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Abstract

BACKGROUND CONTEXT—Radiological observations of soft-tissue changes that may relate 

to clinical symptoms in patients with traumatic and non-traumatic spinal disorders are highly 

controversial. Studies are often of poor quality and findings are inconsistent. A plethora of 

evidence suggests some pathoanatomical findings from traditional imaging applications are 

common in asymptomatic participants across the life span, which further questions the diagnostic, 

prognostic, and theranostic value of traditional imaging. Although we do not dispute the limited 

evidence for the clinical importance of most imaging findings, we contend that the disparate 

findings across studies may in part be due to limitations in the approaches used in assessment and 

analysis of imaging findings.

PURPOSE—This clinical commentary aimed to (1) briefly detail available imaging guidelines, 

(2) detail research-based evidence around the clinical use of findings from advanced, but available, 

imaging applications (eg, fat and water magnetic resonance imaging and magnetization transfer 

imaging), and (3) introduce how evolving imaging technologies may improve our mechanistic 

understanding of pain and disability, leading to improved treatments and outcomes.

STUDY DESIGN/SETTING—A non-systematic review of the literature is carried out.

METHODS—A narrative summary (including studies from the authors’ own work in whiplash 

injuries) of the available literature is provided.
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RESULTS—An emerging body of evidence suggests that the combination of existing imaging 

sequences or the use of developing imaging technologies in tandem with a good clinical 

assessment of modifiable risk factors may provide important diagnostic information toward the 

exploration and development of more informed and effective treatment options for some patients 

with traumatic neck pain.

CONCLUSIONS—Advancing imaging technologies may help to explain the seemingly 

disconnected spectrum of biopsychosocial signs and symptoms of traumatic neck pain.
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Introduction

With an increasingly aging population, health-care spending is expected to increase 

dramatically [1,2]. In the United States, dollars spent on health care is greater than any other 

country in the world [2], with the largest increase in spending between 1996 and 2013 for 

musculoskeletal disorders such as neck and low back pain [2]. Despite the rising 

expenditures, little appreciable change in neck and low back pain prevalence has occurred 

either in the United States or across the globe [3–6]. Efforts to control spending and improve 

outcomes must consider the expense associated with delivery of interventions and diagnostic 

tests with little evidential support. Unnecessary imaging for patients with low back and neck 

pain has rightly received wide criticism [7–9], and triggered important work examining 

behaviors in physicians (and patients), aimed at reducing imaging overuse [8–10].

Routine use of early diagnostic imaging tests is challenged for multiple reasons. Numerous 

studies demonstrate abnormal or variant morphology of the cervical [11] and lumbar [9,12–

16] spines of asymptomatic participants (false positives) [17], and other studies highlight the 

lack of imaging findings in some patients injured from whiplash [18–21] or suffering from 

low back pain (potential false negatives) [8,13,22]. Few studies have investigated the 

longitudinal predictive value of imaging findings in the lumbar [23] and cervical spine 

[18,21], and most importantly, there is currently little evidence that magnetic resonance 

imaging (MRI) findings help identify those who respond best to specific interventions [24].

On the other hand, although some imaging findings are common in those without pain, 

several findings (eg, disc degeneration, Modic change, annular tear, disc herniation) have 

been shown to be substantially more common in those with low back pain [17,25] and 

traumatic neck pain (eg, muscle fatty infiltrates [MFIs]) [26–32] than those without. Such 

discrepant findings have created a clinical (and research) dilemma that we believe is due 

partly to a lack of high-quality studies and many perhaps misguided attempts to investigate 

the usefulness of imaging in understanding spinal pathology.

In this clinical commentary, we draw from existing and emerging research to (1) briefly 

detail available imaging guidelines, (2) present research-based evidence around the potential 

clinical use of findings from advanced but accessible imaging applications (eg, fat and water 

MRI and magnetization transfer imaging [MTI]), and (3) introduce evolving imaging 
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technologies that may improve our mechanistic understanding of pain and disability, 

ultimately leading to improved treatment outcomes.

Imaging guidelines

We do not dispute the universal guideline recommendations to avoid routine, non-indicated 

imaging for spinal pain, and we further endorse that routine imaging should not be 

conducted once the patient has been medically screened and determined to not have serious 

pathology. Furthermore, we agree with Chou et al. [14] who state

…addressing inefficiencies in diagnostic testing could minimize potential harms to 

patients and have a large effect on use of resources by reducing both direct and 

downstream costs. In this area, more testing does not equate to better care. 

Implementing a selective approach to [spinal imaging] as suggested by the 

American College of Physicians and American Pain Society guideline on low back 

pain, would provide better care to patients, improve outcomes, and reduce costs. 

[page 181]

The primary evidence-derived imaging guideline for healthcare providers in the United 

States is the American College of Radiology Appropriateness Criteria (ACR-AC). Relevant 

to this paper are the ACR-AC clinical conditions of (1) Chronic Neck Pain [33], (2) 

Suspected Spine Trauma [34], and (c) Low Back Pain [35]. Readers are encouraged to 

revisit the “clinical conditions” and subcategories (or variants) of the ACR-AC guidelines 

detailed above.

The authors support the value of these well-established and expert-derived guidelines that 

imaging is appropriately not recommended for the majority of patients with spinal pain. 

However, despite the proposed benefits of following the guidelines (cost-savings, reductions 

in exposure to ionizing radiation, avoiding the identification of pathology that may simply 

represent normal variants, and potentially misinforming clinical decision making), 

adherence to guidelines is quite variable [36–38], and it is largely unknown if adherence 

results in improved outcomes. Furthermore, there remains a lack of a gold standard 

quantitative metric for diagnosing low back and neck pain. Without a gold standard against 

which to compare, it is impossible to investigate whether diagnosis improves outcomes in 

our current landscape of care. Secondly, the presence of pathology in some people with low 

back and neck pain should not be dismissed as a normal variant on grounds they are also 

present in some without these conditions. Accordingly, there is an urgent need to perform 

high quality prospective imaging studies with quantitative measures using existing (T1-, T2-

weighting) and other developed, but not an exhaustive list of, techniques (fat and water MRI 

or MTI) to better understand which imaging findings are and are not important.

A potential outcome of ongoing research and development could be that emerging 

technologies and research findings afford the opportunity to interrogate our own clinical 

instincts when managing patients with more complex, and seemingly unexplainable, signs 

and symptoms. Moreover, such knowledge would provide for the judicious use of carefully 

selected quantitative imaging sequences in tandem with known psychosocial risk factors that 

improve diagnostics, and hopefully improve outcomes.
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Not forgetting the bio in the bio-psycho-social model of spinal pain

A potential risk of the strong push to reduce inappropriate imaging in clinical practice is to 

“forget” a biological component of spinal pain and to stifle important research that aims to 

better understand the contribution of local lumbar and cervical pathology to spinal pain. It is 

widely accepted that low back and neck pain are complex multifactorial conditions with both 

spinal (eg, local biological contributors) and extraspinal contributors (eg, psychosocial 

factors); however, much research [39–41] has focused on the extraspinal domains and, with 

some exceptions [42–45], largely ignores the potential contribution of local pathology. We 

argue that high-quality imaging research (especially those using new technology and 

advanced standardized analysis approaches) investigating the potential biological 

contributors to spinal pain form an important part of this inquiry. Without a better 

mechanistic understanding of the many biological contributors, it is likely the personal, 

societal, and economic burden of spinal pain will remain unchanged and enormous.

A fundamental difficulty underlying almost all spinal imaging studies is the lack of a gold 

standard test to identify sources of spinal pain. Importantly, spinal pain, similar to abdominal 

pain or headache pain, is a symptom. Differentiating a painful structural change (eg, disc 

degeneration) from a non-painful structural change remains a key challenge for the research 

community. Ultimately, the value of imaging findings from investigations of the spinal 

column [30,46,47] (and the brain [48–56]) will be demonstrated if such findings strongly 

predict important outcomes or identify phenotypes of patients who respond best to specific 

interventions.

Muscle fat infiltration as a biological marker of disease

The observation and description of MFIs has become increasingly common in the literature 

spanning acute and chronic whiplash [26,27,31,57,58], low back pain [59–62], spondylytic 

myelopathy [63], rotator cuff injury [64–68], osteoarthritis [69,70], and spinal cord injury 

[71,72].

Whereas some early studies suggest this finding may be associated with development of 

persistent pain and poor recovery in whiplash [26,27,29,30,32], others report no association 

between measures of muscle structure (eg, size without measuring fat) and symptoms 

[19,20]. Accordingly, the causal relationships between changes in muscle structure, 

symptoms, and the mechanisms underlying their generation following whiplash are largely 

unknown. Irrespective of the condition, current theories behind the expression of MFI could 

include the result of trauma, age-related changes [73,74], ethnic differences [75], spinal 

phenotypes [42–45], disuse [59,60], or degeneration [15].

Imaging of whiplash injury—potential pathology

Here we examine whiplash injury from a motor vehicle collision on grounds it is a common, 

yet enigmatic, condition whereby the role of imaging in clinical practice remains 

controversial.

Radiculopathy or myelopathy have their own distinctive clinical features, and accompanying 

abnormalities on radiography and MRI [76], yet the identification of salient pathologies of 
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discs, ligaments, vertebral and carotid arteries, and facet joints that are related to the signs 

and symptoms of acute or chronic whiplash remains obscure [18,77–83].Accordingly, 

whiplash continues to be conceptualized as an almost purely psychosocial phenomenon [84].

Yet, it is possible that the lack of consistent imaging findings that are related to whiplash-

related symptoms [19,20,27,30,32,85] are the result of study limitations and differences in 

methodological approaches (eg, ultrasound imaging, fat and water imaging, T1-, T2-

weighted, proton-density, or gradient echo sequences).Another limitation of existing studies 

of imaging findings using longitudinal research designs (within and beyond whiplash) is that 

few, if any, use more quantitative measurement tools. Rather, they have tended to rely on 

qualitative grades or scores. Although qualitative grading is shown to be adequate and with 

acceptable use in the clinical environment, they may be prone to more variability [86–90]. 

Few investigators report using even simple but critical methodological controls such as co-

registration and how the slices were aligned in plane to reduce noise, and discrepant findings 

from repeated measures [91]. We argue a way forward is to explore and develop consensus-

driven standardized measurement approaches similar to what has been proposed for 

measuring the structure and composition of lumbar paravertebral muscles [92] and for 

quantifying the patient’s pain experience using functional magnetic resonance imaging [93].

The progression toward fat and water MRI (muscle fat infiltration)

In traumatic whiplash, MFI is a potentially interesting marker as it is more common than in 

patients with non-traumatic neck pain [28,29], suggesting that traumatic factors may play a 

role in their development [30] on standard T1-weighted images [27]. Considering a growing 

body of evidence around muscle degeneration [58], these changes may represent one 

physiological contributor to poor functional recovery in a discrete number of patients with 

poor functional recovery following whiplash injury.

Imaging techniques such as fat and water MRI (detailed below) could help quantify the rapid 

onset of compositional changes in muscle, which may precede macroscopic muscle changes 

on standard T1-weighted sequences. A preliminary study [30], case-series [94], and 

interdisciplinary lines of work [95] suggest this may be the case for a subset of patients with 

whiplash, meaning these advances in imaging techniques could lead to more timely and 

effective intervention trials and thus, informed clinical decision making.

Several approaches for quantitatively measuring the water and fat composition on an MRI 

exist. These include T1-weighted imaging and a dual acquisition method, where one image 

is fat suppressed [96] (water image) and a standard image (fat and water combined) is 

collected [97]. By removing the water from the co-registered combined image, muscle fat 

can be identified with high sensitivity and specificity [30]. A challenge with such an 

acquisition is its reliance on the uniform frequency difference between water and fat, and 

this can be difficult to obtain when using higher magnetic fields (3 Tesla and above) where 

chemical shift may feature. A fat-suppressed inversion recovery sequence (eg, short tau 

inversion recovery, or STIR) is promising, but as STIR nulls signal from fat species, the 

quantity of fat will be estimated rather than quantified, and this may vary across ethnicities 

[75], age [73,74], phenotypes [42–45], and conditions whereby the composition of and 

temporal changes in muscle fat may differ [91,98].
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A well-known alternative is the Dixon method [99] where data are collected at echo times 

when water and fat are in- and out-of-phase. The data can be used to generate a fat and water 

image, but this is not without potential image distortions from field inhomogeneities 

[100,101]. Current methods collect multiple echo time data to improve the estimation of the 

fat and water images, and this has been applied successfully [102,103]. The methods 

[32,74,104,105] have been tested and used in animal- and human-based studies of the 

appendicular and axial muscle system collecting different echo times for generating a 

quantitative measure for fat and water composition [97,106].

Although previous research across the globe has identified changes in the size, shape, and 

spatial distribution of MFI in paraspinal muscle following whiplash [26,27,30–32,85] and in 

low back pain (and asymptomatic participants) [74,75,107], they are not typically reported 

in clinical practice, likely because radiologists are neither looking for them nor using the 

techniques that would enable them to observe and measure such changes. We are of the 

opinion, based on basic [105] and clinical research [30,68,74,85,104], that fat and water 

imaging is the preferred imaging method for quantifying MFI. We further expect that a 

richer investigative landscape for musculoskeletal conditions will result in diagnostic 

imaging standards based on sound biological, psychological, and social parameters 

[108,109] resulting in improved outcomes.

Magnetization transfer imaging of the spinal cord

Magnetization transfer imaging and Spinal Cord Toolbox briefly detail new imaging 

techniques and mechanistic measurement tools that pertain to patients with suspected spine 

trauma or cervical cord involvement (eg, whiplash, spinal cord injury, myelopathy) but, as 

yet, not patients with low back pain, shoulder dysfunction, or osteoarthritis where 

mechanistic origins are less grounded in trauma.

Magnetization transfer imaging has been used to provide a semiquantitative metric for 

traumatic brain injury [110,111], peripheral neuropathies [112], and is used clinically in 

diagnostic studies of neuronal degeneration in multiple sclerosis [113], Alzheimer disease 

[114–118], and Parkinson disease [119,120]. Magnetization transfer imaging provides an 

indirect measure of tissue integrity, relying on the exchange between saturated hydrogen 

molecules (protons associated with free water) and another pool of protons that belong to 

bound water residing on hydrophilic macromolecular surfaces (eg, lipids and proteins) 

[121,122].

Magnetization transfer imaging has demonstrated predictive value in determining sensory 

and motor disability levels following spinal cord injury, suggesting that a non-invasive MTI 

measure of the cord and determination of impairment is possible [123]. It is our contention 

that MTI could provide a more sensitive measure of cellular level changes in the spinal cord 

and brain in a discrete number of patients without radiological abnormalities following 

whiplash [94] and, possibly, concussion [124].

Positive findings could inform the prognostic picture of, and expected response to, 

functional rehabilitation schemas by acutely characterizing the structure of white matter 

spinal pathways following head and neck trauma. Larger scaled prospective investigations 
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involving patients with varying levels of condition-related disability and impairment are 

required before definitive conclusions can be drawn. Fig. 1 details the basic physics 

underlying MTI.

Tools for imaging spinal cord pathways

The Spinal Cord Toolbox, an open-source image processing software, has been developed to 

facilitate the advancement of spinal cord imaging [125]. One key component of this software 

is the MNI-Poly-AMU T2-weighted template, which allows for a fitting of spinal cord 

imaging data from anatomically varied participants into a standardized anatomical template 

of the spinal cord [126]. This important registration step in image processing permits 

researchers the opportunity to analyze precise anatomical locations of the cord, including 

gray matter, cerebrospinal fluid, and specific white matter tracts, which can then be 

compared within- and between-subjects in a standardized manner [127]. In 2016, the Spinal 

Cord Toolbox was used to study spinal cord changes in patients with degenerative cervical 

myelopathy, using diffusion tensor imaging, MT, and T2-weighted MRI [128]. Significant 

relationships between white matter injury and specific motor deficits, in an ipsilesional 

manner (ie, rightsided white matter damage correlated with right-sided motor deficits) were 

observed [128]. Using the Spinal Cord Toolbox, and in accordance with the findings of 

Martin et al., preliminary work coming out of the Neuromuscular Imaging Research 

Laboratory at Northwestern University observed damage involving the lateral corticospinal 

tract that was associated with ipsilesional motor deficits in patients with incomplete spinal 

cord injury (A. Smith, PhD, written communication, May 2017). The Spinal Cord Toolbox 

represents an innovative program with great potential to improve the segmentation, 

registration, and calculation of spinal cord anatomical metrics (Fig. 2) across a spectrum of 

patients with persistent spine-related disability (eg, whiplash, known spinal cord injury, or 

myelopathy). Any indication for its use in patients with other musculoskeletal conditions 

whose mechanistic origins are less ground in trauma (eg, low back pain or joint-related 

conditions) is, at this stage, unknown.

Where to go from here

The current climate of rejecting imaging as a viable modality for spinal pain or disability 

appears to have been borne largely from a series of studies that found positive spinal 

imaging findings in asymptomatic cohorts [11,17,129] and the appropriate desire to reduce 

some unnecessary imaging. Although we do not dispute the value of this research, we see 

several clear reasons why high-quality research into MRI findings remains important. Given 

the recurrent nature of most spinal pain and clear evidence that many MRI findings are more 

common in those who have spinal pain than those who do not [25,130], we believe future 

research should focus on understanding the link between imaging findings and future spinal 

pain (eg, the course of a current episode, development of recurrences, or persistent pain-

related disability), rather than focusing on imaging findings in asymptomatic people that 

would not be sent for imaging in clinical practice.

Elliott et al. Page 7

Spine J. Author manuscript; available in PMC 2019 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

Our intention is not to throw darts at our peers, nor is it to endorse imaging for all, or even 

most, people with traumatic or non-traumatic spinal pain. On the contrary, our intention is to 

refocus research and clinical efforts toward identifying the right evaluation, for the right 

patient, at the right time (acute, subacute, chronic stages). Although we are not there yet, 

advancing imaging technologies, and pathologic findings (or processes) may explain the 

seemingly disconnected spectrum of biopsychosocial signs and symptoms of chronic 

traumatic and non-traumatic neck and low back pain. The sequences and measures described 

are not meant to be exhaustive, rather they offer an encouraging preview of imaging findings 

that could eventually guide clinical treatment decisions by identifying spinal phenotypes 

with a target to determine which patients respond best to specific interventions. Current and 

future research investigations should aim to enhance tomorrow’s imaging guidelines toward 

providing appropriate directives for the timely performance of imaging in tandem with 

consideration of the psychosocial factors that are unique to the individual person seeking our 

care.
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Fig. 1. 
Basic physics underlying magnetization transfer imaging. Typical magnetic resonance 

imaging (MRI) draws its signal from protons associated with free water. There is also a pool 

of protons bound to macromolecules—such as the myelin surrounding an axon. If one 

compares the resonance spectra of these two pools, free water has a sharp resonance peak 

and long T2, whereas macromolecular protons have a broad spectrum and an ultra-short T2 

(~100 μs), making imaging of this group difficult. By use of an off-resonance radiofrequency 

pulse before imaging, one can selectively saturate the macromolecular pool of protons. 

Although the relaxation will not be visible, magnetization of the bound pool will partially 

exchange with the surrounding free water, degrading the local free water signal in proximity 

to macromolecules, as shown by the dashed line. This exchange between pools of 

magnetization allows for the indirect study of the bound protons, and thus the density and 

stability of macromolecular content of a given imaging voxel. This technique is often 

reported as the magnetization transfer ratio or MTR, the signal change in free water caused 

by magnetization exchange.
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Fig. 2. 
(A) A native sagittal T2-weighted image of a participant with spinal cord injury. (B) Native 

axial T2-weighted images through the spinal cord lesion. (C) The lesion filled image was 

then straightened along the spinal cord and registered to the MNI-Poly-AMU spinal cord 

template. The mean and standard deviation (SD) of the voxel intensities were then calculated 

within a non-lesioned 1-cm axial cross section of the spinal cord immediately superior to the 

lesion. The maximum intensity projection image was then thresholded at two SDs above the 

mean to define the lesion. (D) The extent of spinal cord damage was then quantified in the 

axial plane as the ratio of the spinal cord that was lesioned across the total cord and within 

the right and left lateral corticospinal tracts (LCST) and gracile fasciculi (GF). One 

representative participant is shown. The right and left LCST and GF are shown in green and 

light blue, respectively.
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