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Abstract

In blood, the primary role of red blood cells (RBCs) is to transport oxygen via highly regulated 

mechanisms involving hemoglobin (Hb). Hb is a tetrameric porphyrin protein comprising of two 

α- and two β-polypeptide chains, each containing an iron-containing heme group capable of 

binding one oxygen molecule. In military as well as civilian traumatic exsanguinating hemorrhage, 

rapid loss of RBCs can lead to suboptimal tissue oxygenation and subsequent morbidity and 

mortality. In such cases, transfusion of whole blood or RBCs can significantly improve survival. 

However, blood products including RBCs present issues of limited availability and portability, 

need for type matching, pathogenic contamination risks, and short shelf-life, causing substantial 

logistical barriers to their prehospital use in austere battlefield and remote civilian conditions. 

While robust research is being directed to resolve these issues, parallel research efforts have 

emerged toward bioengineering of semisynthetic and synthetic surrogates of RBCs, using various 

cross-linked, polymeric, and encapsulated forms of Hb. These Hb-based oxygen carriers (HBOCs) 

can potentially provide therapeutic oxygenation when blood or RBCs are not available. Several of 

these HBOCs have undergone rigorous preclinical and clinical evaluation, but have not yet 

received clinical approval in the USA for human use. While these designs are being optimized for 

clinical translations, several new HBOC designs and molecules have been reported in recent years, 

with unique properties. The current article will provide a comprehensive review of such HBOC 

designs, including current state-of-the-art and novel molecules in development, along with a 

critical discussion of successes and challenges in this field.
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INTRODUCTION

In austere battlefield conditions and remote civilian locations, trauma-associated 

uncontrolled hemorrhage and acute coagulopathy remain one of the leading causes of 

mortality (1–6). In such scenarios, transfusion of whole blood and blood components (e.g., 

RBCs, platelets, and plasma), as per Damage Control Resuscitation guidelines, can 
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significantly reduce trauma-associated morbidities and mortalities (7–9). However, the 

limited availability and portability, special storage requirements, and high contamination 

risks of these blood products often present severe logistical challenges for their prehospital 

application in military and civilian scenarios, for point-of-injury immediate and prolonged 

(e.g., en route) field care (10–17). A robust volume of research is currently being dedicated 

toward resolving these issues and enhancing the availability and applicability of donor-

derived blood products in the field (18–21). In parallel, an exciting area of research has 

emerged that focuses on the development and evaluation of semisynthetic or synthetic 

surrogates of blood products that can be manufactured at large scale in vitro (i.e., sufficient 

availability), can be sterilized and stored as small volume deliverables over long periods of 

time at various temperature ranges (i.e., easy portability), can be reconstituted and 

administered “on demand” in far forward scenarios (i.e., prehospital applicability), can 

potentially avoid the need for type matching (universal application with minimal 

immunogenic risk), can circulate safely upon intravascular administration without systemic 

risks, and can mimic, leverage and amplify endogenous mechanisms of blood component 

function to mitigate the effects of traumatic exsanguinating hemorrhage (22–24). This field 

of research has developed in the areas of functionally mimicking blood’s cellular as well as 

non-cellular components and continues to focus on resolving translational challenges with 

regards to biocompatibility, safety, prehospital availability and universal applicability.

The research focus on preserving and transporting donor-derived blood started during World 

War I to treat wounded soldiers, and blood transfusions became widely available by World 

War II. Multiple blood banks were established in the United States from the 1950s onward 

and blood donation was promoted as a form of civic responsibility. Subsequent development 

of processes and methodologies for isolation and storage of various blood components has 

significantly enhanced the utilization of whole blood and its components. Currently, 

transfusions of whole blood as well as various isolated components are clinically approved 

for applications in civilian and battlefield trauma (e.g., in Damage Control Resuscitation), 

surgical settings (e.g., transplants), chronic and acute anemias, and disease-associated, drug-

induced or congenital bleeding disorders (25–32). RBC transfusion is clinically significant 

in efficient mitigation of hemorrhagic shock, as part of the Massive Transfusion Protocol in 

hypoper-fused patients with critical levels of oxygen (33–37). It has also been demonstrated 

that prehospital use of RBC transfusion (if available) can significantly improve survival in 

critically injured subjects (38, 39). Such transfusions are dependent on donor-derived RBC 

products (e.g., packed Red Blood Cell [pRBC]). However, according to the Red Cross, only 

~ 40% of US population is eligible to donate blood at any given time and only 10% to 15% 

actually donate. In addition, blood-based products have somewhat limited shelf-life due to 

risks of pathogenic contamination. Currently, RBCs have a shelf-life of 20 to 40 days, while 

platelet suspensions have a shelf-life of 3 to 5 days, at room temperature (40). Also, RBCs 

(and platelets) develop storage lesions in storage, which affect their stability, in vivo 
circulation lifetime, and bioactive functions (41, 42). Significant research is being 

undertaken enhancing the shelf-life of blood products by cold-storage, freezing, 

lyophilisation, etc., as well as, through development of pathogen reduction technologies like 

psoralen-based or riboflavin-based ultra-violet irradiation, extensive serological testing of 

donor blood, leukoreduction, and specialized storage protocols (13, 19, 31,43–48). Also, 
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portability of blood products, especially to remote battlefield and civilian locations, 

especially for prehospital point-of-care use, continues to be a major logistical challenge (14, 

17, 49).

Such challenges can be potentially addressed by engineering of semisynthetic or synthetic 

surrogates of blood components (22, 50, 51). In fact, the interest in such synthetic surrogates 

developed during the HIV crisis of the 1980s due to fear of contaminated blood products (4) 

and this research has been going on for past several decades, with several designs and 

products that have progressed through preclinical and clinical evaluations. However, 

currently no such product is clinically approved by the Food and Drug Administration for 

human applications in the United States, although certain products have been approved for 

human use in South Africa and veterinary use in the United States. A 2008 meta-analysis of 

16 clinical trials of five different RBC surrogates suggested increased health risks in patients 

treated with such products (52). Although such analysis has resulted in some apprehension 

in clinical safety and utility of these products, the design of this analysis has been strongly 

debated and it has also directed significant re-emphasis on understanding the pros and cons 

of these products at fundamental physiological and mechanistic levels. To this end, the 

current categorization of such products has shifted from “RBC substitutes” to “oxygenation 

therapeutics” so as to emphasize the important role of such products in scenarios where real 

RBCs may not be sufficiently available (e.g., far forward military setting) as well as in 

perfusion of transplantable organs. In this framework, the current article will focus on 

reviewing “hemoglobin-based oxygen carriers” (HBOCs), comprehensively discussing 

relevant designs, current state-of-art and novel molecules in development, along with 

emphasizing successes and challenges. To this end, representative preclinical and clinical 

findings will be emphasized, but in vitro and in vivo findings of individual designs will not 

be comprehensively discussed.

Hemoglobin (Hb) function in RBCs for oxygen transport

In blood, the primary function of RBCs is the transport of oxygen (O2) and to some extent 

carbon dioxide to and from tissues, by virtue of binding of the gases to hemoglobin (Hb) 

within the RBCs. The average amount of Hb in adult human RBCs (mean corpuscular 

hemoglobin [MCH]) is 27 to 31 picograms per cell (~250 million Hb molecules). Hb is a 

tetrameric protein comprising of two α- and two β-polypeptide chains, each consisting of an 

iron-containing heme group capable of binding one oxygen molecule (O2). Figure 1A shows 

a multiscale representation of RBC, Hb within RBC, and chemical structure of iron-

containing “heme” group within Hb. The O2 binding kinetics to Hb is positively cooperative, 

such that a small variation in oxygen partial pressure as blood goes from lung to tissue (Fig. 

1B) can result in a large change in oxygen bound (in lung) or released (in tissue) by Hb, as 

exhibited by the classic sigmoidal shape of the O2-binding equilibrium curve (OEC, Fig. 1C) 

(53, 54). The O2-carrying iron in Hb is in its reduced “ferrous” (Fe2+) state. When the Hb is 

oxidized to form methemoglobin (MetHb), the iron becomes oxidized to the “ferric” state 

(Fe3+), which is unable to bind oxygen (55). Due to this reason, in natural RBCs the oxygen 

transport mechanism of Hb is closely coupled to redox cycles (e.g., driven by enzyme NAD-

cytochrome b5 reductase), such that the Fe2+-containing Hb can be maintained in its O2-

binding state. Irreversible conversion of Hb to MetHb not only inhibits its oxygen-carrying 
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capacity, but also leads to dysre-gulated vascular tone and inflammatory reactions. 

Furthermore, Hb in RBCs have the unique capability to undergo conformational changes to 

allow saturation (loading) with O2 in the lungs (higher O2 affinity) and then release O2 in the 

tissue capillaries (lower O2 affinity). This reversible conformational regulation of O2-

binding affinity of Hb is aided by allosteric effector molecules like 2,3-diphosphoglycerate 

(2,3-DPG), which is formed inside RBCs as a glycolytic intermediate. Therefore, 

maintaining such oxygen-carrying thermodynamic and kinetic characteristics of Hb, 

maintaining the redox environment and minimizing irreversible MetHb formation, are some 

of the important and challenging design considerations in the context of developing an Hb-

based RBC surrogate (56). In this context, one important factor is to maintain the 

physicochemical stability of Hb, since outside the protective RBC environment (i.e., cell-

free or stroma-free) the Hb tetramer is prone to rapidly disintegrate into its dimeric and 

monomeric protein units, which in turn results in rapid clearance from circulation into 

extravascular space and kidneys. This results in very short circulation residence time and 

increased risk of nephrotoxicity. Stroma-free Hb is also devoid of oxygen affinity regulatory 

enzymes like 2,3-DPG, as well as, protective anti-oxidant enzymes. As a result, such Hb has 

a dysregulated tissue oxygenation capacity compared with RBC-encapsulated Hb and is also 

prone to rapid irreversible oxidation to MetHb, thereby losing its oxygen transport ability. 

Stroma-free Hb is also a potent scavenger of both intra- and extravascular nitric oxide (NO), 

which is produced from vascular endothelial cells for innate vasodilator function, and this 

has been implicated in hypertensive side effects of Hb. Hence, providing efficient tissue 

oxygenation while maintaining reasonable circulation life-time, minimization of 

hypertensive side-effects, and avoidance of Hb-induced toxicity are the three prominent 

design requirements for HBOCs. The following sections review and discuss the various 

design approaches that have focused on addressing these requirements.

Hb-based oxygen carrier (HBOC) systems

HBOCs are semisynthetic systems that utilize natural Hb as the oxygen-carrying component, 

either in chemically modified cell-free suspensions or conjugated and cross-linked with 

polymers along with protective enzymes, or encapsulated within microparticulate or 

nanoparticulate vehicles (51, 57). The Hb used in these systems is usually derived from 

outdated human or bovine RBCs or from recombinant sources (57–63). In the case of 

outdated human or bovine RBCs, the Hb is isolated via cell lysis, purified by sterile filtration 

and chromatographic techniques and sterilized (e.g., by low heat) (64). Using cell-free Hb 

presents the advantage of minimum antigenicity and the ability to off-load oxygen in plasma 

more efficiently because of the lack of interference by cell membrane. In fact, reportedly in 

the early 20th century, suspension of cell-free Hb in lactated Ringer solution was used to 

intravenously treat 15 patients; however, a large number of them developed renal toxicity 

and cardiovascular complications (64). Similar results were also found in the 1950s when 

US Navy treated several patients with cell-free Hb (65). Cell-free Hb was also found to have 

a very short circulation residence time because the Hb tetramer rapidly dissociates into 

dimeric and monomeric forms that can bind to plasma immunoglobulins, and undergo rapid 

clearance by the reticulo-endothelial system into spleen and liver, as well as renal clearance 

into kidneys, leading to Hb-induced toxicities in these organs (66, 67). Additionally, cell-

free Hb and its dissociated derivatives can also extravasate into the subendothelial domain of 

Sen Gupta Page 4

Shock. Author manuscript; available in PMC 2019 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the circulatory system and rapidly sequester NO, resulting in its conversion into nitrate 

(dioxygenation reaction) and oxy-Hb to Met-Hb (68). The NO is the body’s natural 

vasodilator and therefore this NO-scavenging results in vasoconstriction and cardiovascular 

complications. Furthermore, the absence of 2,3-DPG in cell-free Hb can cause unnaturally 

high oxygen affinity, making O2 off-loading problematic. Cell-free Hb can also change 

blood osmolarity, leading to alteration of blood volumes and associated side-effects. 

Altogether, for these reasons cell-free human Hb has been deemed problematic for in vivo 
oxygen-carrying applications. Instead of human Hb, studies have also been conducted with 

bovine Hb, but this also presents similar issues of stability, extravasation, NO-scavenging, 

and renal clearance and toxicity. Another interesting way to address some of these issues is 

by development of recombinant Hb (e.g., in E coli) where specific mutations can enable 

decrease in dissociation and modulation of NO-binding capacities, but the correct 

combination of mutations that can lead to an ideal Hb design is yet to be established (69–

71). Recombinant technologies are also substantially expensive compared with human or 

bovine Hb. Therefore, a substantial volume of research has been focused on in vivo 
stabilization and functional modulation of Hb utilizing chemical modifications like cross-

linking, polymerization, and macromeric surface conjugations. The goals of these 

modifications are to reduce Hb dissociation, extravasation, and renal clearance, while 

maintaining reasonable circulation life-time and O2-transport capacities.

Chemically modified HBOCs——Hb can be cross-linked both intra- and 

intermolecularly. For example, intramolecular cross-linking in human Hb formed between 

its two a-subunits using acylation with bis-(3,5 dibromosalicyl)-fumarate (also known as 

Diaspirin) led to a product called HemAssist from Baxter (Chicago, Illinois) (57, 72, 73). 

This product showed an increase in circulation residence time up to 12 h compared with <6h 

for unmodified Hb, but the cross-linked Hb unfortunately showed a 72% increase in 

mortality rates in human patients compared with saline, and clinical trials were discontinued 

(74). An analogous approach to cross-linking the α subunits of recombinant Hb using 

Glycine led to a product called Optro from Somatogen (Boulder, Colo), but this also resulted 

in increased risks of cardiac arrest and mortality (75–77). Instead of site-specific 

intramolecular crosslinking only, polymerized Hb has also been created from using 

bifunctional cross-linking reagents like glutaraldehyde-based cross-linking of bovine Hb 

(e.g., Hemopure originally from Biopure, Cambridge, Mass, now HbO2 Therapeutics, 

Souderton, Pa) or human Hb (e.g., PolyHeme from Northfield Labs, Evanston, Ill) and o-

raffinose-based cross-linking of human Hb (e.g., the product HemoLink from Hemosol, 

Toronto, Ontario, Canada) (78, 79). Such crosslinking allows for higher molecular weight 

cell-free Hb that retains oxygen-carrying properties while minimizing dissociation and rapid 

clearance of Hb. One challenge in these approaches is to precisely control polymer 

molecular weight, and rigorous purification steps are necessary to ensure product quality. 

PolyHeme was reported to progress into Phase III clinical trials in the United States in 

treating trauma-associated blood loss and showed a decreased need of natural blood 

transfusions (77). Clinical trials with HemoPure also showed a reduced need of additional 

blood transfusions in cardiac surgery (80). HemoPure has received clinical approval in South 

Africa for acutely anemic human patients and is under Phase III clinical trial in the United 

States. An analogous product from the same company (HbO2 Therapeutics, USA) called 
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Oxyglobin is currently approved in the United States for veterinary use. HemoLink also 

reportedly advanced to Phase III clinical trials but was discontinued in 2003 when patients 

receiving treatment experienced adverse cardiac events. In fact, all of these products in their 

clinical studies have shown various degrees of transient hypertension, organ damage through 

microvascular constriction and dysfunction, gastro-intestinal distress, nephrotoxicity, 

neurotoxicity, and increased mortality (80–82).

Instead of intramolecular cross-linking and intermolecular polymerization, modification of 

Hb has also been carried out with macromeric bioconjugation to increase stability and 

vascular residence time while reducing immune recognition (83–85). Important examples of 

this approach are found in polyethylene glycol (PEG) modification of Hb (e.g., the products 

Hemospan from Sangart Inc, San Diego, Calif, and PEG-Hb from Enzon, South Plainfield, 

NJ) and poly(oxyethylene) modification of pyridoxylated crosslinked Hb (e.g., the product 

PHP from Apex Bioscience, Durham, NC). PEG-ylated Hb products have undergone 

extensive clinical trials and the studies showed risks of bradycardia and elevation of hepatic 

pancreatic enzymes even at low doses (86). Nonetheless, the Phase I and Phase II clinical 

trials showed that Hemospan was well tolerated in humans for efficient oxygen delivery, and 

Phase III trials in orthopedic surgery patients were carried out in Europe. The trials 

suggested that the risk of cardiovascular and renal dysfunctions still persisted with such 

chemically modified Hb products (87). Products such as PHP have also indicated such risks 

of cardiovascular and renal dysfunctions. During the past two decades it has been identified 

that cell-free Hb (including chemically modified versions) are potent scavengers of nitric 

oxide (NO) via rapid irreversible binding (rate constant ~ 107 M−1 s−1), which in turn can 

affect systemic and pulmonary vascular tone, resulting in vasoconstriction, hypertension, 

and lowering of cardiac output (88, 89). A resolution of this issue has been attempted by 

modifying Hb molecule into becoming an NO carrier through S-nitrosylation of cysteine 

residues in the β-subunits of Hb or imparting the ability of enzymatic transformation of Hb 

into a source NO donor in the presence of nitrites, but with limited success so far, in vivo 
(90). Natural RBCs contain enzymes like catalase (CAT) and superoxide dismutase (SOD) 

that help mitigate the oxidative stresses stemming from superoxide moieties in injured and 

ischemic tissues. Based on this rationale, in an interesting approach these enzymes have 

been cross-linked to polymerized Hb to form PolyHb-SOD-CAT, which has shown 

combined advantages of long circulation time and reduced oxidative damage (91, 92). 

Another interesting approach is to incorporate regulatory molecules such as 2,3-DPG and 

methemoglobin reductase along with Hb in appropriate HBOC systems, to prevent 

hemoglobin oxidation. In recent years, a product named HemoTech has been reported that 

uses purified bovine Hb cross-linked intra-molecularly with ATP and intermolecularly with 

adenosine, and conjugated with reduced glutathione (GSH) (93). This unique design allows 

the use of pharmacologically active molecules (ATP, adenosine, and GSH) as the chemical 

modifiers, where ATP regulates vascular tone through purinargic receptors, adenosine 

counteracts the vasoconstrictive properties of Hb via stimulating adenosine receptors, and 

GSH protects the “heme” from NO and various reactive oxygen species. The preclinical and 

early phase clinical studies have shown that HemoTech works as an effective oxygen carrier 

in treating blood loss, anaemia, and ischemic vascular conditions, and further studies are 

warranted. Another polymeric Hb reported in recent years is OxyVita, which is produced 
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through modification of a zero-linked polymerization mechanism using car-bodiimide 

chemistry on bovine tetramer hemoglobin to produce “super-polymeric” macromolecules 

(94). In yet another recent approach, a polynitroxylated PEG-ylated hemoglobin (PNPH) 

nanostructure design has been reported, named VitalHeme (SynZyme Technologies LLC, 

Irvine, Calif), where PEG-ylated hemoglobin is covalently modified with catalytic caged NO 

(95). These designs reportedly allow for higher Hb stability in vivo and are currently under 

preclinical investigation. Figure 2 shows some of the prominent designs based on chemical 

modification of cell-free Hb, which have undergone (or are still undergoing) preclinical and 

clinical evaluation for oxygen transport. Despite promising preclinical and clinical results, 

many of the chemically modified Hb products have been withdrawn from clinical studies 

and discontinued in production, due to indication of more clinical risks than benefit, 

stemming from chemical heterogeneity and variable stability of final product, suboptimal 

vascular residence time, nonideal oxygen loading and off-loading capabilities, rapid 

irreversible conversion to methemoglobin, and increased cardiovascular and renal 

dysfunction issues. While some of the newer products are refining their design and 

processing to address these issues, a parallel direction of the research has focused on 

encapsulation of Hb within various micro- and nano-carrier vehicles, to more closely mimic 

the physiological encapsulated state of Hb in RBCs.

Encapsulated HBOC systems——During past two decades, particulate drug delivery 

platform technologies (microparticles and nanoparticles) have revolutionized the packaging 

and delivery of pharmaceutical compounds, by encapsulating them within such particles to 

protect them from plasma-induced effects, increase their circulation time, and allow 

sustained availability to cells, tissues, and organs. This design concept has also been adapted 

to create HBOCs that encapsulate Hb within suitable particulate vehicles. In fact, the 

pioneering concept and demonstration of “bio-artificial cells” was presented as early as the 

1950s and 1960s by Chang et al, by encapsulating Hb as well as other proteins and enzymes 

within polymeric membrane-based microvesicles. The membrane material originally used 

was collodion (cellulose nitrate) and later changed to biodegradable polyethylene glycol-

polylactide (PEG-PLA) (96, 97). These Hb-loaded microvesicles, aptly termed “hemoglobin 

corpuscles,” showed oxygen equilibrium curves similar to RBCs and also allowed co-

encapsulation and activity of RBC-relevant enzymes like 2,3-diphosphoglycerate (2,3-DPG), 

carbonic anhydrase, and CAT (98–100). However, in these systems a major challenge was 

posed by the rapid macrophagic uptake and clearance of these micrometer-sized vesicles 

from circulation, resulting in suboptimal circulation residence time for in vivo use. Reducing 

the diameter to ~1 μm only marginally improved the circulation lifetime, and a significant 

research effort has been directed toward further improving the vascular residence time by 

modifying the surface of the vesicles with lipids and polysaccharides. In another similar 

design approach, Djordjevich et al reported on encapsulation of Hb in micron and submicron 

size lipid vesicles (liposome-encapsulated Hb or LEH), with membrane made of 

phospholipids and cholesterol (101–103). This design essentially mimics the physiological 

state of Hb in RBCs where it is protected within the lipidic cell membrane that preserves the 

suitable redox mechanisms for Hb function. A number of variations of this design have 

followed, e.g., “neohemocytes,” “TRM-645 Neo Red Cells” etc., where the primary focus 

has been to maintain uniform Hb-encapsulation levels, uniform size distribution of the 
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vesicles, minimizing vesicle destabilization or fusion over time, and enhance storage 

stability of the vesicles while maintaining the RBC-analogous oxygen transport properties of 

the encapsulated Hb (104–106). During the 1990s the “Stealth Liposome” technology was 

clinically established, where lipid nanovesicles (100–200 nm in diameter) were surface-

functionalized with polyethylene glycol (PEG) to enhance storage stability, reduce 

opsonization, and prevent rapid macrophagic uptake, and this significantly enhanced the 

circulation residence time (107, 108). Consequently, this technology was adapted to form 

Hb-encapsulated PEG-ylated liposomal vesicles (HbV) (109–111). For HbV preparation, 

l,2-dioctadecadienoyl-sn-glycero-3-phosphatidylcholine (DODPC) was used as the major 

membrane phospholipid, such that γ-irradiation-induced radiolysis of water molecules in the 

vesicles generated hydroxy (–OH) radicals that promoted intermolecular polymerization of 

dienoyl groups to produce highly stable liposomes that could withstand freeze-thawing, 

freeze-drying, and rehydration processes. The HbV design has resulted in substantial 

improvement of circulation life-time (~60 h in some animal models) and several refinements 

of this design have been reported in recent years (112–116). The oxygen transport ability of 

HbVs was found to be similar to natural RBCs, with comparable oxygen saturation and 

release kinetics. Also, the liposomal encapsulation of Hb prevented its NO-scavenging effect 

and thereby reduced the associated negative effects on vasculature. The encapsulation of Hb 

in liposomal vesicles also prevented glomerular clearance of Hb (since liposomes are too big 

for renal clearance), and therefore reduced nephrotoxicity. The current optimized HbV 

product contains about 30,000 Hb molecules encapsulated within one PEG-ylated liposomal 

vesicle of ~250 nm in diameter. In comparison, a natural RBC is ~7 μm in diameter and ~2 

μm in thickness, containing about 250 million Hb molecules. The HbVs have undergone 

extensive preclinical evaluation in suitable animal models for potential use as an RBC 

surrogate in transfusion and resuscitative mitigation of massive hemorrhagic shock and 

hemodilution incidents, and oxygenation of ischemic as well as transplanted tissues and 

organs. These studies have shown significant promise of HbVs as RBC-inspired oxygen 

carrier; however, these systems can still present issues of broad size distribution of the 

vehicles, variations in Hb-encapsulation efficiencies, variable pharmacokinetics, and 

complement-mediated immune response in vivo. Further research is currently being directed 

toward resolving these issues for potential clinical translation of HbV designs as well as 

other analogous designs of liposome-encapsulated hemoglobin (LEH) systems RBC 

surrogates (112–116). Interestingly, instead of encapsulating Hb, some recent research 

approaches have also attempted to encapsulate oxygen (O2) directly within phospholipid 

microvesicles (2–4 μm in diameter) to deliver O2 to deoxygenated RBCs in circulation (117, 

118). Although these oxygen-loaded microbubbles were found to be stable for a few weeks 

in storage with only small extent of oxygen loss, in vivo they were found to have a very 

short circulation life-time (<1 h). Therefore, treatment with these systems would require 

multiple or repeated dosing, which may prompt negative effects of dysregulated oxidative 

stress and associated toxicity and immune response. Therefore, long-term safety profile of 

such technologies needs to be rigorously evaluated. Encapsulation of Hb has also been 

studied in other microparticle and nanoparticle systems besides lipid vesicles. In pioneering 

work by Chang et al, Hb was encapsulated within polymeric nanoparticles (80–200 nm in 

diameter) made from PEG-PLA and analogous block copolymers (119, 120). These 

polymeric nanoparticles could allow oxygen transport kinetics of Hb at levels similar to 
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natural RBCs and the polymeric material could be engineered to be biocompatible and 

biodegradable. Furthermore, enzymes that maintain the redox environment for Hb stability 

and function regulation (e.g., carbonic anhydrase, CAT, SOD, MetHb reductase, etc.) could 

also be encapsulated within the same nanoparticles toward further mimicry of RBC action 

(121). This design approach has also been adopted for other polymer systems like poly(ε-

caprolactone)/poly(L-lactic acid) (PCL/PLA) copolymers, poly(L-lysine) (PLL), poly(lactic-

co-glycolic acid) (PLGA)/PEG copolymers, etc. (122, 123). Amphiphilic block-copolymer 

systems also provide the ideal building blocks for designing polymer vesicles, otherwise 

known as polymersomes, analogous to liposomes. These polymersome systems have been 

recently utilized to create polymerosome-encapsulated Hb (PEH) systems (124). The Hb 

loading in these PEH systems has been reported to be 1 to 2 mg mL−1, compared with 

human blood (i.e., within RBC) concentration of ~ 150 mg mL−1. Utilization of hollow 

fiber-based membrane extrusion system has provided an interesting way to manufacture 

these PEH systems (125). These PEH systems have been reported to be capable of 

encapsulating both bovine and human Hb, and have shown oxygen equilibrium kinetics and 

other biophysical parameters similar to RBCs. This indicates considerable promise toward 

the application of such PEH systems as RBC surrogates in transfusion medicine, but 

currently very limited in vivo evaluation data are available for these systems. A potential 

issue with polymersome systems may be their higher shell thickness compared with 

liposomes, which can lead to longer diffusion time for oxygen to saturate the encapsulated 

Hb or to be released from the Hb to tissues. Modulation of polymer molecular weight of the 

shell and therefore of the shell-thick-ness can provide a unique way to influence oxygen 

transport properties of the PEH systems. The higher stability of polymersomes compared 

with liposomes, both in storage and in vivo, may also provide additional advantages for its 

use as Hb-encapsulated RBC surrogate systems. Ongoing and future studies with these 

systems should be directed toward establishment of batch-to-batch consistency, sterilization 

metric and storage stability evaluation, post-sterilization Hb bioactivity determination, in 
vivo pharmacokinetics and biodistribution determination, and therapeutic evaluation in 

appropriate animal models (e.g., hemorrhagic shock, ischemia, etc.). Figure 3 shows some 

representative designs and components for encapsulated Hb systems that have undergone 

and are currently still undergoing in vitro and in vivo evaluation for RBC-mimetic oxygen 

carrier application.

Novel molecules and designs incorporating Hb as O2 carrier——This section 

will not distinguish between “chemically modified” versus “encapsulated” Hb systems, but 

rather focus on reviewing some of the emerging novel designs and technologies that 

incorporate Hb for oxygen transport purposes. In one interesting approach, instead of Hb, 

PEG-ylation was carried out on bovine carboxyhemoglobin (CO-Hb) and the resultant PEG-

CO-Hb system has been evaluated for oxygen transport (and CO transport) properties (126–

128). The rationale behind this design is that, reportedly, endogenous CO produced from 

heme-oxygenase activity can render cytoprotective and homeostatic effects, such as 

inhibition of apoptosis and inflammation and reduction of oxidative stress and vasodilatory 

activity (129). The PEG-CO-Hb product, with the commercial name SAN-GUINATE 

(Prolong Pharmaceuticals, South Plainfield, New Jersey, USA), has undergone pre-clinical 

evaluation in small animal models, and is undergoing clinical trials in treating small groups 
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of patients in the areas of sickle cell anemia, thrombotic thrombocytopenic purpura (TTP), 

and ischemia after subarachnoid hemorrhage, with promising safety profile and oxygenation 

parameters. In another recent approach, core-shell cluster structures were formed by 

conjugating human serum albumin (HSA) on Hb using Hb surface lysines conjugated to 

HSA cysteine-34 using α-succinimidyl-ε-maleimide cross-linker (130). These Hb-HSA 

clusters reportedly lower the risks of rapid clearance and extravasation, and thus improve 

high circulation stability and residence time. A further modification of these Hb-HSA core-

shell nanoclusters was recently reported where anti-oxidant enzymes and platinum 

nanoparticles were embedded in the HSA pockets for protection of Hb (131). These 

nanocluster designs have so far been evaluated only in vitro for their oxygen-binding 

capacity, redox properties, and stability, with promising results. However, rigorous in vivo 
pharmacokinetics, toxicology, bidistribution, and oxygenation studies, along with 

demonstrating batch-to-batch compositional and functional consistency, would be needed to 

establish the in vivo applicability of these structures. In another approach, Hb has been 

loaded in microparticles by its coprecipitation with calcium carbonate (CaCO3), followed by 

crosslinking with glutaraldehyde and selective dissolution of CaCO3, resulting in Hb 

quantity per microparticle close to that of natural RBCs (132). These Hb-microparticles have 

shown oxygen equilibrium kinetics similar to free Hb, but much enhanced circulation 

lifetime compared with free Hb. Analogous Hb microparticles carrying about 80% Hb 

content compared with natural RBCs have been reported where Hb and MnCO3 were 

coprecipitated, immediately followed by human serum albumin addition for encapsulation 

and stabilization of the particles (133). These particles have shown reduced risks of NO 

scavenging and associated effect on vasoconstriction. In yet another recent approach, Hb 

was covalently conjugated directly to the hydrophobic or hydrophilic domain of block-

copolymers and the resultant conjugates were self-assembled to form Hb-loaded micelles 

(134, 135). In another interesting design, MnCO3 nanoparticles were used as templates to 

deposit layer-by-layer (L-B-L) assemblies of Hb and dialdehyde heparin (DHP), followed by 

crosslinking to stabilize the layers and selective dissolution of the template core (136). A 

similar approach was also used to form L-B-L-coated nanotubes where alternate layers of 

Hb, DHP, and the enzyme CAT were deposited, to create systems for potential application in 

treating oxidative stress (137). These complex nanostructures have been characterized in 
vitro for their morphology, stability, cytotoxicity, and in some cases biofunctionality, but 

preclinical evaluation for oxygen-carrying efficacy in vivo is yet to be reported. Another 

recent exciting development in the area of novel HBOC molecules is the utilization of large 

molecular weight extracellular Hb isolated from marine invertebrates like polychaete annelid 

(e.g., the product HEMOXYCarrier from Hemarina, Morlaix, France) (138). Preclinical 

studies with this unique Hb molecule have shown reduced microvascular vasoconstriction 

and no significant impact on mean arterial blood pressure, compared with other HBOCs that 

utilize bovine or human Hb (139). Further investigation of this system is currently ongoing 

to establish its clinical potential as an oxygen carrier therapeutic.

In recent years, some Hb-encapsulation approaches have also focused on adapting the 

physico-mechanical properties of natural RBCs that significantly influence their biological 

functions. Natural healthy RBCs have a biconcave discoid morphology, with a diameter of 

~8 μm and a thickness of ~2 μm. These RBCs are also highly flexible (Young’s modulus 

Sen Gupta Page 10

Shock. Author manuscript; available in PMC 2019 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.1–0.2 kPa), which enables them to change their morphology when passing through 

microvascular circulation (140, 141). The mechanical integrity and viscoelastic nature of 

RBCs during their cyclical deformation is rendered by a two-dimensional spectrin network 

attached to the cytosolic side of their membrane. Oxygenated Hb results in RBCs having 

significantly more deformability than deoxygenated Hb, and this enables the mechanically 

flexible RBCs to move through microvasculature to transport oxygen. The size, shape, and 

flexibility of RBCs also influence their movement and distribution in the blood flow field, 

where they mostly reside in the center of the parabolic flow field in mid to large vessels, 

while in small vessels and capillaries RBCs can become distributed throughout for efficient 

oxygen exchange (142). These considerations have recently led to biomaterials-based 

mimicry of RBC’s size, shape, and flexibility attributes into Hb-encapsulating synthetic 

constructs. For example, poly electrolyte driven layer-by-layer assembly has been used to 

create microparticles that mimic the shape and deformability of natural RBCs (143). In this 

approach, Hb and BSA were electrostatically deposited on the surface of discoid PLGA 

particles of ~7 μm diameter and 400 nm shell thickness, and then the PLGA core was 

selectively dissolved to yield RBC-shaped Hb-loaded particles that have high elastic 

deformation. Similar RBC-mimetic flexible particles have been fabricated using PEG 

hydrogel system in a stop-flow-lithography (SFL) approach where the mechanical properties 

of resultant particles could be controlled by modulating cross-linking density of the hydrogel 

systems (144). In a different approach, RBC shape-mimetic particles were fabricated from 

acrylate hydrogels using a “particle replication in non-wetting templates” (PRINT) 

technology (145). These particles were made in 2 to 3 μm molds, such that, upon hydration, 

the particles swelled to disks with diameter approximately 6 μm and height approximately 

between 1.5 μm. Also, the meniscus effect from the molds resulted in the particles being 

thinner in the middle and thicker at the edges, resembling the biconcave morphology of 

RBCs. RBC morphology and flexibility mimicking particle designs made through these two 

techniques have demonstrated elastic deformation capabilities in vitro for transport through 

narrow channels, and controllable circulation lifetime in vivo, depending on their elastic 

modulus. Although these particles have been reported to be capable of Hb encapsulation via 

physical trapping or covalent bonding, detailed oxygen transport capabilities and associated 

in vivo transfusion applications have not been reported in detail yet. In another interesting 

approach, liposome-encapsulated actin-hemoglobin (LEAcHb) constructs were prepared 

using a polymerized actin core, to mimic morphology of natural RBCs (146). Although 

these particles were much smaller (~136.8nm) than RBCs, the biconcave shape along with 

the mechanical support of the membrane improved the half-life to ~72h. In natural RBCs, 

the negative surface charge electrostatically prevents RBC aggregation over a distance of 20 

nm and this rationale has led to some research in mimicking RBC-relevant surface charge on 

Hb-encapsulating PEG-PLA nanoparticles (<200 nm in diameter) using 

cetyltrimethylammonium bromide (CTAB) or anionic sodium dodecyl sulfate (SDS) 

surfactants (147). Cationized particles were found to have a half-life of ~11h (8-fold higher 

than untreated particles), while the anionized particles were quickly eliminated, giving a 

half-life of <1 h. In yet another recent approach, a novel amphiphilic polymeric system was 

developed using polyethylene imine (PEI) modified with palmitic acid and was used to form 

toroidal-shaped nanoparticles (termed nanobialys, ~200nm diameter) that can encapsulate 

Hb, as well as, maintain redox enzymatic environment for Hb activity by co-encapsulation 
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of 2,3-DPG and leuko methylene blue (148). These novel Hb-containing particles, termed 

Erythromer, have shown some promise of oxygen transport in vivo. Detailed 

biocompatibility studies (e.g., for PEI that can pose cytotoxicity issues), circulation lifetime 

and stability, Hb-loading capacity and oxygen transport capabilities, etc. would need to be 

further evaluated to establish the clinical potential of such designs as RBC surrogates in 

transfusion medicine. Figure 4 shows design schematics of these novel emerging designs 

and structures for Hb-based oxygen carriers.

DISCUSSION

In traumatic injuries and hemorrhage, tissue oxygenation is severely compromised and this 

can result in drastic damage to vital tissues and organs. Therefore, rapid hemorrhage control 

and restoration of tissue oxygen are critical for improving survival and function. To this end, 

transfusion of whole blood or blood components (RBCs, platelets, and plasma) has become 

the current clinical standard. However, these blood products currently present significant 

logistical challenges with regards to widespread usage in battlefield and prehospital settings, 

where trauma and haemorrhage-related morbidities and mortalities become significant. One 

potential solution is the bioengineering of semisynthetic or synthetic surrogates of blood 

components. In this framework, one important category of technology is that of Hb-based 

oxygen carriers (HBOCs), which essentially are meant to provide the oxygen transport 

properties of RBCs while allowing higher availability (via in vitro large-scale manufacture), 

universal applicability (no need for blood type matching), reduced contamination risks (due 

to sterilization), and longer shelf life. While a wide variety of approaches and designs have 

been dedicated to creating HBOCs, with some of them advancing to clinical trials with 

promising results, certain physiological risks and limitations associated with cell-free Hb, 

e.g., short circulation life-time, renal clearance, and associated toxicity, NO-scavenging and 

associated vasoconstrictive/hypertensive side effects, etc. have resulted in some negative 

clinical outcomes and concerns. As a result, FDA approval of HBOCs for human use has not 

happened yet in the United States, although one product (Hemo-Pure or HBOC-201) 

received human use approval in South Africa. This product has been evaluated in non-

cardiac surgery patients and trauma patients, and is under further clinical investigation for 

treatment of life-threatening anaemia. Other HBOC products like PolyHeme, Hemospan, 

and Hemotech have all advanced to different levels of clinical trials (e.g., Phase I for 

Hemotech, Phase II for Hemospan, and Phase III for Poly Heme); however, further studies 

are needed to establish their clinical safety and efficacy profiles. In many clinical studies, the 

functional efficacy comparison has been with natural RBC transfusion and although the use 

of HBOCs has demonstrated a reduction in the number of RBC transfusions, it remains to be 

answered whether HBOCs are intended to be “RBC substitutes” or rather to be “oxygen 

carriers” in scenarios where natural RBCs are not available. Future considerations of clinical 

study design may utilize this framework to compare HBOCs to relevant “standard of care” 

(e.g., saline or plasma expanders in prehospital trauma) instead of RBCs. Other questions 

that remain to be answered are whether these chemically modified and polymeric HBOC 

designs based on cell-free Hb still present issues of NO scavenging (associated hypertensive 

effects) and heme toxicity. Newer HBOC designs, both as chemically modified cell-free Hb 

form (e.g., Hemo-Tech) and as encapsulated Hb form (e.g., LEH, PEH, Erythromer, etc.), 
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are still undergoing rigorous preclinical evaluation to elucidate and establish batch-to-batch 

consistency, mechanism of action, pharmacokinetics and biodistribution, tissue oxygenation 

capability, and in vivo risks. In this framework, it remains to be seen if “encapsulated” Hb 

designs provide any advantage over the chemically modified cell-free systems, in terms of 

allowing co-encapsulation of oxygen affinity regulatory and redox environment-preserving 

molecules. It is important to note here that such multicomponent design will add 

substantially to manufacturing costs and thus the cost-benefit analysis needs to be rigorously 

validated in appropriate preclinical models, before clinical studies and translation. Going 

forward, there is a significant need to systematically study cell-free chemically modified 

polymeric Hb designs versus encapsulated Hb designs (with or without effector molecule 

and antioxidant enzyme co-encapsulation) in an established anatomically and 

physiologically relevant preclinical animal model to compare circulation residence time, 

tissue oxygenation efficacy, NO-scavenging associated hypertensive risks, and heme-

associated toxicity. Therefore, a consensus on what HBOC design is the most beneficial 

remains an open question. It is also important to note that, while continued preclinical and 

clinical studies are being directed at identifying the best HOBOC candidate for in vivo 
transfusion applications in anemia, surgery, and trauma, in recent years HBOC applications 

have also evolved into using them for ex vivo preservation (and oxygen perfusion) of 

transplant tissues and organs (149, 150).

As for the source of Hb, most designs have utilized either human or bovine Hb, although 

some newer designs have adapted utilization of recombinant Hb where the physicochemical 

and biological properties can be precisely engineered, as well as, giant Hb sourced from 

marine invertebrates with improved properties. One critical aspect regarding “source of Hb” 

for efficient HBOC design is the regulation of oxygen loading/off-loading capacity of the Hb 

used. For human Hb, this is regulated by effector molecules like 2,3-DPG, which maintains 

the P50 of human Hb at 26 mm to 28 mm mercury. However, cell-free human Hb (i.e., in the 

absence of DPG) has a much higher oxygen affinity (OEC curve shifts to left) and this can 

lead to reduced tissue oxygenation (151). In contrast, oxygen affinity of bovine Hb is not 

critically dependent on DPG but rather on chloride ions, which are present in abundance in 

all mammals including humans. Bovine Hb has also been reported to have higher thermal 

stability than human Hb during isolation and processing (152). Furthermore, while human 

Hb is sourced from outdated human platelets, bovine Hb can be obtained from cow blood 

RBCs (e.g., from large farms and slaughterhouses) and hence has more availability. 

Therefore, from availability, processing and oxygen transport regulation standpoint, bovine 

Hb can provide benefit over human Hb and this is what has been used in design of 

Hemopure (or HBOC-201), which is currently the only one with veterinary approval in the 

United States and human approval in South Africa. Other alternative sources of Hb, like 

recombinant technologies, annelid supramolecular extracellular Hb, etc., should incorporate 

isolation and manufacturing costs, as well as physico-chemical comparison of oxygen 

loading/off-loading aspects (with respect to human Hb), in order to successfully translate the 

corresponding HBOC designs to the clinic. HBOCs designed with cell-free nonhuman Hb 

should also analyze immunogenicity of the products, compared with encapsulated version of 

the same Hb. Besides Hb-based systems, oxygen carriers based on perfluorocarbons (PFCs) 

and iron (Fe2+)-containing porphyrin systems have also undergone significant preclinical 
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and limited clinical evaluation, but an ideal oxygen carrier system for safe and effective in 
vivo use is yet to be realized. It is also important to note that the various HBOC systems 

should not be categorized as “artificial blood,” but rather as a critical component of such a 

system. Blood contains other components like platelets and plasma, and a significant volume 

of research has evolved in parallel, regarding the development of platelet surrogates and 

plasma expanders, that have been reviewed elsewhere (23, 24, 153–156). Exciting 

advancements have also been made in recent years, to develop “donor independent” RBCs 

(and platelets) from stem cells (157–162). Therefore, a high volume of research continues to 

be directed in the area of in vitro manufactured “donor independent” RBCs as well as Hb-

based oxygen carriers in the United States and globally. In continuing evaluation and clinical 

translation of these technologies, it should be very important to consider and resolve 

manufacturing challenges (e.g., scaling up of complex multicomponent designs while 

maintaining batch-to-batch consistent quality and functional efficacy, etc.), as well as 

meticulously designed preclinical studies in physiologically relevant animal models and 

clinical studies where current “standard of care” in the specific application is compared. 

Through such studies, it is envisioned that Hb-based oxygen carriers will revolutionize 

combat casualty care in prehospital and en route scenarios, as well as allow emergency 

management of civilian trauma in remote locations or when blood products are not 

immediately or sufficiently available.
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Fig. 1. A, Multiscale representation of RBCs and hemoglobin (Hb), showing a scanning electron 
micrograph (SEM) image of RBC depicting the biconcave discoid structure, along with 
sequential schematic of RBC structure, Hb structure, and “Heme” structure.
B, It shows a schematic of RBC movement between lung (oxygen loading site) and tissue 

(oxygen off-loading site), while (C) shows corresponding oxygen equilibrium curve (OEC) 

characteristics of Hb. RBCs indicates red blood cells.
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Fig. 2. Representative approaches and design schematics for HBOCs based on chemical 
modification (cross-linking, surface modification, polymerization, etc.) of Hb that have 
undergone significant preclinical and clinical evaluation.
Hb indicates haemoglobin; HBOC, Hb-based oxygen carriers.

Sen Gupta Page 24

Shock. Author manuscript; available in PMC 2019 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Representative approaches and design schematics for HBOCs based on encapsulation of 
Hb in microparticle and nanoparticle systems that have undergone significant preclinical 
evaluation and hold clinical promise.
Hb indicates hemoglobin; HBOC, Hb-based oxygen carriers.
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Fig. 4. Representative schematics for novel HBOC molecules and designs, including new 
polymerization strategies, new sources of Hb and novel encapsulation and biomimetic strategies 
that are currently under development and preclinical evaluation.
Hb indicates haemoglobin; HBOC, Hb-based oxygen carriers.
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