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Abstract

Magnetic resonance imaging (MRI) is a flexible medical imaging modality that often lacks 

reproducibility between protocols and scanners. It has been shown that even when care is taken to 

standardize acquisitions, any changes in hardware, software, or protocol design can lead to 
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differences in quantitative results. This greatly impacts the quantitative utility of MRI in multi-site 

or long-term studies, where consistency is often valued over image quality. We propose a method 

of contrast harmonization, called Deep-Harmony, which uses a U-Net-based deep learning 

architecture to produce images with consistent contrast. To provide training data, a small overlap 

cohort (n=8) was scanned using two different protocols. Images harmonized with DeepHarmony 

showed significant improvement in consistency of volume quantification between scanning 

protocols. A longitudinal MRI dataset of patients with multiple sclerosis was also used to evaluate 

the effect of a protocol change on atrophy calculations in a clinical research setting. The results 

show that atrophy calculations were substantially and significantly affected by protocol change, 

whereas such changes have a less significant effect and substantially reduced overall difference 

when using DeepHarmony. This establishes that DeepHarmony can be used with an overlap cohort 

to reduce inconsistencies in segmentation caused by changes in scanner protocol, allowing for 

modernization of hardware and protocol design in long-term studies without invalidating 

previously acquired data.
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1. Introduction

Magnetic resonance imaging (MRI) is a non-invasive, tunable medical imaging technique 

commonly used to detect differences in the soft tissue of the body, especially in the brain. 

However, the flexibility that is inherent in MRI often comes with drawbacks in terms of 

reproducibility. First, a lack of quantitative standardization between scanners leads to inter-

scanner variability, even for data acquired by scanners of the same manufacturer [1].

Second, differences in scan protocol design lead to variation in the appearance of a specific 

image type (or contrast) between different studies. For example, a T1-weighted image may 

be treated similarly by an analysis algorithm or a reviewer, but can be acquired in many 

ways. In addition, a change in scan acquisition can lead to associated differences in 

quantitative results [2, 3, 4, 5], diluting effects that a researcher may want to investigate and 

limiting the utility of MRI in clinical applications such as precision medicine. These issues 

can cause a lag in the imaging technology that is employed—especially in large-scale, multi-

site, or longitudinal studies— where consistency in scanning outweighs advances that might 

be available. Contrast harmonization promises to be a powerful aid in overcoming these 

problems by providing quantitatively and qualitatively consistent images for automated 

algorithms and manual reviewers.

Many methods have been proposed to correct differences in contrast between scans, 

including statistical modeling of quantitative results [6, 7, 8] and global alterations of the 

image histogram [9, 10, 11, 12]. However, statistical models require a method of analysis 

(i.e., segmentation) to produce a feasible result before correction can take place. This can 

mean that modern machine learning algorithms, such as deep learning-based methodologies, 

cannot be corrected, as the output may be nonsensical if the testing data differs too much 
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from the training data. Histogram models (linear [12] and piecewise [10]) can also be 

problematic as they do not use local contrast information and instead assume global 

histogram correspondence between images. This assumption can break down in many cases 

including subjects with pathological differences, where global biological changes can 

change the proportions in the global histogram, even without any change in contrast. 

Recently, example-based synthesis has also been proposed as a method for contrast 

harmonization [13, 14]. More recent work has also explored the realm of deep learning-

based synthesis, specifically using adversarial frameworks [15, 16, 17, 18]. While synthesis 

techniques are traditionally used for creation of a contrast not in the input set, they can also 

be repurposed to create a harmonized version of an input contrast. However, in this 

framework, there is an important distinction between harmonization and traditional 

synthesis. While each applies similar techniques, the goals are distinct. In traditional 

synthesis, the goal is to accurately recreate a missing contrast or modality, whereas in 

harmonization the goal is to create two similar contrasts that can be compared quantitatively. 

Nevertheless, synthesis techniques can be easily used to create an appropriate contrast and 

can act as a starting point to produce a harmonization framework.

In this work, we present DeepHarmony, a deep fully-convolutional neural network 

(DFCNN) based on the U-Net architecture [19, 20] for contrast harmonization using a small 

overlap cohort as training data. By incorporating multi-contrast information to produce 

multiple output contrasts from a combined network set, DeepHarmony outperforms other 

comparable methods in direct comparison using the overlap cohort and demonstrates 

quantitatively consistent results in a similarly acquired long-term longitudinal cohort. A 

preliminary version of DeepHarmony appeared in a conference paper by Dewey et al. [21]

2. Materials and Methods

Our proposed method used a small overlap cohort acquired in two scanning environments: 

Protocol #1 and Protocol #2 (described in Table 1). These data were used to train a DFCNN, 

which was used to harmonize images between the different protocols. We validated our 

methodology in the overlap cohort against results from competing methodologies and the 

acquired, preprocessed images, then applied this method for additional validation purposes 

in a longitudinal clinical cohort.

2.1. Data

To create a training dataset for all harmonization methods, 12 subjects (10 subjects with 

multiple sclerosis (MS) and 2 healthy subjects) were scanned twice within 30 days on two 

separate Philips Achieva 3T scanners (Philips Healthcare, Best, The Netherlands) with 

differing hardware and a different scanning protocol according to the scan parameters in 

Table 1. Each scan included a set of standard structural images with a 3D T1-weighted 

image, a 2D or 3D T2-FLAIR image and a 2D dual-echo PD-/T2-weighted image. 

Additionally, longitudinal data were retrospectively collected from 45 patients with relapsing 

remitting MS over 10 years as a part of a long-term MRI study. Most of the longitudinal 

cohort comprised of scans acquired with Protocol #1 and each subject was required to have 
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at least two scans with at least one scan collected using Protocol #2. Data acquired using 

Protocol #2 was, as of yet, unused for clinical research due to differences in initial results.

2.2. Preprocessing

All images were converted to the Neuroimaging Informatics Technology Initiative (NIfTI-1) 

file format (http://nifti.nimh.nih.gov) and reoriented to a common axial orientation. Images 

were corrected for inhomogeneity using N4BiasFieldCorrection [22] and all 2D acquired 

images were super-resolved and anti-aliased using Synthetic Multi Orientation Resolution 

Enhancement (SMORE) [23]. All contrasts for subjects in the overlap cohort were then 

rigidly registered to the T1-weighted image from Protocol #2. Each registration involved 

three registration steps implemented using the Advanced Normalization Tools (ANTs) 

software package [24]. First, multiple initial registration conditions are attempted to avoid 

local minima, then images are rigidly registered using the entire image, and finally images 

are rigidly registered again only utilizing brain voxels isolated with ROBEX [25]. After 

registration, all images were gain-corrected by linearly adjusting the intensities to align the 

white matter histogram peaks (WMPs). The WMP was determined by calculating the mean 

intensity of a rough white matter mask, where rough tissue masks were calculated on the T1-

weighted images using fuzzy C-means within the ROBEX mask to isolate regions of white 

matter, grey matter, and cerebrospinal fluid [26]. Gain-corrected, co-registered images were 

then used as inputs for harmonization and as a comparison for harmonized results. Examples 

of preprocessed images in the sagittal orientation for one subject in the overlap cohort are 

shown in Figure 1.

2.3. Harmonization

2.3.1. U-Net Implementation—The neural network implemented for DeepHarmony 

was modeled after the U-Net architecture, which has been shown to perform well in tasks of 

medical image segmentation and synthesis [27, 20]. In order to optimize the network for 

harmonization, the network used here contains a number of important differences from the 

vanilla U-Net implementation (see Figure 2). The first of these differences is the addition of 

a final concatenation step (introduced by Zhao et al. [20]) between the input contrasts and 

the final feature map (the green arrow across the top of Figure 2). This allows the network to 

include the input contrasts in the final 1x1 convolutional layer, directing the final feature 

maps to only augment the input contrasts, instead of recreating the target contrasts entirely. 

The second difference in design is the introduction of strided convolution (and 

deconvolution) as the method for downsampling (and upsampling) the feature maps. This 

methodology replaces the maximum pooling (and nearest neighbor upsampling) and 

convolution steps that are present in Zhao et al. [20]. This allows for a network with only 

convolution blocks, which we have empirically observed to have improved performance. 

Traditionally, strided convolution and deconvolution are avoided due to hashing artifacts that 

are common [28], but a combination of 4×4 kernels and suffcient training eliminates the 

need for alternate methods in this design. Finally, the number of parameters in the network 

was significantly reduced (~ 4× from Ronneburger et al. [19] and ~ 2× from Zhao et al. [20]) 

to produce a lighter weight network, which is quicker to train. The network was 

implemented in SynMI1 using the Keras API library [29] and the Tensorflow backend [30].
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2.3.2. Network Training—To provide adequate training, validation, and testing data, 6-

fold cross-validation was performed at the subject level using a 8/2/2 split for training, 

validation, and testing, respectively. In this way, each image was used for validation and 

testing by using a trained network that had not yet seen the subject. This methodology is in 

contrast to a full leave-one-out validation, as we found empirically that 8 subjects was 

sufficient for training. This allowed for improved computation time as only half as many 

training rounds were required. For training, 128 × 128 patches were built from the input and 

target images centered around each non-zero voxel. These patches were then randomly 

selected with replacement to create a training batch. Training of each network was carried 

out on a NVIDIA K80 GPU for 200 epochs using a batch size of 8 and 250 batches per 

epoch. Mean absolute error (MAE) was used as the training loss function to allow for small 

differences to contribute more than would be possible when using mean squared error. Adam 

[31] was used as the optimizer with a learning rate of 0.001. No regularization or dropout 

was used in training. Training time for 200 epochs was approximately 160 minutes. 

Validation was performed post-hoc after training had been completed by saving the network 

weights every 5 epochs. Mean Structured Similarity Index (SSIM) and MAE (averaged over 

all four contrasts) were used as validation metrics over 6 folds of size 2 to determine a 

proper stopping point for training. Validation metrics were also calculated over a whole-head 

mask and a brain mask determined on the input images allowing for comparison of how the 

network was performing both within the brain area and on the head as a whole.

2.3.3. Multi-Contrast Training—In MRI, each of the contrasts (or pulse sequences) in 

a scanning session provides a mix of complementary and overlapping information. For this 

reason, Deep Harmony was developed for multi-contrast inputs and outputs. By using all 

input contrasts to predict all output contrasts simultaneously, the network can use any piece 

of each of the input contrasts when predicting the required outputs. This also has the benefit 

of a factor of four decrease in training time, as only one network is required to harmonize all 

of the inputs. For this study, Deep Harmony was compared to two other training variants: 

one-to-one (O2O) and many-to-one (M2O). Both variants use the implement the same 

general architecture as DeepHarmony. The O2O variant takes a single contrast from the 

Protocol #1 scan and produces the corresponding contrast from the Protocol #2 scan. For 

this method, four separate networks must be trained, one for each of the contrast pairs. The 

M2O method differs from O2O in that it uses all four of the input contrasts (T1-weighted, 

FLAIR, PD-weighted, and T2-weighted) from Protocol #1 to predict a single output contrast 

from Protocol #2. This method also requires four networks to be trained, but each one will 

take in all of the complementary contrast information, resulting in only about 500 additional 

parameters compared to the O2O network.

2.3.4. 2.5D Inference—As can be seen in Figure 2, the DeepHarmony architecture is 

designed for 2D images. This is in contrasts to modern MRI scans which are 3D volumes. 

Although fully 3D deep networks are possible (and may be considered in future work), we 

observed that harmonization works very well with the use of the much faster 2D networks, 

which also allow for a larger training data pool since each image slice is unique. On the 

other hand, three natural orientations—axial, sagittal, and coronal—are available for use. So, 

to exploit these three orientations and to provide additional robustness to artifacts or other 
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variations that may exist in the data, DeepHarmony uses three separately trained networks to 

predict the final volumes. Each of these networks is trained on patches extracted from one of 

the three orthogonal orientations. Then, during prediction, the input patches are extracted in 

the same three orientations and fed into the appropriate network. This produces three 

directional volumes, which are combined using a voxel-wise median to produce a final 

volume. In this study, the axial network results for each of the training methods described in 

Section 2.3.3 (O2O AX, M2O AX, and DH AX) were also compared.

2.3.5. Harmonizing Protocol #2—Images that are generated using a harmonization 

process demonstrate noise characteristics that are indicative of a synthetic image; in 

particular, they are generally less noisy. In addition, it has been demonstrated previously that 

the addition of a “self-synthesis” step in the target image domain greatly improves the 

consistency of synthesized images between domains without affecting the contrast of the 

target image [32]. Therefore, in order to create fully harmonized images, Deep Harmony 

forces all images to be passed through a harmonization process. This ensures that each 

image shares the same noise characteristics regardless of which protocol the images were 

acquired with. To facilitate this, a separate secondary harmonization network is trained using 

the Protocol #2 images as input and an identical network structure as the forward path. 

Traditionally, the same images would be used as outputs, however, as deep networks can 

easily produce an identity transform, the harmonized Protocol #1 images are used as targets 

for the secondary network to encourage the network to generate synthetic-looking images.

2.3.6. Competing Methods—Two additional methods were tested on the overlap 

cohort to establish the current state-of-the-art: a deep learning-based fused latent space 

method (MMBS) by Chartsias et al. [33], and a random forest-based method inspired by Jog 

et al. (REPLICA) [13, 26]. Each of these methods was trained according to published 

methods using the M2O approach, where all input contrasts were used as inputs and a single 

contrast was predicted. The published MMBS code was rewritten to use TensorFlow instead 

of Theano to reduce software dependency issues that caused errors in the published code. To 

compare MMBS and REPLICA results directly with the Deep Harmony results, a secondary 

harmonization model was created using each of these two methods as well. Comparison of 

all methods (including the acquired images) was performed using MAE and SSIM over a 

whole-head mask and a brain mask.

2.4. Segmentation

Segmentation of all scans followed the same processing pipeline. First, skull removal and 

intracranial volume (ICV) estimation were performed using MONSTR [34]. MONSTR uses 

both the T1-weighted and T2-weighted images to provide an accurate estimation of the inner 

surface of the skull and therefore correctly accounts for CSF outside of the brain. After skull 

removal, images were segmented using an established pipeline [35] consisting of lesion 

segmentation (if lesions were present) [36], lesion filling using the lesion filling tool in the 

FSL software package [37], and whole-brain segmentation and cortical surface estimation 

using Joint Label Fusion (JLF) [38] and MACRUISE [39]. Volumes were compared using 

Dice similarity coefficient (DSC), percent volume difference (PVD), and volume bias 

(signed volume difference). Statistical testing for image and volume comparison were 
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conducted in a paired fashion using the Wilcoxon signed-rank test with α = 0.05 (correcting 

for multiple comparisons using Bonferroni Correction). Results stated as “significant” are 

statistically significant with respect to this testing.

2.5. Longitudinal Analysis

In the longitudinal cohort, all preprocessing was performed identically to the overlap cohort 

with the addition of a longitudinal registration component to the image from the baseline 

time point. A DeepHarmony model was trained using all 12 overlap subjects to provide the 

best generalization, as the overlap and longitudinal cohorts were mutually exclusive. 

Acquired and harmonized images were segmented using the same procedures as outlined in 

Section 2.4 and each volume was calculated as a percentage of the baseline ICV to 

normalize for head size. To evaluate the harmonized results, the following linear mixed 

effects model

vi, j = β0 + β1 ⋅ f i, j + β2 ⋅ ai + β3 ⋅ si + β4 ⋅ f i, j ⋅ ai + β5 ⋅ f i, j ⋅ si + β6 ⋅ pi, j + ϵi (1)

was used to predict substructure volumes v, for a subject i at scan time point j, from clinical 

fixed effects with subject as a random effect [40]. Here, follow-up f was measured from 

baseline in years, sex s was coded as 0 for male and 1 for female, protocol p was coded as 0 

for Protocol #1 and 1 for Protocol #2, age a was measured at baseline in years and centered 

at 45 years.

The interaction between protocol and follow-up was not investigated in this study due to the 

limited follow-ups that were acquired using Protocol #2. A random subject intercept ϵi was 

included to account for random variation between subjects. To determine the effect of 

protocol on the model, β6 was extracted from the model and evaluated for significance using 

Welch’s t-test for unequal variances.

3. Results

3.1. Training Validation

Validation of the DeepHarmony networks was performed post-hoc using MAE and SSIM on 

both a whole-head mask and a brain mask. Figure 3 depicts metrics calculated on the 

validation data as the training progressed. Specifically, the figure shows MAE and SSIM 

calculated over each of the brain and head masks to determine the effect of harmonization 

inside the brain and over the whole head. Initially, early stopping was investigated to 

determine the proper training length; however, this stopping point differed for each metric, 

so no single epoch could be singled out as the best perform ing. Because of this, models at 

120 epochs were chosen empirically, as all metrics were within a small difference from their 

respective minimum (or maximum) values. The same number of epochs was used for the 

secondary Protocol #2 networks for consistency. MMBS was trained with early stopping 

during the training process (as published [33]), thus no external validation was performed. 

Qualitative harmonization results from the validation set are shown in Figure 4, 

demonstrating very similar images from all harmonization methods.
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3.2. Image Similarity

After completion of training, the reserved testing images were harmonized with the 

appropriate network and both volumes and comparison metrics were calculated. The 

acquired images (ACQ), including preprocessing with super-resolution and anti-aliasing, 

were also used for comparison. Image similarity was compared using MAE and SSIM for 

each contrast, and selected results

are shown graphically in Figure 5. Additionally, peak signal-to-noise ratio (PSNR) was 

calculated between the overlap images, but these results are not shown because they are 

highly correlated with the MAE results. After harmonization, the 2.5D M2O method showed 

no significant difference from Deep Harmony for all metrics. Furthermore, the axial-only 

experiments performed significantly worse compared to their 2.5D counterparts for all 

metrics (e.g., O2O vs. O2O AX). Pairwise comparisons were generally statistically 

significant, except where marked with “n.s.” in Figure 5. An example showing the acquired 

images and results of harmonization with DeepHarmony (for T1-weighted and FLAIR 

images) are shown in Figure 6 for qualitative comparison. It is important to note that while 

there is extensive qualitative similarity of the harmonized versions of Protocol #1 and 

Protocol #2 images, these images do not completely match the appearance of the acquired 

image due to a reduction in image noise during the harmonization process. This is a 

hallmark of supervised synthesis with metrics such as MAE and does not affect the results of 

segmentation as seen below.

3.3. Volumetric Similarity

Volumes calculated from automatic segmentations were compared on four substructures of 

the brain (cortical gray matter: cGM, cerebral white matter; WM, lateral ventricles: LV, 

thalamus: THAL) and the intracranial volume (ICV). Results for DSC and PVD are 

presented graphically in Figure 7. For DSC, all pairwise comparisons were generally 

significant, except the thalamus segmentations which had no significant differences. For 

PVD, most comparisons were generally not significant with the exception of most 

comparisons to the ACQ results.

For all patients with white matter lesions (WML), volumes of segmented lesions also were 

compared. In this comparison, DeepHarmony showed significant improvement in both DSC 

and PVD over other methods (except O2O, where no significant difference was shown). 

O2O also showed a significant improvement over REPLICA. All other comparisons were 

not statistically significant.

In addition to absolute PVD, volume bias (signed volume difference) was evaluated to 

determine if volumes calculated were significantly larger or smaller on Protocol #2 than on 

Protocol #1. These results are presented in Table 2. DeepHarmony and O2O show a non-

significant bias in all measured volumes, with DeepHarmony showing the smallest overall 

bias in multiple areas, with substantially decreased variance.

Finally, to verify that the harmonized images produced volumes consistent with the target 

scanner (Protocol #2), volumes from harmonized images (both Protocol #1 and Protocol #2) 

were compared to the volumes obtained directly from the acquired Protocol #2 images. 
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Almost all differences were not significant except for the lateral ventricle volume using the 

O2O and the REPLICA methods.

3.4. Longitudinal Stability

The benefits of harmonization can be seen in the plots of cGM atrophy in Figure 8. For the 

harmonized data, the atrophy measurements are not only stable over the change in protocol, 

but there is also a more consistent atrophy pattern in the group of subjects and in the 

individual patient trajectories. This is matched with stronger relationships between the 

modeled variables measured by R2 and a substantially reduced overall variance. In Table 3, 

there is a substantial decrease in the intercept related to protocol (β6 in Equation 1) when 

using harmonized images. In addition, only the cGM volume from harmonized data retained 

a significant effect of protocol on the model, whereas all volumes from the acquired data 

show a significant effect.

4. Discussion

We presented DeepHarmony, a method to harmonize datasets collected in the presence of 

scanner changes through the acquisition of an overlap cohort. Our method was able to 

accurately transform images from two different scanning protocols to produce harmonized 

versions that mimicked the contrast of the target protocol qualitatively and in volumetric 

analyses. In training, 2.5D reconstruction was found to stabilize the training process when 

compared to a single axial prediction. While this affected the accuracy of the initial 

prediction, this difference was small and not significant once the appropriate harmonization 

network was applied to the Protocol #2 images. The use of a single DeepHarmony model, 

where all four input contrasts are used to predict all four target contrasts simultaneously, 

significantly improved harmonization in almost all cases when compared to a traditional 

contrast-to-contrast harmonization (O2O). When compared to state-of-the-art methods 

(REPLICA and MMBS) and the acquired, preprocessed images (ACQ), DeepHarmony 

shows significantly improved harmonization in all measurements. A potential critique of this 

work is the use of supervised learning, which requires the prospective acquisition of an 

overlap cohort. Recently, many unsupervised methodologies [15, 16] have been proposed, 

which would eliminate this requirement, but were not evaluated in this study, where 

prospective data was available. We hope to explore this in future work.

When looking at volumetric results, both O2O and DeepHarmony show significant 

improvement in DSC over the compared methods and ACQ. However, O2O and 

DeepHarmony were not significantly different from one another. This is particularly 

important as not all studies will include multi contrast data. For PVD, we see that no 

harmonization methods show significant differences from one another, but most methods 

show significant improvement compared to ACQ. This indicates that any of these 

harmonization methods will improve volumetric similarity. It is a possible critique that this 

study does not include images acquired at different field strengths or from different vendors. 

While this is true, there are substantial differences in the method of acquisition, most evident 

in the T1-weighted and FLAIR imaging. In future work, we hope to expand this to a multi-

vendor, multi-site experiment to explore real-world harmonization scenarios, which may 
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allow for better discrimination between methodologies. WML volume, however, was 

particularly difficult to characterize well in any setting due to the small, spurious nature of 

the lesions themselves, causing high amounts of variance between and within specific 

protocols. This did not adversely affect the other structures segmented, as most of the whole-

brain segmentation relies on T1-weighted images. T1-weighted images have less 

conspicuous lesions, which can be avoided with approximate lesion filling and registration 

based fusion, which was used in this study. In the WML, the results from O2O and 

DeepHarmony are not significantly different from each other, but only DeepHarmony 

showed a significant improvement over the acquired results, due to the high variance in the 

segmentations.

While PVD mainly showed improvements when compared to ACQ, volume bias showed 

more substantial difference between methods. Here, for example, results from REPLICA 

demonstrated that although most measurements were significantly smaller in magnitude, 

there was still remaining bias between the segmentation results. MMBS also showed 

significant bias in the WM segmentation while both O2O and DeepHarmony showed no 

significant bias and the smallest overall bias on average. DeepHarmony showed particularly 

impressive reduction in bias for the cGM and WML volumes, which were very evenly 

distributed around zero, coupled with significant reduction in absolute volume difference. 

This is expected, as the O2O method does not use the high resolution T1-weighted 

information (available in DeepHarmony) when predicting FLAIR images used in lesion 

segmentation.

When considering the secondary Protocol #2 network, there is the possibility that the use of 

harmonized images as targets would essentially allow the results to meet in the middle, 

rather than truly duplicating the Protocol #2 contrast. This raises some concerns, as the goal 

of this process is to also accurately duplicate the contrast of the target protocol. However, we 

show that DeepHarmony shows no significant differences in volume when compared to the 

results from the acquired images of Protocol #2. This indicates that DeepHarmony 

accurately represents the target contrasts, while O2O, which also performed well in 

volumetric similarity, had significantly different LV volumes when compared to Protocol #2 

results. In the future, different methods for harmonization of the Protocol #2 images, 

including deep networks for denoising and encouraging channel mixing will be evaluated in 

order to generate the synthetic quality of the harmonized images, even when the same 

Protocol #2 are used as the target.

In the longitudinal cohort, the effect of harmonization is quite evident, demonstrating two 

important points. First, the effect of protocol change on longitudinal segmentation is 

substantially reduced and is no longer a significant factor in modeling atrophy for most 

volumes. This is vital to the proper analysis of these data, as using the acquired data would 

dilute the effects measured by these sensitive atrophy metrics. Secondly, the effect of 

harmonization is not just limited to transitions from one protocol to another. It can also be 

seen that older historical data, which were always acquired with Protocol #1 also show more 

consistency from scan to scan. The tighter grouping and reduced variance (as shown in the 

right graph of Figure 8), coupled with better correlation in modeling, indicates an increase in 

overall stability of the segmentation from time point to time point, which will allow for more 
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confidence to be placed in atrophy measurements over time. The remaining significant effect 

in the cGM volumes after harmonization is still a concern for longitudinal analysis. This 

could be improved by augmenting the DeepHarmony methodology with improvements such 

as fully 3D networks, adversarial training (e.g., pix2pix [41], MedGAN [17]) or DenseNets 

[42], which have been shown to improve accuracy and perceptual quality in computer vision 

and medical imaging tasks.

5. Conclusions

This paper introduces DeepHarmony, a fully-convolutional neural network for contrast 

harmonization that uses a prospectively acquired overlap cohort of patients scanned with 

each of two protocols (before and after a scanner change). This method incorporates multi-

contrast data and 2.5D training/prediction to produce qualitatively and quantitatively similar 

images between the two protocols. We also show that images harmonized with 

DeepHarmony have significantly improved volume correspondence compared to acquired 

images and results from other methods. While absolute volume difference was not always 

significantly different between methods, only DeepHarmony, showed complete removal of 

bias between segmented volumes in both protocols, along with significant reduction of 

absolute volume difference. In addition, DeepHarmony allows for a longitudinal atrophy 

model that demonstrates no statistical effect of protocol in most volumes and substantially 

improved stability in longitudinal segmentation. These results indicate that comparisons 

across protocols using DeepHarmony may be valid and can be conducted with the 

acquisition of a small overlap cohort, providing the ability to update or change a scanning 

protocol when necessary, without compromising valuable existing data.
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Figure 1: 
Preprocessed images from one subject from the overlap cohort depicting the four input 

(Protocol #1) and four target (Protocol #2) contrasts.
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Figure 2: 
Diagram of DeepHarmony U-Net Implementation. Convolutions with (2) or (1/2) indicate 

strided convolutions with stride of 2 or 1/2, respectively. CI and CO refer to the number of 

input and output contrasts, respectively. All convolutions are followed by a rectified linear 

unit (ReLU) and batch normalization (BN), except the final 1×1convolution, which does not 

use normalization.
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Figure 3: 
Validation graphs for deep network training. Dotted line represents chosen epoch for testing.
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Figure 4: 
Harmonized Protocol #1 T1-weighted images using REPLICA, MMBS, O2O, and 

DeepHarmony (DH). For comparison, the input contrast (Protocol #1) and the target contrast 

(Protocol #2) are displayed on the left side of the white, dashed line.
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Figure 5: 
Comparison of SSIM and MAE for T1-weighted, FLAIR, and T2-weighted contrasts over 

both whole head and brain masks. All pairwise comparisons are significant unless marked 

with “n.s.”.

Dewey et al. Page 19

Magn Reson Imaging. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Representative sagittal slices for the same subject showing acquired images on the left and 

harmonized (using DeepHarmony) on the right.
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Figure 7: 
DSC and PVD between segmented volumes using data from Protocol #1 and Protocol #2. In 

the top plot, all pairwise comparisons are significant except when marked with “n.s.”. In the 

bottom plot, the only significant differences are between ACQ and the methods marked with 

a star.
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Figure 8: 
Longitudinal trajectories for cortical grey matter (in % from baseline). Protocol #1 is shown 

in blue and Protocol #2 is shown in orange.
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Table 1:

Scanner and protocol specifications

Protocol #1 Protocol #2

Scanner Hardware Philips Achieva 3T Philips Achieva 3T

Scanner Software R3.2.3 R5.1.7

Receive Coil 16ch Neurovascular 32ch Head

T1-weighted

MPRAGE MEMPRAGE

1.1 × 1.1 × 1.18mm* 1 × 1 × 1mm

TE=6ms, TR=3s, TI=840ms TE=6.2ms, TR=2.5s, TI=900ms

FLAIR

2D TSE 3D VISTA (TSE)

0.83 × 0.83 × 2.2mm
† 1 × 1 × 1mm

TE=68ms, TR=11s, TI=2.8s TE=125ms, TR=4.8s, TI=1.6s

PD-/T2-weighted

2D TSE 2D TSE

1.1 × 1.1 × 2.2mm* 1 × 1 × 3mm

TE=12ms/80ms, TR=4.2s TE=11ms/100ms, TR=3.4s

*
Scan is reconstructed on the scanner 0.83x0.83mm in-plane by zero-padding in frequency space.

†
A small subset of FLAIR images (n=18) in the longitudinal cohort were acquired with 4.4mm slices.
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Table 2:

Mean volume bias (in %) from Protocol #1 to Protocol #2 in the overlap cohort after different normalization 

pipelines. Standard deviation over all subjects is also presented. Positive values indicate an increase in volume 

from Protocol #1 to Protocol #2. Bold values indicate the bias is significant when compared to 0.

ACQ REPLICA MMBS O2O DeepHarmony

Cortical GM 1.84 ± 0.82 0.23 ± 0.62 0.30 ± 0.78 0.26 ± 0.50 −0.05 ± 0.26

Cerebral WM −2.17 ± 0.95 −0.34 ± 0.60 −0.55 ± 0.72 0.23 ± 0.69 0.35 ± 0.88

Thalamus 0.94 ± 0.87 2.72 ± 1.79 0.54 ± 1.62 0.21 ± 1.42 −0.27 ± 1.37

Lateral Ventricles −3.24 ± 1.06 −1.19 ± 0.79 −0.50 ± 0.99 −0.30 ± 0.58 0.10 ± 0.55

ICV −0.75 ± 0.59 −0.38 ± 0.40 −0.21 ± 0.92 0.16 ± 0.47 0.18 ± 0.49

WML 30.49 ± 39.28 49.69 ± 54.76 9.57 ± 56.03 −12.87 ± 34.40 −1.89 ± 19.53
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Table 3:

Scanner effect in longitudinal prediction of substructure volumes from clinical covariates. Bold values indicate 

a statistically significant effect.

Acquired DeepHarmony

β6 p-value β6 p-value

Cortical GM 5.08% <0.0001 −0.64 % 0.02

Cerebral WM 3.56% <0.0001 0.48% 0.08

Thalamus 2.32% <0.001 0.20% 0.78

Lateral Ventricles −6.89 % <0.0001 0.23% 0.88
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