major conducting airways of the bronchial tree, and parenchymal tissue that is a 

heterogeneous mixture of soft tissue and air found in the alveolar sacs and smaller 

bronchioles. The characteristics of these different components affect how sound is 

transmitted through the thorax.

A. Absorption

Sound in the lumen of the lung airways experiences a frequency-dependent absorption into 

the airway walls and surrounding parenchymal tissue, in which high-frequency sounds 

propagate further within the airway branching structure, while low-frequency sounds tend to 

couple into the airway walls sooner [3; 11; 73]. However, due to the attenuation of higher 

frequency sounds in the surrounding parenchymal tissue, most of the signal energy of breath 

sounds recorded on the torso surface is concentrated at lower frequencies [3; 49].

Analysis of sound transmission in the chest cavity suggests that the chest, overall, acts as a 

low-pass filter, absorbing higher frequencies as sound travels through it [11; 35; 42; 48; 50]. 

This filtering effect is altered with the presence of different lung conditions, such as 

consolidation or fluid build-up, which on the one hand can create large acoustic impedance 

mismatches with healthy parenchymal tissue and air, but on the other hand acoustically 

couples better to surrounding soft tissue of the chest wall and inherently allows sound to 

propagate with less attenuation, as compared to healthy parenchymal tissue [43].

B. Resonance

Resonant frequencies are those frequencies at which acoustic waves are reflected back and 

forth due to interaction with boundaries or interfaces, leading to constructive interference 

and an amplified response. When a short (percussive) impulse, with broad frequency 

content, is applied to a system, the response at its resonant frequencies will persist longer 

than at other frequencies, particularly as damping (viscosity) in the system is reduced [74]. 

For the chest overall, this characteristic depends on several factors, including the size of the 
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thorax. The first, or lowest, resonant frequency of the chest for men is around 125 Hz; for 

women it is slightly higher, at 150–175 Hz; for children it is 300–400 Hz [11]. For sound 

traveling in the lumen of the airways, the resonant frequencies are a strong function of the 

geometry and wall properties of the airways whereas direct chest stimulation will generally 

bypass these differences [75]. Resonances may also occur when pathologies create trapped 

air cavities below the torso surface, such as in the case of pneumoperitoneum [76; 77].

V. METHODS OF MEASUREMENT

The classic method of measuring lung sounds is with the stethoscope, which works by 

isolating the sounds from the vibrating chest wall and filtering out certain frequencies of 

interest mechanically. These sounds can be recorded for analysis by converting the acoustic 

pressure or vibrations of the chest–wall interface into electrical signals. In this section, we 

review the filtering characteristics of the stethoscope, discuss common types of sensors used 

to digitize this signal and their methods of transduction and end with a discussion of multi-

point measurement systems. These sensors are discussed in the context of Computerized 

Respiratory Sound Analysis (CORSA) specification recommendations, which are based on a 

project of the European Respiratory Society [56].

A. The Stethoscope

Conventional stethoscopes rely on analog filtering and amplification of sound for 

interpretation by a trained professional [38]. Stethoscopes have two sides, a bell and a 

diaphragm, with different frequency characteristics. Bell chestpieces amplify sound below 

112 Hz [78], demonstrating superior sound transmission at these frequencies compared to 

the diaphragm, which attenuates low frequencies [79]. Both bells and diaphragms have an 

important attenuation above 200 Hz, which limits the ability to discern sounds in this 

frequency range [78]. The sensitivity of the human ear ranges from 20–20,000 Hz [34; 79]. 

Despite the range of human hearing, because the ear follows a logarithmic sensitivity to 

frequency, greater changes are required at higher frequencies to discern them as different 

[38]. Electronic stethoscopes utilize a variety of sensors including condenser microphones 

and piezoelectric sensors in order to convert acoustic waves into electrical signals for 

filtering and processing [5; 27; 54]. Compared to the conventional version, electronic 

stethoscopes allow amplification of the acoustic signals, electronic removal of noise 

artifacts, and recording for playback and post-processing [79]. In spite of these advantages, 

electronic stethoscopes also suffer from excessive ambient noise, which is exacerbated by 

amplification; however, this is reduced with the implementation of low-pass filters from the 

bell and diaphragm [79]. Depending on the type of sensor utilized, and the analog and digital 

filters that are applied, the frequency range varies for these methods of measurement. The 

main strength in the electronic stethoscope is the integration of a familiar technology with 

advancements in electronics and signal processing (see Section VII). Low barriers of 

adoption for medical professionals can facilitate quicker clinical usage of lung acoustic 

diagnostics; however, its main weakness is site-specific dependencies with a single point of 

measurement.

Rao et al. Page 8

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Sensors

The vibrations of the chest–wall can be recorded using several different methods of 

transduction, such as condenser and piezoelectric transduction [56]. An ideal sensor should 

be small and lightweight, cost-efficient, produce reliable and sensitive measurements with 

little noise, and have reproducible frequency response [21]. Due to its flat frequency 

response, high SNR, and advancements in MEMS technology, we recommend condenser 

microphones for such an ideal sensor. CORSA provides standard considerations for picking 

a condenser microphone for respiratory recordings [80] A majority of recent studies 

reviewed in this article (see Table II) have also utilized condenser microphones.

The two main types of microphones used for lung sound analysis are air-coupled and contact 

microphones. An air-coupled microphone converts changes in dynamic air pressure within 

the drum of a stethoscope created by the oscillatory movement of the diaphragm or bell 

pressed against the torso surface into electrical signals, while contact microphones convert 

mechanical stress caused by chest movements using piezoelectric transduction principles 

[18].

1) Condenser microphones: Condenser microphones are a type of air-coupled microphone. 

Condenser microphones such as electret microphones utilize condenser transduction to 

detect changes in acoustic pressure that change the nominal capacitance values [18; 21; 81]. 

These microphones have a nearly flat frequency response over the audio range, leading to 

minimal distortion [21; 81]. However, they require acoustic coupling to the chest wall with 

an air cavity [59; 80]. Microelectromechanical systems (MEMS) microphones utilize 

condenser principles and provide a similar frequency range and SNR as compared to 

conventional condenser microphones while providing a smaller form factor [18; 82]. Due to 

their wide bandwidth, high sensitivity, established coupling methods, high SNR (according 

to CORSA recommendations), and low costs, condenser microphones are widely used [21; 

59; 81].

2) Contact microphones: Contact microphones typically utilize piezoelectric transduction 

principles to create an output voltage proportional to the displacement of the sensor placed 

directly onto the skin without the use of an air chamber [80]. These sensors can be 

characterized by extremely high sensitivity (50 mV/Pa) and have the advantage of not 

picking up as much ambient noise as condenser microphones, but are conversely very 

sensitive to motion artifacts [80; 81]. A study found that loading effects due to the method of 

coupling from the transducer to the hand piece of the stethoscope is a significant noise 

source [83]. One design solution to this noise source is utilizing foam between the 

transducer and hand piece of the stethoscope; progressively softer foam results in reduction 

of physician hand noise but also lowers the sensitivity of the piezo sensor [83].

C. Multi-point measurements: Sensor array

Lung pathologies alter sound transmission pathways and have both spectral and regional 

effects that can benefit from simultaneous measurements at multiple points across the chest 

surface. Understanding the location of abnormal lung sounds can help identify areas of 

pathology as well as assessing the severity of the pathology based on its spatial distribution. 
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To better assess location, simultaneous multi-sensor auscultation methods have been 

advanced to “map” sounds on the thoracic surface by several groups [34; 59; 84; 85; 86].

One multi-sensor system that has undergone considerable study into its efficacy has been 

branded as “vibration response imaging” (VRI). VRI involves creating a 2D representation 

of breath sounds using an array of electronic stethoscopes that pick up sounds from the chest 

using 18–40 piezo-acoustic sensors to create a gray scale image in real time that can 

dynamically track acoustic variation throughout the respiratory cycle [34]. The sensors in 

the array have a flat frequency response from 50–400 Hz [34]. This sensor array has been 

investigated for distinguishing between healthy subjects versus subjects with pleural effusion 

or pneumonia [4; 87;88], differences in lung sounds between asthmatic and healthy subjects 

[89], and differences between subjects with obstructive airway disease (OAD) and non-OAD 

subjects [58]. While this system has been applied to a variety of disorders, it remains bulky 

compared to systems with fewer sensors, as it relies on 40 different sensors coupled to the 

patient’s back via a low-suction vacuum. Another limitation is the fact that the signal is 

filtered from 150–250 Hz, which may reduce lung sound characteristics contained in 

frequency bands above 250 Hz [90].

While 2D visualization of breath sounds is an improvement over individual sensor 

recordings, 3D mapping of sound sources may provide further localization for diagnosis. 

Kompis et al. [3] attempted to form a three-dimensional (3D) acoustic image of the likely 

sound source location(s) by using multiple sensors and assuming “ray acoustic,” i.e., 

“incident field,” models for how sound propagated away from these sources. For future 

work, Kompis et al. noted that a useful imaging system for the human lung should: (a) be 

robust with respect to acoustic properties, especially speed of sound, which varies and is not 

precisely known; (b) provide 3D data sets and resulting images that are intuitively 

interpretable; and (c) be robust with respect to missing sensors or noisy data in individual 

sensors [3]. While sensor arrays are ideal for providing a 2D or 3D visualization of the 

lungs, as opposed to the stethoscope which can only provide one location at a time, current 

solutions remain bulky, and adoption in the clinic will be more difficult due to increased 

costs compared to point based measurements.

VI. METHODS OF ACTUATION FOR EXTERNAL SOURCES

Unlike internal sounds, which are non-stationary and not precisely repeatable signals [5], 

externally introduced sounds have the advantage of providing a fixed input signal generated 

using a variety of methods.

A. Actuators

Relatively few studies have investigated the use of fixed input signals for pulmonary 

diagnosis, leading to a lack of standardization for the transducers used to provide the input 

signal. Actuators rely on the same principles of transduction as sensors, such as 

electromotive and piezoelectric transduction but provide inverse functionality by converting 

an electrical signal into a mechanical signal. Several parameters are considered in choosing 

an actuator, such as bandwidth, displacement, force, power, size, and weight. The ideal 
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actuator is a transducer that can generate a strong signal via displacement or force for a wide 

range of frequencies, without excessive power consumption [72].

1) Dynamic loudspeakers: Dynamic loudspeakers utilize electromagnetic induction to 

transduce an electrical signal into sound waves [91]. Surface exciters are a specific type of 

loudspeaker that do not have the cone or frame, so their vibrations are coupled to a surface 

instead of to the air. They are capable of producing a strong signal at low frequencies as low 

as 50 Hz, and can be made relatively small [72].

2) Electromechanical solenoids: Electromechanical solenoids consist of an electromagnet 

with a plunger, the plunger will move in or out depending on the direction of the current 

[92]. They are also capable of actuating strong low frequency signals but are bulky and 

require large amounts of current for operation, which reduces battery life [72].

3) Piezoelectric: Piezoelectric transducers have found use in generating and detecting 

ultrasound waves [93]; therefore, they are notable for their ability to generate large forces at 

high frequencies with a small size.

B. Audible sound: Chest input

Use of a fixed audible input signal into the chest is still an area of active research with fewer 

studies compared to breath sound analysis. Several recent studies have introduced sound 

through the chest to investigate how sound travels through the chest structure [43; 44; 72]. 

These studies utilized low frequency audio range transducers which produced signals 

generated within the range of 50–1000 Hz [43; 44; 72].

The first of these studies used an electromagnetic shaker (ET-132, Lab-works Inc., Costa 

Mesa, CA) to drive a periodic chirp signal with spectral content from 50–400 Hz into the 

sternum [43]. The upper limit of frequency was set by the signal-to-noise ratio (SNR) for the 

system, which was limited by the sensitivity of sensors available at the time of the study. Its 

goal was to investigate changes in acoustic signals during pneumothorax, which leads to air 

accumulation in the lungs and collapse of lung tissue. Simulations using finite element 

analysis (COMSOL) predicted changes in pneumothorax in the range of 100–200 Hz; initial 

human subject data comparing healthy recordings to two pneumothoracies of different 

severity demonstrated reduction in signal transmission at 120 Hz which tracked with 

severity. A later study utilized a compact shaker (Model 4810, Bruel & Kjaer) placed on the 

clavicle with a reference accelerometer attached to the shaker, and expanded the range to 

80–1000 Hz, a range determined by the accelerometer’s sensitivity [44].

The most recent of these studies utilized a surface exciter to send a linear chirp from 50–

1000 Hz into the chest at the sternum [72]. This study investigated changes in acoustic 

transmission during pneumonia, which leads to fluid accumulation in the chest. The study 

demonstrated reduction in signal transmission in the 200–400 Hz range when comparing 

healthy subjects to patients with lobar pneumonia. Another study using the same equipment 

expanded the frequency range to 50–1000 Hz and utilized a classification algorithm to 

classify subjects lungs as healthy or pathological with an accuracy of 92% [47].
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These studies indicate potential for a fixed input signal in the range of 50–1000 Hz for 

pulmonary disease diagnosis; however, more studies with larger numbers of patients are 

needed to confirm these findings and establish a baseline for disease specific changes.

C. Audible sound: Oral cavity input

Several studies have investigated the introduction of sound through the mouth with external 

recording from the subject’s chest [44; 48; 50; 53; 69]. For mouth-to-chest wall 

transmission, sound propagation is primarily through the parenchyma, as determined by the 

consistency of sound transmission across different gases [50]. Studies have focused on both 

frequency based analysis of transmission, transit time analysis as well as a respiratory 

acoustic impedance approach to identify changes in lung pathology.

These studies produce an external sound using a signal generator which is sent directly into 

the patient’s mouth and may be broken up into high frequency analysis (50–2000 Hz) and 

low frequency analysis [48; 50; 69]. The frequency range of 5–20 kHz has also been 

investigated, and found to result in data variability between healthy subjects, motivating the 

use of data below 5 kHz for analysis [52]. Controlled inputs via the oral cavity control for 

the intersubject variability of breath sounds.

Low frequency analysis can be used to obtain the respiratory impedance by utilizing a 

pneumotacho-graph to measure flow combined with a loudspeaker, which generates low 

frequencies. Two approaches exist, each sending a different signal into the oral cavity: the 

forced oscillation technique (FOT) and impulse oscillometry system (IOS) [53; 94; 

95].These techniques assess lung function by measuring acoustic impedance using sound 

waves inserted into the patients’ mouth. The FOT works by sending a sinusoidal signal of 

single frequencies into the mouth over a range of 3–35 Hz [94; 96], providing good time 

resolution with measures of respiratory impedance but taking longer because it only sends 

one frequency at a time [94]. In contrast, the IOS sends a square wave impulse containing 

frequencies ranging from 4–32 Hz. Though this results in inferior temporal resolution and 

can cause discomfort for patients at higher frequencies, it offers improved SNR and can 

show pressure-flow relationships using frequency analysis [94; 97].

Advantages of FOT/IOS include higher sensitivity in detecting peripheral airway 

obstruction, short duration, and a requirement for little patient cooperation compared to 

spirometry, which is difficult for children, the elderly, and physically or cognitively impaired 

patients [94; 96]. For these reasons, FOT/IOS have proven useful in human studies for 

diagnosing asthma and COPD [53; 95; 98; 99; 100]. Current challenges to FOT/IOS come 

from its relatively recent introduction to the clinical setting, making it difficult to compare 

results due to the lack of standardized, healthy values. There have also been mixed reports 

regarding the effect of demographics such as sex, age, and race on IOS measurements [96; 

101], though a study using artificial neural networks (ANNs) to classify asthma in IOS 

patterns achieved an accuracy of 94% without including race as a parameter [96; 102].

D. Audible sound: Endotracheal input

Studies have also investigated introduction of sound directly into the lungs through an 

endotrachial tube [26; 27; 54]. Initial studies in a canine model suggested that a frequency 
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range of 20–1600 Hz with uniform amplitude could be used distinguish between differences 

in lung structure due to pneumothorax [27; 54]. At frequencies below 100 Hz, the disease 

and control states were comparable; however, for higher frequencies from 300–1600 Hz 

clear attenuation occurred due to disease in all subjects. Specifically, for structural changes 

due to air accumulation in the lungs, the canine model demonstrated an important metric for 

measuring the impact on the frequency response. Since the spectrum contained a large 

number of values not well suited for diagnostic analysis, a ratio between the low (<220 Hz) 

and high (550–770 Hz) spectral energies was used to detect accumulation of air [27]

E. Ultrasound: Chest input

The transmission characteristics for ultrasound are similar to audible sound. Longitudinal 

waves are used in ultrasound, and the speed of ultrasound in soft tissue is about 1540 m/sec 

[11]. In ultrasound, the frequencies generated are high (1–15 MHz), which allow a short 

wavelength (1 to 0.1 mm) [16]. Therefore, it is suitable for detecting small differences in 

tissue boundaries which may not be picked up by an audible sound. Like audible sound, 

when the ultrasound wave encounters a boundary between two different media, some of the 

wave energy bounces back toward the source as an “echo” or reflection. The higher the 

difference in acoustic impedance between two objects, the higher the amount of reflection 

[103]. For example, at a soft tissue–bone boundary the ultrasound wave is highly reflected, 

and thus appears as a white (hyperechoic) line followed by a posterior acoustic shadow 

beyond the boundary (Fig 2a).

Lung ultrasound involves the interpretation of ultrasound artifacts instead of evaluation of 

the actual lung parenchyma. The soft tissue and pleural boundary has a high acoustic 

impedance mismatch, such that there is typically a reflection of 99.9% of ultrasound waves, 

rendering this interface virtually impenetrable to ultrasound [11; 16]. Since there is no 

ultrasound wave left to image beyond this boundary, performing an ultrasound of the lungs 

was initially thought to be impractical [104]; however, several studies have shown the 

usefulness of ultrasound in diagnosing several lung diseases through the identification of 

artifacts in the ultrasound signal [45]. There are a variety of static and dynamic artifacts that 

represent normal lung parenchyma.

As for electrocardiograms, a nomenclature has been created to describe and characterize 

these artifacts for communication. A-lines are static horizontal regularly-spaced hyperechoic 

lines that represent an aerated lung created by reverberation artifact (Fig 2b). A reverberation 

artifact is the bouncing of echo between pleural line and the ultrasound transducer. Likewise, 

lung sliding is a typical dynamic finding and represents the regular movement of the parietal 

pleura sliding along the visceral pleura. Lastly, Z-lines appear as bright beads with 

hyperechoic tails and are a common finding thought to be from microbubbles existing 

between the pleural layers [105].

There are also many ultrasound artifacts that represent pulmonary disease processes. In 

particular, comets, echo-graphic signs formed due to water thickened septa, as well as other 

static image irregularities combined with dynamic signs formed due to the gravity 

dependence of fluid in the lungs have proven to have diagnostic value [17; 46]. These signs 

hold particular weight when the alveolar air adjacent to the chest wall is replaced with fluid, 
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allowing ultrasonic detection [106]. Various artifacts and syndromes associated with 

diseases are explored below.

Interstitial syndrome is a diffuse pulmonary process in which an ultrasound reverberation 

artifact, B-lines, represent fluid accumulation within pulmonary septa. B-lines are discrete, 

laser-like vertical projections arising from the pleural line and extending to the bottom of the 

screen without fading (Fig. 2c). Interstitial syndrome represents a variety of diseases such as 

pulmonary edema, interstitial pneumonia, acute respiratory distress syndrome, and 

pneumonitis.

The specific distribution of B-lines and the patient’s clinical presentation can help elucidate 

the cause of interstitial fluid [107]. For example, in patients with a moderate to high pretest 

probability for acute cardiogenic pulmonary edema, an ultrasound study showing B-lines 

can be used to strengthen a physician’s suspicion for pulmonary edema, while in patients 

with a low pretest probability of pulmonary edema, a negative ultrasound study can almost 

exclude the possibility of pulmonary edema [108].

Alveolar syndrome represents the loss of air within alveoli secondary to collapse or fluid 

accumulation (lung consolidation). Alveolar syndrome can be characterized by several 

ultrasonographic findings, including shred sign and tissue-like sign. Shred (fractal) sign 

shows echo-poor areas of the pleural, represented as a non-smooth pleural line (Fig 2d). 

Likewise, tissue-like sign, in which extensive consolidation will allow visualization of the 

underlying pulmonary tissue, is represented as a structure that appears like tissue. For these 

two findings, pulmonary ultrasound relies on the fact that 98% of consolidations reach the 

pleural surface and are thus viewable [109].

Recent reports show that ultrasound for pneumonia detection may be superior to chest 

radiograph; sensitivity and specificity for the diagnosis of pneumonia using ultrasound were 

94% and 96% [110]. Lichtenstein et al. used a combination of static signs (irregular 

boundaries) and dynamic signs (absence of a sinusoidal irregularity) to diagnose alveolar 

consolidation, as in pneumonia, with a sensitivity of 90% and specificity of 98% when 

compared to CT [17]. Using visible air bronchograms on mechanically ventilated patients, 

Lichtenstein et al. also showed 94% specificity in distinguishing between pneumonia from 

atelectasis for mechanically ventilated patients who would have appeared the same by chest 

radiography [111].

Ultrasound evaluation of pleural effusion is an established technique with excellent test 

characteristics [112]. Fluid is an efficient conductor of ultrasound waves and can be 

visualized on evaluation [113]. Ultrasound is also helpful before thoracentesis, since it can 

reveal septations, estimate the size of effusion, and localize optimal needle placement. 

Similarly to alveolar consolidation, pleural effusion has also been diagnosed on ultrasound 

by using a combination of a static sign (sharp borders) and a dynamic sign (sinusoidal 

irregularity) which provided a sensitivity and specificity of 93% [17].

For pneumothorax, Lichtenstein et al. published an approach to evaluating pneumothorax 

with ultrasound by evaluating the artifact created as the visceral pleura slide against the 

parietal pleura [45]. A pneumothorax is represented as a loss of standard lung sliding seen in 
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the healthy lung. A recently published review of eight high-quality studies found that 

overall, ultra-sound had a sensitivity of 90.0% and a specificity of98.2% for detecting 

pneumothorax [114].

Point-of-care ultrasound has been gaining traction within the medical community, and 

portable ultra-sound that is relatively inexpensive has facilitated this increased usage. While 

extensive studies have been done on pulmonary diagnosis using ultrasound, its use requires 

years of training to detect the artifacts associated with lung diseases. Furthermore, the 

presence of dynamic images in addition to static signs for disease detection make 

development of machine classifiers for disease more complex.

F. Audible Shear Waves: Chest input

While compression waves are useful in determining the effects of short range inter-

molecular interactions and essential to high-resolution ultrasound imaging, acoustic shear 

waves can provide information about the shear elasticity and viscosity of a tissue [115; 116; 

117]. Large changes in shear wave speed caused by diseases affecting the stiffness of the 

lungs and other tissues can provide diagnostic information [117]. Previous studies have used 

the modulated radiation force of ultrasound or a mechanical shaker to create a harmonic 

force in frequencies ranging from 100 to 500 Hz to detect viscoeleastic properties in a 

phantom and a pig lung using a laser doppler vibrometer or ultrasound for detection [118; 

119; 120]. Future studies investigating the generation of surface waves on the lung through 

the intercostal spaces would be particularly interesting.

Acoustic shear wave motion throughout the lung parenchyma can be imaged using magnetic 

resonance (MR) elastography, a phase contrast MR imaging method [121]. Typically, an 

external vibration source applied to the chest is driven at frequencies on the order of 50 Hz. 

The shear wavelength and attenuation will be altered by changes in the lung mechanical 

properties. While MR imaging in general is particularly challenging in the lungs due to its 

heterogeneity and air content leading to lack of hydrogen (1H) atoms (abundant in soft tissue 

due to its water content), a few groups have had some success in applying MR elastography 

to the lung using both 1H [121; 122; 123] and polarized rare gas isotope (3He) MR imaging 

[124]. Measurable increases in lung stiffness have been observed in patients suffering from 

pulmonary fibrosis [125].

Shear wave motion can also be imaged via ultra-sound. In this method, surface wave 

propagation is induced by an electromagnetic shaker and detected by an ultrasound probe. 

Zhang et al. were able to show the feasibility of this method in differentiating between 

interstitial lung disease (ILD) and healthy patients, observing higher wave speed in ILD 

patients [126].

VII. SIGNAL PROCESSING

Analysis of sound transmission in the chest cavity suggests that the chest, overall, acts as a 

low-pass filter absorbing higher frequencies as sound travels through it [10; 11; 35; 42; 48; 

50; 50; 62]. Spectral characteristics are affected by structural changes in the lungs caused by 
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fluid or air accumulation, and can be studied and/or recognized using different techniques 

and classifiers in both the time and/or frequency domain.

A. Frequency range for analysis

Frequency analysis of lung sounds have shown to be a useful classifier for patients for 

diseases such as pneumonia, emphysema, pneumothorax, and asthma [6; 34; 36; 43; 127]. 

The frequency range considered physiologically important for nearly all heart and lung 

sounds is up to 2000 Hz [6; 78]. In various studies, frequency ranges of interest included 0–

2000 Hz for breath sounds [3; 6; 19; 31; 33; 34; 82] or sound evaluated at the chest [15; 33]. 

For sound through the mouth, several studies have used a range of 50–1600 Hz [15; 48; 49; 

51]. In general, frequencies above 100 Hz are used to eliminate significant noise from the 

heart and muscle, as well as 60 Hz electrical interference [128].

B. Frequency ranges for specific diseases

Pneumonia is often associated with crackles, which in one study was found to have an 

average frequency of 300 Hz [7; 21]. In a separate study, pneumonia was found to have a 

decrease in frequency response [72]. Another paper in line with these findings suggests that 

300–600 Hz is important for pneumonia due to changes in bronchial breathing [128]. One 

review paper suggests a median frequency of 230 Hz for lung sounds [21].

For airway obstruction pathologies, such as asthma and COPD, the dominant relevant 

frequencies lie below 400 Hz [6]. The median frequency of lung sounds has been reported to 

be higher in asthmatic patients (239 Hz) than in healthy individuals (206 Hz) [33]; Schreur 

et al. found a lower median frequency of 165 Hz in allergen-induced asthma patients [129]. 

Another study found that asthmatic patients had wheezes and crackles with an average 

frequency of 300 Hz, while COPD patients had only crackles at the same average frequency, 

supporting the relevant frequency range below 400 Hz [7]. Patients with asthma also had a 

higher proportion of time spent wheezing at inspiration (10%) compared to COPD patients 

(1–2%) with average frequencies around 130–140 Hz[21]. Analysis strictly based on 

wheezes and crackles may not be a reliable method for diagnosing COPD, as a review paper 

found that the number of COPD crackles can vary per patient, but have an average lower 

inspiration frequency (233–311 Hz) than crackles in asthmatic patients (329 Hz) [21]. 

Pneumothorax has also been found to be associated with a significant drop in sound 

amplitude from 400–600 Hz [26].

C. Analysis methods

Several analysis methods are used for feature extraction from recordings of lung sounds. 

These analysis techniques are critical for classification by extracting distinctive features of 

sound such as wheezes, rhonchi, stridor, etc., which can be found in the time domain, 

frequency domain, or the time–frequency domain. We discuss frequently used methods, such 

as statistical analyses for time domain; the transfer function, Fourier transforms, and mel-

frequency cepstrum analysis for the frequency domain; and wavelet analyses and the 

autoregressive (AR) model for the time-frequency domain.
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1) Statistical analyses: Statistical methods, such as distribution features, higher-order 

statistics, and cross-correlation, have also been used to characterize lung sounds. While 

these methods are useful in both the time and frequency domain, they are especially 

important in the time domain, as the frequency domain often lends itself to other powerful 

analytical methods described below. Analysis in the time domain can also elicit unique 

information from non-periodic signals, such as crackles. Traditional frequency domain 

analyses assume stationarity that cannot be applied to such adventitious sounds and does not 

account for changes throughout the respiratory cycle [63].

Distribution features such as mean, median, mode, and variance can be useful in 

characterizing breath sounds and creating a mathematical model, such as wheezes which 

have biomodal distributions [63]. Breath sounds, however, are often more closely modeled 

as non-Gaussian, random processes, making distribution features less useful [21; 63]. 

Therefore, higher-order statistics, which measure deviations from the normal distribution, 

can be more useful. Higher order statistics including skewness and kurtosis, have also been 

utilized for breath sound analysis [21; 63]. Notably, kurtosis is a sensitive but not very 

specific measure; a few outliers can heavily influence its value. This characteristic has been 

used in detecting the presence of crackles [63].

Cross-correlation is another useful method for analysis in the time domain, and works by 

detecting similarities between two signals. This has been used in previous studies to analyze 

the time delay of sound traveling through the parenchyma with multi-sensor arrays [44; 84], 

which can facilitate understanding of sound wave speed/propagation through the lungs, 

including changes that relate to different diseases.

Calculating sound intensity has also been used to produce images; notably, application of 

multi-sensor arrays to calculate intensity has been shown to be useful in both localizing the 

signal and understanding its timing in the breathing cycle [3; 14; 38]. An envelope can be 

used to represent the acoustic energy for each sensor to provide an acoustic heat map of the 

lungs [90; 130]. A Hilbert transform can be utilized to calculate this envelope of the acoustic 

signals to provide a measure of sound intensity [38].

2) Discrete Fourier transform: The Fourier transform (FT) is the most commonly used 

spectral analysis technique to calculate the frequency content of a signal [20; 32; 39; 41; 

130]. The discrete Fourier transform (DFT) is a type of Fourier transform that is used to 

analyze discretely sampled data, such as digitized lung sounds. The DFT takes a signal from 

the time domain to the frequency domain, but operates on an assumption of stationary data 

over a time period. The short-time Fourier transform (STFT) sacrifices frequency resolution 

in order to keep the time window short and more accurately track non-stationary signals 

[131]. The Fast Fourier transform (FFT) is an efficient algorithm used to calculate these 

Fourier transforms [132]. Different lung pathologies yield different sounds observed at the 

chest, such as wheezes and crackles, that contain different frequency ranges. Analysis of 

frequency range content and duration can be useful in distinguishing between diseases. 

Several studies have used different Fourier-related transforms to produce spectrograms or 

power spectral density (PSD) functions [39; 40; 133].
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3) Frequency response function (FRF): The FRF, which can be calculated a few different 

ways, is essentially the ratio of the DFT of an output signal to the DFT of an input signal. It 

assumes the input signal is well-defined or measurable. Analysis using FRFs involves 

examining the amplitude or power of a signal that is transmitted from the input to the output 

within a range of frequencies. Several studies have utilized the FRF to understand the 

physics of the lungs, notably the ways in which sound is transmitted through the varying 

geometries in the parenchyma at different frequencies, and which frequencies become 

attenuated [2; 12; 15; 26; 50; 72]. Specifically, the FRF can change with different conditions, 

such as pneumonia, due to changes to the geometry of the lung, which cause it to transmit or 

attenuate sound differently [39]. Several studies have used the FRF to detect excess fluid in 

or around the lung [72; 134; 135; 136; 137] and pneumothorax [26].

4) Mel-frequency cepstrum: Similar to the DFT, mel-frequency cepstrum analysis is useful 

for feature extraction from audio signals. They closely follows the mel scale, which 

approximates the human hearing range [19]. This technique is commonly used in music 

information retrieval (MIR) to sort through different music types [138]. MFC is 

implemented using DFT coefficients that are filtered through the mel scale. The features 

extracted from MFC, outputting mel-frequency cepstrum coefficients (MFCC) that can then 

be fed into different classification schemes for automated lung sound analysis [19]. MFCC 

has been widely used in speech recognition and lung sound analysis in recent studies [19; 

47; 55; 136; 139; 140; 141; 142; 143].

5) Wavelet and Hilbert–Huang transforms: Due to the non-stationary and non-periodic 

nature of breath sounds, the Fourier transform alone is insufficient to capture important 

time-domain characteristics of the signal [5; 144]. Using the wavelet transform (WT), partial 

time and frequency information can be utilized to help more accurately characterize the 

signal by means of windows of variable size [5; 131; 145]. Wavelet transforms focus on 

particular frequencies by applying successive high- and low-pass filters without the need to 

know a frequency range in advance [5]. Another method for modeling lung sounds this way 

is the Hilbert-Huang transform (HHT), used to extract oscillating components in the time-

domain, which can be useful in determining characteristics of different lung sounds such as 

crackles [21], or denoising.

Several different wavelet transforms exist each with a different set of wavelet filters and 

characteristics [131; 146]. The Meyer wavelet filter, in particular, has been shown to be 

successful in characterizing COPD and asthma by enhancing the signal of interest and 

allowing the use of cross-correlation and thresholding for detection [5]. Furthermore, the use 

of wavelet-based features has been proved effective by the work of Kandaswamy et al., who 

reported a classification accuracy of 100% of the type of adventitious sounds for the training 

set using wavelet decomposition and ANNs [131]. Other studies have also shown the 

applicability of WT in analyzing lung sounds [145].

6) Autoregressive (AR) modeling: Autoregressive (AR) modeling, also known as linear 

predictive coding (LPC), is particularly useful for time-varying signals. By assuming that 

each sample can be represented by a linear combination of previous samples [55], the model 

yields an output dependent on the bases given by the previous samples, scaled by stochastic 
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predictor coefficients. Intersubject and even intrasubject variability with respect to 

microphone and utterance can lead to poor predictor coefficients with high error, but a 

previous study suggests that the use of AR with a moving-average (ARMA) model 

minimizes this variability [42]. Studies have utilized the AR model to estimate the power 

spectral density function [36; 42], basic feature extraction [147; 148], and extraction with 

reduced computational complexity [149].

D. Classification algorithms

When used in tandem with pre-processing techniques, classification algorithms have proven 

useful for automatic detection of adventitious lung sounds and/or diagnosis of lung 

pathologies. In this section, we discuss the major classification algorithms that have been 

implemented with promising results.

1) Support vector machines (SVM): The support vector machine (SVM) classifier is a 

kernel-based supervised learning algorithm particularly useful for binary and/or non-linear 

classification. Training SVM classifiers involves building a model, mapping a decision 

boundary for each class, and defining a hyper-plane that separates the classes [19; 150]. 

Increasing the hyperplane margin, thus increasing the distance between the classes, helps 

improve classification accuracy. Only a few studies have implemented SVM for breath 

sound classification [150; 151]. Palaniappan et al. utilized SVM in order to classify healthy, 

pathological, and airway obstruction sounds, achieving a mean accuracy of 90.77% [19], but 

also showed that the k-nearest neighbors (KNN) algorithm was superior to SVM for 

generalization and classification [6]. Serbes et al. noted that improved pre-processing 

techniques boosted classification, with a maximum classification accuracy of crackles at 

97.20% [146].

2) K-nearest neighbors (KNN): K-nearest neighbors is an instance-based classification 

algorithm that has been used in several studies to classify recorded signals into different 

abnormal lung sound types [37; 41; 47; 136; 139; 147; 148]. The algorithm is trained on a 

data set, compressing the data into representative cluster centers for each abnormal sound; 

newly recorded data is mapped onto the same space, and the algorithm finds the K nearest 

neighbors, or data points, as measured by Euclidean distance [139]. The majority cluster 

center represented by these neighbors corresponds to the class of the abnormal sound the 

data resembles. Rao et al. showed superior classification accuracy for pathology using KNN 

compared to Gaussian mixture models (GMM) and ANN [47]. Furthermore, for COPD 

specifically, using FOT measurements and utilizing KNN, SVM, and ANN showed 

consistently superior classification for KNN with an accuracy of 93–95% [152]. A study 

also comparing various pre-processing techniques in both KNN and SVM showed consistent 

superiority for KNN [136].

3) Artificial neural networks (ANN): Neural networks have been used in several studies to 

automatically classify lung sounds, often yielding promising results [29; 32; 39; 102; 131; 

133; 142; 145; 149; 150; 153]. The most common method for training ANNs is the 

backpropagation algorithm [102]. ANNs work by modeling complex relationships between 

inputs and outputs. The model is formed by an interconnected group of artificial neurons 

that learns by adjusting its connective weights using training data in order to more accurately 
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represent these relationships with minimal error [149; 150]. Although ANNs are widely 

represented in the literature due to their ability to classify both linear and non-linear data 

with high accuracy, they require a large data set to avoid over-fitting [47; 151].

4) Gaussian mixture model (GMM): Gaussian mixture models (GMM) are widely used for 

speaker identification or verification [140]. Similarly to KNN, training data is used to obtain 

sound classes, which are represented by a GMM. Newly recorded data is mapped onto the 

same space and compared to each GMM, with the final classification based on the highest 

maximum likelihood (ML) criterion [140; 154]. Several studies have used GMMs to classify 

lung sounds [55; 140; 141; 154]. Bahoura et al. showed superior sensitivity and specificity 

using MFCC combined to GMM to classify normal versus wheeze sounds compared to 

autoregressive methods with KNN and wavelet transform with ANN [55]. Comparatively, 

Mayorga et al. showed promising accuracy for crackles due to its characteristic frequency 

peaks [154], which contributed to a more robust GMM due to higher variance and distinctive 

mean. However, wheezes, crackles, and asthma-related signals performed poorly due to less 

defined or complex signals that could be improved with a larger dataset including different 

measurement locations and age groups and/or focus on a specific frequency band.

5) Other methods: The use of several other classification algorithms for lung sound analysis, 

such as fuzzy logic and hybrid algorithms, has been documented in the literature. Fuzzy 

logic has been used to score the severity of certain pathologies such as asthma and COPD 

based on variables acquired by the physician and the patient, such as coughing frequency, 

forced expiratory volume, or frequency of missing school/work [155]. This system allows 

the combination of acoustic variables such as IOS measurments of acoustic impedance with 

clinical variables to reach a classification decision. Badnjevic et al. combined fuzzy logic 

with ANNs, an approach they call a “neuro-fuzzy” system to obtain 99.41% classification 

accuracy for asthma patients and 99.19% classification accuracy for COPD patients, 

showing that a combination of methods can yield better accuracy [29]. They furthered the 

ANNFL logic into an expert diagnostic system (EDS), yielding a sensitivity of 96% and 

specificity of 98% in a prospective system [156]. Barua et al. were also able to achieve a 

high classification accuracy using ANN, but recommended further development to extract 

expert rules to obtain a human understanding of the network’s knowledge. The authors 

suggested that obtaining these fuzzy logic decision rules could help create a more powerful 

hybrid neuro-fuzzy classifier, supporting the idea that hybrid algorithms yield superior 

classification [102]. In addition to superior classification, fuzzy-logic eliminates the black 

box nature inherent with ANNs, demystifying the logic behind its classifications, which is 

more user-friendly to doctors and upholds physician authority. Hybrid algorithms are a 

recent advance in classification methods and thus merit further study.

VIII. HUMAN SUBJECTS STUDIES

Respiratory diseases lead to structural lung changes that can be detected acoustically. The 

existence of such changes has spurred numerous studies utilizing both internal and external 

sounds to diagnose a variety of lung diseases. For the purposes of this review, we focus on 

pneumonia, asthma, COPD, pleural effusion and pneumothorax. We also include several 

miscellaneous studies with results that further elucidate different analysis methods. Table II 
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summarizes human subject studies investigating acoustic changes in the diseases discussed 

in this review.

Acoustic detection of pneumonia and pleural ef-fusion represents an important clinical need 

due to the high cost and radiation exposure of the gold standard chest X-ray (CXR). For 

example, the cost of deploying an x-ray machine in Northern India is estimated at $51,500 

plus $5,900 per year to operate [157]. Several studies utilizing both internal and external 

sounds have been conducted to aid in pneumonia diagnosis. Three studies utilized multiple 

microphones to provide a sound map of the chest similar to a chest x-ray [3; 4; 88]. The 

highest reported sensitivity and specificity for pneumonia using this method was 70% and 

80%, respectively [4]. Furthermore, inter-observer agreement for this method was high, with 

80% agreement on the presence of an abnormality and inter-rater agreement of 90% [88]. 

Pleural effusion was detected with higher accuracy, with sensitivity of 95%, specificity of 

88%, and 80% agreement on diagnosis compared to CXR [4; 87].

Another important clinical need is the ability to distinguish between pneumonia and 

atelectasis (lung collapse), a distinction chest x-ray cannot provide. Ultrasound has been 

used to rule out atelectasis with a specificity of 94% and sensitivity of 61% [111]. Breath 

sounds have also been analyzed for pneumonia patients with standard electret microphones. 

In that study, 29% of pneumonia patients had wheezes, 29% had rhonchi and 87% had 

crackles [7]. The average frequency of the crackles which correlated most closely with 

diagnosis of pneumonia was found to be 300 Hz at inspiration and 285 Hz at expiration for 

pneumonia [7]. A more recent proof-of-concept study examining the use of external sound 

for pneumonia diagnosis utilized an external surface exciter with a linear chirp from 50–

1000 Hz to detect pneumonia [72]. That study reported frequency changes between healthy 

and consolidated lung.

Discrimination between asthma and COPD also represents an important clinical problem, as 

current diagnosis is largely based on clinical observation. Quantifying the findings for these 

diseases provides a route for faster and more consistent diagnosis. The diagnosis of both 

asthma and COPD is based on signs of airway obstruction, causing COPD to be often 

misdiagnosed as asthma due to the overlapping symptoms [130]. One study, however, was 

able to differentiate between the two with 85% accuracy; its approach was based on dynamic 

images of lung activity acquired during a 12 second recording using an array of stethoscopes 

on the back [130].

Several studies on asthma have highlighted characteristics that could differentiate between 

the two disorders; one large study found that a majority of asthmatic patients had wheezes 

and crackles with an average frequency of 300 Hz, while a majority of COPD patients only 

had crackles with a similar average frequency [7]. An algorithm for wheeze peak detection 

was developed and tested on asthmatic patients with a sensitivity of 100%, 87.8%, and 71% 

for high, middle, and low flow rates, respectively, potentially allowing clinicians to diagnose 

asthma versus COPD based on the presence of wheezing episodes [158]. A study of 

asthmatic patients who had taken bronchodilator drugs showed a decreased in centroid 

frequency during forced expiration from 500 Hz to 200 Hz, suggesting that the frequency 

characteristics of breath sounds can be used to detect response to treatment [36].
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Similarly, studies have focused on the various acoustic characteristics present in COPD 

patients. In a study of COPD patients with a history of smoking, these individuals were 

shown to have larger peak signal amplitudes from 0–5 kHz when compared with healthy 

subjects [52]. This suggests a frequency range of interest for COPD detection. Furthermore, 

another study evaluated eleven different parameters to diagnose COPD, such as lead and lag 

time of inspiration at different locations and ratio of inspira-tory to expiratory time; the 

authors concluded that all 11 parameters possessed differences between COPD and healthy 

patients that were statistically significant, suggesting that further study into these differences 

should be carried out [159].

The use of IOS, which measures lung function parameterized by airway acoustic input 

impedance, has also shown potential to differentiate asthma and COPD. In studies of COPD 

patients, IOS analyses showed changes in reactance are correlated with changes in airflow 

obstruction [98; 160], while another study using asthmatic children showed measurement of 

changes in resistance rather than reactance better indicated asthmatic patients [94; 100]. In 

spite of these promising results, a large 3-year clinical trial found that although IOS could 

differentiate COPD patients amongst healthy patients and determine the degree of severity of 

airflow limitation, measurement data from COPD patients was similar to that of healthy non-

smokers. The authors concluded that IOS cannot yet replace spirometry but may instead 

prove valuable in distinguishing between different subgroups of COPD [53]. While IOS is a 

valuable tool, more portable acoustic methods of monitoring COPD patients for acute 

exacerbation, allowing patients to monitor their own health over time, have been 

demonstrated [161].

Similar to pneumonia, the current standard for diagnosing pneumothorax (PTX) includes 

radiography, which is both expensive and not readily available [27]. Several studies have 

examined changes in sound and frequency transmission due to the presence of air 

accumulation between the chest wall and lungs, which would affect how sound is transferred 

due to the existence of another interface. One study utilizing external stimuli found that a 

significant decrease in sound transmission and the power spectral density (PSD) function 

was evident using 400–600 Hz sound inserted at the mouth and measured over the chest 

[26]. In another study using an array of stethoscopes on the back, abnormalities of the 

pleural space were identified with a sensitivity of 100% and specificity of 87% [162]. 

Another study using ultrasound used the disappearance of lung sliding to represent the air 

pocket from PTX that causes the lung–wall interface to appear motionless [45]. This method 

had a sensitivity of 95.3% and specificity of 91.1%.

Several studies have investigated the broader question of how accurately lung pathology can 

be distinguished from healthy lung. Although this approach does not provide direct clinical 

benefit, it provides a foundation upon which future studies can build and demonstrates a 

variety of analysis methods and sensor technologies. Ultrasound has shown promise in 

prediction of consolidated lung, as well as for detecting fluid accumulation [46; 106]. One 

analytical method of interest is the use of MFCC coefficients combined with KNN to 

develop an automated method of extracting data from the frequency domain and classify the 

sounds into diseased and healthy categories.
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Two recent studies utilizing this method demonstrated the use of this approach for breath 

sounds as well as external sounds. A 2015 study used a digital stethoscope to record lung 

sounds for classification of abnormal lung sounds achieving a classification accuracy of 

91.3% [139]. A 2018 study extended this work to external sounds, using a surface exciter 

placed on the chest and a digital stethoscope placed on the back, achieving a classification 

accuracy of91.7% for distinguishing between healthy subjects and patients with lung 

pathology [47]. Finally, regular use of an array of stethoscopic measurements on the back 

has shown potential in preventative medicine, where it has been used to track the progression 

of lung disease in smokers. Changes in the intensity of breath sounds were correlated with 

pack-year history among smokers [163].

IX. CHALLENGES AND PROSPECTS: THE PATH TO STANDARDIZATION

Acoustic methods of pulmonary diagnosis are valuable indicators of respiratory health. 

Several factors have prevented clinical application of recent experimental advances in the 

field. In spite of decades of research in the area of breath sound analysis, standardized 

information for sensor usage, signal processing, nomenclature, and frequency or time 

information in the context of pathologies remains a challenge, arguably deterring the wider 

adoption of lung sound analysis in the clinic. Standardization of information with regards to 

the acoustic characteristics and physics of the lungs, especially with different pathologies, 

was undertaken by CORSA [56], but its recommendations still have not been widely 

adopted, and an updated standard is overdue [21]. Differing methods on what to sense 

(internal vs. external sounds) and how to analyze these signals, has made it difficult to begin 

translation of these methods into the clinic. Specifically, future work should focus on 

expanding the human subject studies in each disease to provide adequate samples for clinical 

application.

Translational challenges act as the main barrier between the different groups working on 

advancing acoustic analysis of the lungs. The creators of a device may not understand the 

different nomenclature or needs of physicians, and physicians may not have the engineering 

experience required to communicate sensor, processing, and/or classification specifications. 

As a result, research into both internal and external methods of acoustic analysis to diagnose 

the lungs has used a wide array of sensors, usually microphones or accelerometers, which 

have different specifications, yielding different measurements. With advances in transducer 

fabrication methods, such as using MEMS technology, and other sensor research, we 

converge to a description of the ideal sensor, one that is lightweight, reliable, and sensitive, 

which will help standardize our understanding of the characteristics of the lungs with respect 

to internal and external sounds.

In addition to translational challenges between clinicians and device engineers, those 

working on signal processing and classification techniques also need to be included in future 

collaborations. Despite the value of machine learning algorithms, it is important that they 

provide outputs that can be interpreted by a clinician rather than automatically outputting a 

diagnosis. Acoustic information can provide a digital biomarker for diagnosis or likelihood 

scores but should not be used to classify the patient without the context provided by a 

clinician and a thorough medical history.
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Further research is needed to understand the clinical utility of analyzing external sound 

through the parenchyma instead of internal breath sounds. The analysis of sounds acquired 

through the parenchyma has the benefit of providing a controllable, well-characterized input 

signal that lends itself to application of new advances, including signal processing and 

classification schemes. The frequency ranges for the diseases discussed in this review are 

presented to provide a foundation for researchers in the field to develop such a system, 

consistent with CORSA, as well as other relevant research. Similarly, the use of an array of 

sensors is a notable method to improve SNR and provide localization information that 

invites further research. There are different external methods of sensor actuation with regard 

to location and system. The ideal actuator should be selected based on size (which 

influences portability, cost and comfort), intensity at frequencies of interest, and current 

draw, which affects battery life. The ideal system would also help with monitoring, as 

aforementioned; integration with the electronic health record (EHR) could contribute to 

online databases for pathologies, facilitating further research into changes in lungs 

parameters in response to disease.

X. LOOKING AHEAD: TELEMEDICINE AND MOBILE HEALTH

Outside the hospital, the capability of wirelessly transmitting and storing data is increasingly 

becoming a standard feature in medical devices [72; 161; 164]. This capability offers the 

potential to develop and advance the field of telemedicine, which will allow physicians to 

access live data on the acoustic biomarkers for their patients’ lung health and change the 

course of their care accordingly [161; 164]. This can be done through mobile solutions, such 

as apps, which are widely available. Certain digital stethoscopes have already provided this 

platform [165; 166; 167], but it has yet to be established for multi-sensor recording systems. 

Notably in the field of lung diagnosis, a telehealth system was prospectively studied by 

Gurbeta et al. for use in diagnosing patients with COPD and asthma based on neural 

network and fuzzy logic systems with promising results [168]. This system showed the 

potential of telemedicine and mobile health for improving quality of care in low-resource 

settings and less mobile patients. Integration of new technologies with these modern systems 

(EHR, mobile) is essential because it not only provides better means of monitoring, but also 

understanding patients with respect to differing demographics and conditions. Creation of 

such a database will facilitate development of better sensors and analytical techniques.

XI. CONCLUSION

Recent advances in acoustic monitoring for pulmonary diseases indicate the strong potential 

of these measurements to address a wide variety of clinical needs, in particular, providing 

quantitative metrics of lung health without the dangers and expense of radiography, and 

without the requirement for patient compliance associated with spirometry. In addition to 

these key advantages, acoustic monitoring also provides a route to telemedicine applications 

that can allow patients to be monitored outside of the clinic. Acoustic measurements can be 

taken with highly precise instrumentation, or with inexpensive sensors, making them well 

suited for hospital-grade diagnostics as well as home monitoring of chronic diseases. 

Despite the rich potential of acoustic monitoring, the physiological origins of the signals 

should be studied further with greater standardization and larger scale human studies to 
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ensure maximum interpretability of these signals. Finally, an extensive open database, not 

just for breath sound recordings but also featuring responses to external stimuli, processing 

tools, and even microcontroller code, needs to be made available to truly expand the 

capability of researchers to investigate these phenomena, apply them to their own studies, 

and establish techniques that can facilitate their translation into the clinic.
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Figure 1: 
Summary of the different types of acoustic signals for pulmonary disease diagnosis. This 

includes both internal sounds, such as breath sounds, and external stimuli, such as 

percussion.
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Figure 2: 
(a) This soft tissue–bone boundary in which the ultrasound wave is highly reflected, and thus 

appears as a white (hyperechoic) line of the femur. (b) A-lines are static horizontal regularly-

spaced hyperechoic lines that represent an aerated lung created by reverberation artifact. (c) 

B-lines are discrete, laser-like vertical projections arising from the pleural line and extending 

to the bottom of the screen without fading. (d) Shred (fractal) sign shows echo-poor areas of 

the pleura, represented as a non-smooth pleural line.
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