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Introduction. Obesity has an unclear pathogenesis. MicroRNAs (miRNAs) may function as biologically active molecules for
obesity through regulating adipocyte differentiation. This study aimed to identify how miR-129-5p (a specific miRNA) regulates
adipogenesis in vitro and explore its possible role in the pathogenesis of obesity in humans. Materials and Methods. The miR-129-
5p expression was detected in obese mouse models. The effect of miR-129-5p on adipocyte differentiation was observed, and the
adipose markers were analyzed. Bioinformatics and dual-luciferase reporter assay were applied to predict and confirm the target
genes of miR-129-5p. The human serum samples were detected and analyzed. Results. miR-129-5p is highly expressed in adipose
tissues of db/db mice. Gain- and loss-of-function studies show that miR-129-5p could significantly inhibit adipocyte differ-
entiation and white adipocyte browning in vitro and decreases the level of specific markers, such as FABP4, UCP1, and PPARy, in
mature white and brown adipocytes. miR-129-5p directly targets ATG7 which is predicted with bioinformatics and confirmed by
dual-luciferase reporter assay. Serum miR-129-5p level was evidently elevated in patients with simple obesity (p <0.01) and
correlates with obesity indices, including BMI (r = 0.407, p < 0.029) and fat percentage (r = 0.394, p < 0.038). Conclusion. miR-129-
5p might target on the ATG7-related autophagy signaling network that regulates white and brown adipogenesis. Importantly, the
aforementioned results suggest serum miR-129-5p might be a potential biomarker and therapeutic target for obesity.

1. Introduction

Obesity is an epidemic health problem worldwide and a
major contributor to metabolic syndrome and disorders,
such as type II diabetes, nonalcoholic fatty liver disease,
cardiovascular disease, and some cancers [1-3].

Obesity is defined as excessive fat accumulation in ad-
ipose tissue [4]. Mammals have three types of adipocytes,
white, classical brown, and beige adipocytes. White adipo-
cytes specialize in energy storage, while brown adipocytes
specialize in energy expenditure without generating ATP. In
addition to the classical brown adipocytes, beige adipocytes
represent UCP1-expressing brown adipocytes emerging in
white adipose tissue upon certain stimulations [5, 6].

MicroRNAs (miRNAs) are a novel group of small (ap-
proximately 22 nucleotides) noncoding RNAs that emerge as

important regulators of mRNA expression [7]. Increasing
evidence has demonstrated that plenty of miRNAs have
function on obesity through regulating adipogenesis [8].
Adipogenesis is a complex process and contains two main
stages, commitment and differentiation. Once preadipocytes
(or stem cells) commit to an adipose lineage, they are induced
to form mature adipocytes requiring sequential activation of
transcription factors, including CCAAT/enhancer-binding
protein (C/EBP) gene family and peroxisome proliferator-
activated receptor-y (PPARy) [9]. miRNAs have been re-
ported to modulate adipocyte differentiation by targeting
adipogenic regulators. For example, miR-143 enhances the
differentiation of cultured human preadipocytes and directly
targets FGF7 which may function as a fine-tuning molecule in
the adipogenic process [10]. Similarly, miR-27b directly targets
PPARy and inhibits the process of human adipogenesis [11].
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The evidence suggests that different miRNAs have different
effects on adipocyte differentiation, and which adipocyte-
specific genes are regulated by specific miRNA is not clear so
far. Furthermore, with the advancement of technology, cir-
culating miRNAs are treated as potential biomarkers for
obesity. For example, miR-223, miR15b, and miR130b increase
in individuals and overweight people with obesity [12].
However, it remains unclear whether adipocyte-functioned
miRNAs will become novel biomarkers for obesity.

In this work, the regulating functions of a specific
miRNA in adipogenic program were investigated. Based on
our study, we analyzed and confirmed the direct target genes
of miR-129-5p in vitro and determined the possible sig-
naling pathway mediating adipocyte differentiation and the
browning program of white adipocytes. Moreover, we ex-
plored the associations between circulating miR-129-5p and
parameters of obesity and aimed to provide novel thera-
peutic targets for defeating obesity.

2. Materials and Methods

2.1. Animal Experiments. 'This animal study was approved by
the Animal Care Committee of Shanghai Jiao Tong Uni-
versity School of Medicine. The male db/db mice generated
in C57BLKS/] background and wild-type littermates were
purchased from the Model Animal Research Center of
Nanjing University (Nanjing, China, Approval No. SCXK
(SU) 2015-0001). 7-week mice were housed at a 12-hour
light/dark cycle with free access to water and food. After 1-
week adaptation, the mice were sacrificed for subsequent
experiments.

2.2. Isolation of SVF Cells. The C57BL/6 genetic background
mice were purchased from Lingchang Biotech, China. Pri-
mary white fat stromal vascular and mature fat cells were
fractionated according to published methods [13, 14]. Then,
cell culture and adipocyte differentiation were established as
previously described [15].

2.3. HEK 293T Cell Culture. Human embryonic kidney
(HEK) 293T cells (ATCC, Manassas, VA) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) (Hyclone,
Logan, UT) supplemented with 10% fetal bovine serum
(FBS) (Hyclone), 100 units/ml penicillin, and 100 mg/ml
streptomycin (Invitrogen, Carlsbad, CA, USA) and main-
tained in 5% CO, at 37°C [16].

2.4. Prediction of miRNA Targets and Bioinformatic Analysis.
Target genes were predicted by TargetScan (http://www.
targetscan.org/) and miRDB (http://www.mirdb.org/). The
web-based computational tool DIANA Lab (http://www.
microrna.gr/miRPathv2, accessed July 2012) was used to
identify signaling pathways potentially altered by miR-129-
5p targets.

2.5. Dual-Luciferase Reporter Assay. HEK 293T cells were
cotransfected with Luc-3'UTR constructs and a control
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mimic or a miR-129-5p mimic (Ribobio, Guangzhou,
China). Luciferase activities were measured using Dual-
Luciferase Kit for Luc-ATG7, HMGBI, INSIG1, SOX2, and
TMEM65-3'UTR following the manufacturer’s protocols
(Promega, USA).

2.6. miRNA and RNA Analysis. Serum miRNA analysis was
performed as previously described [17]. RNA extraction,
cDNA synthesis of genes, and real-time quantitative PCR
(RT-qPCR) were also performed as previously described
[18]. Briefly, total RNAs were first dissolved using QIAzol
reagent (Qiagen, Germany) according to the manufacturer’s
instructions and then subjected to standard total miRNA
extraction and cDNA synthesis of fat tissue and cells. For
RT-qPCR analysis, C; values <34 were used for gene ex-
pression analysis. Primers are presented in Table 1. Ce_miR-
39, U6, and S-ACTIN were used as internal controls for
normalization for RT-qPCR of serum, tissue, and cell
miRNAs and protein-coding genes, respectively. The se-
quences of miR-129-5p were synthesized by Qiagen, Ger-
many. All the RT-qPCR results were expressed as a ratio in
arbitrary units.

2.7. Western Blotting. Cells were lysed with RIPA buffer
(Biocolors Biology, Shanghai, China). The protein concen-
tration was assayed using a Pierce BCA Protein Assay Kit
(Thermo Scientific, USA). The boiled samples were sepa-
rated by SDS-PAGE and electrotransferred to PVDF
membranes (Millipore, USA). The immunoblots were
blocked with 10% nonfat milk and incubated with anti-
antibodies for UCP1, f-ACTIN (Santa Cruz, USA), PGC-1q,
PPARy, FABP4, and FAS (Cell Signaling Technology, USA)
overnight at 4°C. After that, the membranes were incubated
with horseradish peroxidase-conjugated secondary anti-
bodies (Cell Signaling Technology, USA), and target protein
bands were detected using an enhanced chemiluminescence
system (Millipore, USA). Anti-B-ACTIN antibodies were
employed as internal control total cellular proteins.

2.8. Oil Red O Staining. At day 6 or day 8 of differentiation,
adipocytes were washed twice with phosphate-buffered sa-
line (PBS) and stained with filtered Oil Red O solution
(Nanjing Jiancheng Bioengineering Institute, China) for
15min at room temperature according to the provided
protocol of previous study [19]. Cells were visualized by light
microscopy (Tokyo, Japan) and photographed to measure
total lipid accumulation.

2.9. Measurement of Cell Triglyceride Levels. Cells were
washed twice with 1 ml PBS on day 8 of differentiation and
then dissolved in 220 ul TG lysis buffer by sonication. The
intracellular TG content was measured using a TG assay kit
(Sigma-Aldrich, USA) according to the manufacturer’s
recommended protocol. Protein concentrations were
quantified using a Pierce BCA Protein Assay kit (Thermo
Fisher Scientific, USA). The results were expressed as
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TaBLE 1: Primer sequences employed in this study.

Gene name Forward primer sequence (5'-3) Reverse primer sequence (5'-3")
C/EBPa CAAGAACAGCAACGAGTACCG GTCACTGGTCAACTCCAGCAC
PPARy TCGCTGATGCACTGCCTATG GAGAGGTCCACAGAGCTGATT
UCP1 AGGCTTCCAGTACCATTAGGT CTGAGTGAGGCAAAGCTGATTT
CIDEA TGCTCTTCTGTATCGCCCAGT GCCGTGTTAAGGAATCTGCTG
PRDM16 CCACCAGCGACTTCAC GCAGGACTCTCGTAGCTCGAA
FABP4 AGCATCATAACCCTAGATGGCG CATAACACATTCCACCACCAGC
ATG7 GTTCGCCCCCTTTAATAGTGC TGAACTCCAACGTCAAGCGG
SOX2 GCGGAGTGGAAACTTTTGTCC CGGGAAGCGTGTACTTATCCTT
HMGBI1 GGCGAGCATCCTGGCTTATC GGCTGCTTGTCATCTGCTG
TMEM65 CCATCGCACAAGGTAAGCG GACAGGGGTCTGAGAAGTAGG
INSIG1 CACGACCACGTCTGGAACTAT TGAGAAGAGCACTAGGCTCCG
B-ACTIN GCCAGCCTCTCCTGATTTTAGTGT GGGAACACAAAAGACCTCTTCTGG

milligram TG per milligram protein (mg TG/mg protein)
and were standardized by dividing with the mimic control.

2.10. Study Subjects and Sample Collection. A total of 31
subjects were selected, including 15 normal weight volunteers
from the Shanghai Jiao Tong University School of Medicine
and 16 subjects with simple obesity from Ruijin Hospital.
Clinical and biochemical measurements are shown in Table 2.
The study was reviewed and approved by the Institutional
Review Board of Ruijin Hospital, Shanghai Jiao Tong Uni-
versity School of Medicine, and was in accordance with the
principle of the Helsinki Declaration II. All of the participants
provided written informed consents. The fasting serum sam-
ples were collected from the participants and stored at —80°C.

2.11. Statistical Analysis. Each experiment was performed at
least three times. Student’s t-test was used to analyze the
results of all cellular and animal experiments, and the results
were presented as mean+SEM. In the human trials, all
values were presented as mean + SD. Statistical analysis was
performed using Student’s ¢-test in SPSS 10.0 (SPSS Inc.,
Chicago, IL, USA). Pearson’s correlation analysis was per-
formed to examine the association between metabolic pa-
rameters and serum miR-129-5p. p < 0.05 was considered as
statistically significant.

3. Results

3.1. miR-129-5p Levels Were Increased in Adipose Tissue of db/
db Mice. Based on previous research by our laboratory [17],
we attempted to identify more miRNAs related to obesity.
We screened differently expressed miRNAs in adipose tis-
sues of obese mouse models and found that the miR-129-5p
level was increased dramatically in epididymal white adipose
tissue (EWAT) of db/db mice compared with the wild-type
group (Figure 1). This finding indicates that miR-129-5p
might play an important role in adipose tissue.

3.2. miR-129-5p Inhibited White Adipogenesis in Noncommitted
Multipotent Progenitor Cells In Vitro. We first overexpressed
miR-129-5p by constructing miR-129-5p mimics. A negative
control and miR-129-5p mimics were transfected in stromal
vascular fraction (SVF) from subcutaneous fat tissues of

male mice before 100% confluency. Subsequently, the cells
were induced to differentiate into white mature adipocytes
according to standard differentiation protocol (see Section
2). The expression of miR-129-5p was obviously enhanced
after transduced miR-129-5p mimics (Figure 2(a)). The
results of Oil Red staining and TG determination
(Figures 2(b) and 2(c)) showed that the differentiation was
inhibited by miR-129-5p mimics. The cells were harvested at
the indicated times. The mRNA expression of key genes
involved in adipogenisis, including C/EBP«a and PPARYy,
were detected (Figure 2(d)). Consistently, the protein ex-
pression of FABP4, PPARy, and FAS was significantly
inhibited by the expression of miR-129-5p (Figures 2(e) and
2(f)). This finding indicated that SVF from subcutaneous
white fat tissues transfected with miR-129-5p mimics had a
lower differentiation capacity.

3.3. miR-129-5p Also Inhibited Beige and Brown Adipogenesis
in Cells of SVF In Vitro. Next, miR-129-5p was also over-
expressed in SVF from abdominally subcutaneous fat tis-
sues. Then, the transfected cells were induced to differentiate
toward a brown adipocyte through the corresponding
protocol (see Section 2), which is called “beige adipogenesis”
or “white adipocyte browning.” The results of Oil Red
staining and TG determination (Figures 3(a) and 3(b))
indicated that the beige adipogenesis was also inhibited.
Additionally, the expression of adipogenic genes and specific
markers of brown mature adipocytes such as the protein
expression of UCP1, PRDM16, and PPARy were evidently
reduced (Figures 3(c)-3(e)).

Furthermore, we separated SVF cells in the interscapular
fat tissues and cultured with the same method as the program
of beige adipocyte differentiation. The differentiation was still
reduced by miR-129-5p mimics (Figures 4(a) and 4(b)). The
markers of adipocyte differentiation and specific markers of
brown mature adipocytes were significantly downregulated
(Figures 4(c)-4(e)).

3.4. miR-129-5p Downregulated Autophagy Pathway.
TargetScan and miRDB were used to identify candidate
targets of miR-129-5p. RT-qPCR was then employed to
detect related candidates. The results identified ATG7,
INSIS1, and SOX2 as candidate genes in mature white



4 International Journal of Endocrinology

TaBLE 2: Clinical characteristics of validation study participants by weight category.

Variable Normal weight control (mean + SD) Obese patients (mean + SD) p value
Demographic data

Sex (male) (n (%)) 15 (100%) 16 (100%)

Age (years) 27.22+1.77 27.45+1.79 0.696
Anthropometric measurements

BMI (kg/m?) 21.19+£1.35 32.01+1.91 0.0001
WC (cm) 76.57 £7.89 105.96 £ 6.17 0.0001
HC (cm) 93.14 +5.02 110.37 +5.26 0.0001
WHR 0.82 +0.06 0.96 +0.04 0.0001
Fat percentage (%) 25.07 +4.89 32.64+4.09 0.0001
Biochemical characteristics

Glu (mmol/L) 5.07 +3.15 5.35+3.65 0.016
HBA1C (%) 5.13+0.20 543+0.43 0.0001
TC (mmol/L) 4.67+0.83 5.83+1.29 0.002
TG (mmol/L) 0.92+0.38 2.71+1.97 0.001
HDL (mmol/L) 1.54+0.29 1.13+0.21 0.0001
LDL (mmol/L) 2.69+0.64 3.67 +1.00 0.001
Insulin (IU/L) 6.42+2.64 19.37 + 8.48 0.0001

The data are presented as mean + SD, and the p value was calculated using a two-tailed test; significant p values are indicated in bold. BMI, body mass index;
WC, waist circumference; HP, hip circumference; WHR, the rate of WC to HP; Glu, glucose; HbAlc, glycosylated hemoglobin; TC, total cholesterol; TG,
triglyceride; HDL, high-density lipoproteins; LDL, low-density lipoproteins.
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FiGgure 2: White adipocyte differentiation impaired by microRNA mimic-mediated overexpression of miR-129-5p. (a) Expression levels of
miR-129-5p. (b) Oil Red O staining of mature adipocytes. The top two images were captured by a camera; the lower two images were
acquired with a microscope at 100x amplification. (c) Relative TG content of cells isolated from EWAT. (d) The time course of miR-129-5p
expression during normal adipogenic differentiation was detected, and related white adipogenic genes were qualified by RT-qPCR. (e)
Protein levels of the target genes were determined by western blot. (f) Densitometry quantification of western blot. The results of Student’s ¢-
test are presented as mean + SEM of a representative of more than three independent experiments (* p <0.05, ** p <0.01, and *** p <0.001).

adipocytes (Figure 5(a)). ATG7, HMGBI, INSIS1, and
TMEMG65 were also selected in the mature beige fat cells
(Figure 5(b)).

To further confirm whether miR-129-5p directly tar-
geted these candidate genes, a dual luminescence assay was
executed in HEK 293T cells. Firstly, reporter constructs
containing luciferase cDNA linked to 3" UTR sequences of
candidate mRNAs including wild type and the mutant were
generated, such as the specific 3'UTR bind site of ATG7 to
miR-129-5p (Figure 5(c)). Next, the miR-129-5p mimics or
negative control and reporter constructs were cotransfected

into HEK 293T cells. The results showed that only ATG7 (an
essential autophagy gene) expression was significantly
suppressed by miR-129-5p (Figure 5(d)).

Next, we observed the autophagic flux in mature white,
beige, and brown adipocytes through determining the
LC3I/II and ATG7 protein expression by western blot after
overexpressing and inhibiting miR-129-5p. The results
showed that overexpression of miR-129-5p could inhibit
autophagy (Figure 5(e)-5(g)), while autophagy was
prompted when inhibiting miR-129-5p (Supplementary
Figures 7(a)-7(c)).
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(**p<0.01 and ***p <0.001).

3.5. Serum miR-129-5p Is Positively Correlated with Obesity in
Humans. To confirm whether miR-129-5p plays an im-
portant role in humans with obesity, we detected the serum
level of miR-129-5p in 15 normal weight participants and 16

patients with simple obesity and analyzed the correlation
between serum miR-129-5p with obesity indices. Anthro-
pometric characteristics and biochemical measurements of
study participants are summarized in Supp. Table 1. As we
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(c) Serum miR-129-5p was found to be associated with fat percentage in participants; n=31, r=0.394, and p <0.05.

expected, the miR-129-5p level was elevated in patients with
simple obesity compared with the normal weight subjects
(Figure 6(a); p <0.01). Interestingly, a positive correlation
between miR-129-5p level and obesity indices was evident,
including BMI (Figure 6(b); n =31, r=0.407, and p < 0.029)
and fat percentage (Figure 6(c); n =31, r=0.394, p <0.038),
suggesting a link between obesity and miR-129-5p level.
Taken together, these results demonstrated that circulating
miR-129-5p might be a biomarker of obesity.

4., Discussion

This study showed that the content of miR-129-5p was
increased in the white adipose tissue (WAT) of the mouse
model with obesity and participated in adipogenesis.
Overexpression of miR-129-5p inhibited adipogenesis in the
SVF of white adipose tissue in vitro. miR-129-5p mimics
decreased the content of lipid droplet and the expression of
the key regulators of adipocyte differentiation, FABP4, C/
EBP, PPARy, etc. Furthermore, when inhibiting the ex-
pression of miR-129-5p, the process of white adipogenic
differentiation is prompted (Supplementary Figure 1). The
regulating effect of miRNAs on obesity always functions by

mediating adipogenesis and lipid accumulation, and they
can target fat tissues distributed in different parts of the body
[12]. As previously reported, miR-128-3P could directly
target PPARy to suppress the 3T3-L1 preadipocyte differ-
entiation and bind with SERTAD2 to drive triglyceride
hydrolysis and lipolysis [20]. Gm15290 was one of the most
upregulated IncRNAs in the adipocytes of ob/ob mice
sponged miR-27b identified as a PPARy targeting miRNA to
positively regulate adipogenesis [21].

Although the amount of brown adipose tissue (BAT) in
human adults had been previously thought to be minimal,
recent studies demonstrated that adult humans have sub-
stantial amounts of functioning BAT [22-24]. Loss of BAT
activity may contribute to obesity and development of insulin
resistance. We observed that miR-129-5p inhibited the
brown adipocyte differentiation in scapular adipose tissues in
vitro. Also, we observed that miR-129-5p could block the
differentiation of SVF from EWAT into BAT. miR-129-5p
mimics decreased the expression of the specific and key genes
involved in brown adipocytes differentiation and function,
UCPI, CIDEA, PRDM16, etc. While inhibiting miR-129-5p,
more mature beige and brown adipocytes were observed
compared with negative control inhibitors (Supplementary
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Figures 2 and 3). These results indicate that miR-129-5p may
be an essential regulator of brown fat adipogenesis and
further imply that there is a novel mechanism governing
BAT activation and WAT browning.

Autophagy is essential for adipocyte differentiation, and
ATGS5 or ATG7 knockdown inhibits differentiation of 3T3-
L1 preadipocyte [25]. Researchers have analyzed autophagy-
related genes during adipocyte differentiation using publicly
accessible data, which showed that autophagy may upre-
gulate key pathways related to adipocyte differentiation in-
cluding the mTOR, Jak-STAT, insulin, and adipocytokine
signaling pathways [26]. It was reported that ATG7 deletion
in 3T3-L1 preadipocyte inhibited cell differentiation [27].
Under the special conditions like starvation, autophagy could
remove ubiquitinated AMPK which could block the mTOR
signal pathway to allow the accelerated fat accumulation and
the process of differentiation [25]. ATG7-mediated auto-
phagy has been confirmed to play an important role in
normal adipogenesis and inhibition of autophagy by dis-
rupting ATG?7 leading to less white adipose tissues, and the
WAT contains more mitochondria [27]. miR-129-5p may
directly regulate ATG7 and reduce white adipogenic dif-
ferentiation. Endoplasmic reticulum (ER) stress inhibits
autophagic flux by blocking autophagosome-lysosome fusion
in trophoblast cells [28]. ER-phagy helps to ameliorate the
effect of ER stress through the degradation of ER membranes
[29]. Nrfl, an ER-localized transcription factor, was iden-
tified as a critical driver in the process of adaptive increase of
proteasomal activity, which is indispensable to brown adi-
pose tissue (BAT) thermogenic function. Brown adipocyte-
specific deletion of Nrfl results in ER stress. Our experiments
also showed that, based on these research studies, we
speculated that miR-129-5p may block autophagic flux to
disrupt ER homeostasis to diminish mitochondrial function
of beige and brown adipocytes [30]. Although it is possible
that miR-129-5p mediates the inhibition of adipocyte dif-
ferentiation through ATG7-related autophagy pathway, the
detailed mechanisms still need to be investigated further.

Recent studies have revealed that miRNAs can be treated
as biomarkers in metabolic diseases [31], B-cell lympho-
magenesis [32], age-related disease [33], and various cancers
[34]. This study identified that miR-129-5p was elevated in
human serum with obesity and positively correlated with
obesity indices, such as BMI and fat percentage.

5. Conclusion

Our results have revealed the biological function of miR-
129-5p for the first time in regulating adipocyte differen-
tiation. The present research also demonstrated that serum
miR-129-5p could be a potential biomarker for obesity in
human, which will provide identification of more thera-
peutic targets and strategies against obesity and related
metabolic disorders.
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