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Several neurodegenerative disorders exhibit selective vulnerability, with subsets of neurons more affected than others, possibly
because of the high expression of an altered gene or the presence of particular features that make them more susceptible to
insults. On the other hand, resilient neurons may display the ability to develop antioxidant defenses, particularly in diseases of
mitochondrial origin, where oxidative stress might contribute to the neurodegenerative process. In this work, we investigated the
oxidative stress response of embryonic fibroblasts and cortical neurons obtained from Afg3l2-KO mice. AFG3L2 encodes a
subunit of a protease complex that is expressed in mitochondria and acts as both quality control and regulatory enzyme
affecting respiration and mitochondrial dynamics. When cells were subjected to an acute oxidative stress protocol, the survival
of AFG3L2-KO MEFs was not significantly influenced and was comparable to that of WT; however, the basal level of the
antioxidant molecule glutathione was higher. Indeed, glutathione depletion strongly affected the viability of KO, but not of WT
MEF, thereby indicating that oxidative stress is more elevated in KO MEF even though well controlled by glutathione. On the
other hand, when cortical KO neurons were put in culture, they immediately appeared more vulnerable than WT to the acute
oxidative stress condition, but after few days in vitro, the situation was reversed with KO neurons being more resistant than WT
to acute stress. This compensatory, protective competence was not due to the upregulation of glutathione, rather of two
mitochondrial antioxidant proteins: superoxide dismutase 2 and, at an even higher level, peroxiredoxin 3. This body of evidence
sheds light on the capability of neurons to activate neuroprotective pathways and points the attention to peroxiredoxin 3, an
antioxidant enzyme that might be critical for neuronal survival also in other disorders affecting mitochondria.

1. Introduction

AFG3L2 (ATPase family gene 3-like 2) encodes a subunit of
the large m-AAA (ATPases associated with various cellular
activities) protease complex expressed on the inner mem-
brane of mitochondria and active on the matrix side. In
humans, AFG3L2 is either part of a homohexameric complex
or associated in a heterocomplex with the homologous
protein paraplegin (encoded by SPG7), whose mutations are

responsible for hereditary spastic paraplegia. AFG3L2 is
crucial for several mitochondrial functions: it is reported
to contribute to the quality control system, to play
chaperon-like activities, to regulate the processing of pro-
teins involved in mitochondrial dynamics, and to control
the turnover of respiratory chain subunits [1–5]. Heterozy-
gous missense or frameshift mutations [3, 6] as well as partial
deletion [7] of AFG3L2 have been associated to spinocerebel-
lar ataxia type 28 (SCA28), characterized by autosomal
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dominant inheritance [8] (https://www.omim.org). SCA28
[9] is characterized by young-adult onset, with cerebellar atro-
phy but no signs of cognitive impairment and sensory
involvement [10]. On the other hand, a homozygousmissense
mutation inAFG3L2 causes the spastic ataxia type 5 (SPAX5),
a different and more severe disease, characterized by early-
onset spasticity, myoclonic epilepsy, cerebellar atrophy,
oculomotor apraxia, and dystonia [11]. Recently, also early-
onset optic atrophy has been associated with a de novo
AFG3L2 heterozygous mutation (p.R468C; [12–14]). The
Afg3l2 haploinsufficiency in SCA28 causes several mitochon-
drial dysfunctions that include reduced assembly of respira-
tory complexes, swollen appearance, fragmentation and
altered dendritic distribution, increase in oxidative stress,
and calcium dysregulation [15, 16]. The effects of mutations
are particularly evident in Purkinje cells (PCs), where
AFG3L2 is highly expressed [3, 17] and where the reduced
capability in buffering calcium by the affected mitochondria
was proposed to cause the so-called “dark cell degeneration”
[18].Afg3l2missense mutation or haploinsufficiency was also
reported to induce an increase in lipid peroxidation in
lymphoblastoid cell lines [19] and protein oxidation inmouse
cerebellum from KO and heterozygous mice [18, 20], respec-
tively. Indeed, although haploinsufficiency does not mimic
the genetic background of patients, it should be considered
that the mutations in the proteolytic domain of Afg3l2, while
not altering the protein levels, still reduce the overall activity
of the complex of about 50%, therefore providing a functional
haploinsufficiency [5]. Overall, the heterozygous models
functionally recapitulate the genetic settings of SCA28
patients and are currently used to study the molecular
alterations in this disease.

Higher levels of oxidative stress play a relevant role not
only in SCA28 but also in other neurodegenerative disor-
ders, especially those with mitochondrial origin (such as
Friedreich’s ataxia or hereditary spastic paraplegia type 7
(HSP-SPG7)), or severely affecting these organelles (such
as amyotrophic lateral sclerosis). It is widely accepted that
alterations of mitochondria, which represent the main site
of reactive oxygen species (ROS) production, increase the
already high level of oxidative stress in neuronal cells due
to high oxygen consumption, autooxidation of neurotrans-
mitters, elevations of intracellular Ca2+ concentration during
synaptic activity, and age-dependent increase in iron and
accompanied by low expression of antioxidant defenses
[21, 22]. Among them, peroxiredoxins (Prxs) seem to play
a crucial role in detoxifying hydrogen peroxide [23] that,
in turn, is converted into the more reactive hydroxyl radicals.

Prxs represent a family of thiol peroxidases ubiquitously
and abundantly expressed in mammalian cells, which is
extremely efficient in oxidant perception and fast in scaveng-
ing activity [23]. There are six mammalian Prxs, classified in
three subtypes (typical 2-Cys, atypical 2-Cys, and typical 1-
Cys) depending on their catalytic mechanism of peroxide
reduction [24, 25]. Their high reactivity and specificity
toward hydrogen peroxide and their inactivation by hyperox-
idation, when the peroxides are in excess, open the possibility
that Prxs may act as cellular redox sensors. This could be
particularly true for Prx3, a typical 2-Cys member of the

family, which is selectively located in the mitochondrial
matrix, where most of cellular hydrogen peroxide is gener-
ated as a byproduct of aerobic respiration. Recent data
indicate that Prx3 account for almost 85-90% of hydrogen
peroxide detoxification, therefore defining a mitochondrial
redox setpoint [26]. Hence, Prx3 might play a crucial role
when mitochondrial oxidants are in excess; therefore, the
capability of some neurons to significantly increase Prx3
expression might represent a fundamental protective mecha-
nism counteracting the consequences of oxidative stress
caused by local insults or due to genetic diseases.

In this study, we investigate the effects of oxidative stress
conditions in murine embryonic fibroblasts (MEFs) and
cortical neurons obtained from AFG3L2-KO and WT mice.
We found that in both cell types, specific antioxidant path-
ways are induced by oxidative stress; in particular, Prx3
appears to be massively upregulated in cortical neurons
where it might play a relevant protective role.

2. Material and Methods

2.1. Materials. Cell culture media and reagents were from
Lonza (Basel, Switzerland), culture flasks and multiwell
plates from Nalge Nunc (Rochester, NY, USA), and Petri
dishes from Falcon BD (Franklin Lakes, NJ, USA). When
not specified, fluorescent dyes were from Molecular Probes
and Thermo Fisher Scientific, and chemicals were from
Sigma-Aldrich (St. Louis, MO, USA).

2.2. MEF Lines. Primary MEFs were established from
embryonic day E16.5 Afg3l2+/+ (WT) and Afg3l2–/– (KO)
mice embryos and immortalized by SV40, using 300μg/ml
geneticin for selection, as already described [4]. MEFs were
grown in DMEM supplemented with 5% fetal clone III,
2mM glutamine, 100μg/ml Pen Strep, and 1mM sodium
pyruvate. Cells were maintained at 37°C in a humidified
5% CO2 atmosphere; 1 day before the experiments, cells
were detached with trypsin and replated onto poly-lysine-
coated glass coverslips or plastic multiwell plates.

2.3. Primary Cortical Neurons. Primary cultures of cortical
neurons were prepared from newborn Afg3l2+/+ and Afg3l2–/–

mice. Briefly, after quick subdivision of cortices into small
sections, the tissue was incubated in a dissection medium
(Dulbecco’s modified Eagle’s medium supplemented with
4.5 g/l of glucose and 20mM Hepes) containing 100U of
papain, 0.5mg/ml DNase type IV (Calbiochem, La Jolla, CA,
USA), and 0.5mg/ml L-cysteine hydrochloride for 15min at
34°C. The pieces were then mechanically dissociated in the
dissection medium supplemented with 0.5mg/ml DNase
IV. After centrifugation, cells were plated onto poly-L-
lysine-coated plates and maintained in minimal essential
medium supplemented with 20mM glucose, B27 (Life Tech-
nologies, Carlsbad, CA, USA), 2mM glutamax, 5% fetal clone
III (FCIII; Hyclone, South Logan, UT, USA), and 5mM 1-b-
D-cytosine-arabinofuranoside. Cultures were maintained at
37°C in a 5% CO2 humidified incubator and used between
2 and 8 days after plating.

2 Oxidative Medicine and Cellular Longevity

https://www.omim.org


2.4. Videomicroscopy Setup. The video imaging setup is based
on an Axioskop 2 microscope (Zeiss, Oberkochen, Germany)
and a Polychrome IV (Till Photonics, GmbH, Martinsried,
Germany) light source. Fura-2 was excited at 360 nm (the
calcium-insensitive wavelength) to monitor Fe2+ variations
(as quenching of the fluorescence signal). Fluorescence
images were collected by a cooled CCD video camera (PCO
Computer Optics GmbH, Kelheim, Germany). The “Vision”
software (Till Photonics) was used to control the acquisition
protocol and to perform data analysis.

The Array Scan XTI platform (Thermo Fisher Scientific)
was used for HTM.

2.5. Solutions and Dye Loading. Dye loading and single-cell
experiments were performed in Krebs Ringer Hepes buffer
(KRH, containing 5mM KCl, 125mM NaCl, 2mM CaCl2,
1.2mM MgSO4, 1.2mM KH2PO4, 6mM glucose, and
20mMHepes, pH 7.4). Experiments were performed at room
temperature.

The fluorescent dyes were loaded as follows: (i) fura-2
acetoxymethyl ester (Calbiochem), 4 μM, 40 minutes at
37°C; (ii) Sytox orange, 3μM, kept in the extracellular buffer
during the experiments; and (iii) Hoechst 33342, 10 μg/ml,
10 minutes at RT [27, 28].

2.6. Cell Treatments. The acute iron overload protocol was
performed incubating cells in the presence of 20μM
pyrithione, an iron ionophore, for 2min before the adminis-
tration of Fe2+ (as FAS, ferrous ammonium sulfate) at the
desired concentration for 3min, followed by several washes
with KRH.

In some experiments, cells were pretreated with drugs as
follows: (i) Tempol (4-hydroxy-2,2,6,6-tetramethylpiperi-
dine 1-oxyl) and MitoTEMPO ((2-(2,2,6,6-tetramethylpiper-
idin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium
chloride monohydrate) (Alexis Biochemicals, Lausen,
Switzerland), 100 μM, were added to cells 1 hour before the
experiment and kept in the extracellular buffer during the
experiment; (ii) L-buthionine sulfoximine (BSO), 300μM
or 1mM (for cortical neurons and MEFs, respectively), was
incubated in the cellular medium overnight.

2.7. Measurements of Glutathione. Reduced glutathione
(GSH) content was measured at single-cell level by the
thiol-reactive fluorescent probe monochlorobimane (mBCl);
mBCl turns fluorescent after conjugation with GSH. In the
mBCl assay, 50 μM of mBCl was added to KRH buffer at the
beginning of the experiments and the kinetics of fluorescent
GSH-monochlorobimane adduct formation was analyzed
for 40 minutes, until the plateau phase was reached.

2.8. Measurements of Cell Viability. Cell viability was quanti-
fied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay. Briefly, MEFs, plated on 24-well
plates, were washed once with KRH buffer and exposed to
the experimental protocols for 1 h at 37°C. After washing,
cells were incubated for 1 h with 0.5mg/ml MTT in KRH.
After removing the extracellular solution, formazan, the
MTT metabolic product, was dissolved in DMSO and the
absorbance was read at 570nm.

2.9. Cell Transfection. MEFs were transfected with
mitochondrial-targeted EYFP (mitoEYFP vector; Clontech,
Mountain View, CA, USA), by Lipofectamine 2000 (Thermo
Fisher Scientific) according to the manufacturer’s instruc-
tions. Cells were incubated with the mix of Lipofectamine
and DNA for about 3 hours at 37°C and analyzed 24h after
transfection.

2.10. Western Blotting. Western blot was performed as
described previously [29]. Briefly, samples (20 μg of proteins
per lane) were resuspended in denaturating buffer (Tris/HCl
50mM, EDTA/Na 2.5mM, SDS 2%, glycerol 5%, dithiothre-
itol 20mM, and bromophenol blue 0.01%) and incubated
10min at 65°C. Proteins were then separated by standard
SDS-polyacrylamide gel electrophoresis and electrically
transferred onto nitrocellulose membrane. Membranes were
blocked with TBS supplemented with 0.1% Tween-20 and
5% skimmed milk powder. Primary antibodies were diluted
in TBS-0.1% Tween-20 as follows: rabbit anti-SOD2 (Upstate
Biotechnology, Thermo Fisher Scientific) 1 : 1000; rabbit
anti-Prx3 (AB Frontier, Seoul, South Korea) 1 : 2000; and
mouse anti-catalase (Sigma-Aldrich) 1 : 2000. For loading
controls, anti-actin (Sigma-Aldrich) was used. After washing,
membranes were incubated with secondary goat anti-rabbit
or anti-mouse horseradish peroxidase-conjugated antibodies
(Bio-Rad, Hercules, CA, USA) diluted 1 : 2000 in a blocking
solution. Protein bands were detected on autoradiographic
films by chemiluminescence with the West Pico or West
Femto Super Signal substrate (Thermo Fisher Scientific).

2.11. Data Analysis. Data are presented as mean ± SEM as
specified. Statistical significance was tested using two-way
ANOVA or one-way ANOVA followed by Dunnett’s (for
multiple comparisons against a single reference group) or
Bonferroni (for all pair wise comparisons) post hoc tests.
Statistical analysis was performed using GraphPad Prism
(GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Effects of Afg3l2 KO in MEF Cells. Since the defective
expression of Afg3l2 was reported to promote oxidative stress
in Purkinje cells [18] and to recapitulate the typical SCA28
mitochondrial dysfunctions in MEFs [4], we investigated
the susceptibility of MEF cells obtained fromAfg3l2-KOmice
(KO MEFs) to oxidative conditions.

MEFs were subjected to protocols of Fe2+ overload, in
order to favor the Fenton reaction and thus the production
of hydroxyl radicals, a highly reactive oxygen species [30].
Acute iron overload was induced by the administration of
100 μM Fe2+ in the presence of pyrithione, an iron ionophore
that allows a kinetically controlled Fe2+ entry [28]. This
condition, which is particularly toxic for neuronal cells [28],
affected neither the WT nor the KOMEF survival, as assessed
by the MTT assay (Figure 1(a)). We further investigated mito-
chondria to ascertain whether their morphology was affected
by the oxidative treatment. As expected from previous reports
[4, 16], mitochondrial appearance was already altered in basal
conditions: the mitochondrial network was more fragmented
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Figure 1: Vulnerability of Afg3l2-KO and WT MEFs to oxidative stress. (a) Acute iron overload (promoted by 100 μM Fe2+ administered
with the iron ionophore pyrithione, 20 μM) did not significantly alter the cell viability (assessed 90 minutes later by the MTT assay) of
either WT or KO MEFs, which both appeared similar to untreated WT cells (dashed line; 7 experiments for each cell lines). (b) WT (top)
and KO (bottom) MEFs overexpressing mtEYFP were imaged before (left) and 90 minutes after (right) acute iron overload (performed as
in (a)). Insets show a detail of mitochondrial morphology. The acute iron overload does not appear to significantly affect mitochondrial
morphology either in WT or KO cells, which appeared similar to their untreated counterpart. Scale bar: 50 μm. (c) Cellular GSH content
was estimated at single-cell level by mBCl, a probe that turns fluorescent after conjugation with GSH. Cells were imaged as mBCl was
added to the extracellular solution. Bars represent the average, from 4 experiments, of the fold increase (±SEM) of mBCl fluorescence with
respect to the basal value. (d) MEFs were depleted of glutathione by o/n treatment with L-buthionine sulfoximine (BSO, 1mM) before
MTT assays; under these conditions, iron overload (performed as in (a)) caused a significant reduction of KO MEF viability, compared to
WT counterpart (7 experiments).
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in KO MEFs transiently transfected with mtEYFP construct
than in WT cells. Acute iron overload did not induce evident
morphological alteration in either WT or KO MEFs, even
though mitochondria appear redistributed in the perinuclear
region (Figure 1(b)). We next investigated possible changes
in the basal levels of reduced glutathione (GSH), the main
antioxidant molecule in mammalian cells. At steady state,
GSH levels were significantly higher in KO than inWTMEFs
(mBCl assay; Figure 1(c)). In order to verify the role of GSH
in MEF protection, cells were depleted of their glutathione
content (overnight treatment with 1mM buthionine sulfoxi-
mine (BSO)), before being exposed to acute iron overload.
Under basal condition, GSH depletion similarly reduced cell
viability of bothWT and KOMEFs; after acute iron overload,
a strong toxic effect was observed in KOMEFs but not inWT
(Figure 1(d)).

Single-cell analysis was used to characterize the kinet-
ics of the responses to acute iron overload after glutathi-
one depletion. Cells were loaded with fura-2, whose
fluorescence is selectively quenched by Fe2+ but not Fe3+

[28], in order to monitor iron oxidation and, indirectly,
the Fenton reaction. When the cells were exposed to acute
iron overload, the intracellular fura-2 fluorescence at
360nm was initially quenched by the rapid intracellular
Fe2+ influx; after a variable period of time, a recovery of
the fluorescence signal could be observed (oxidative burst),
a sign of the oxidation of Fe2+ to Fe3+ occurring during
the Fenton reaction (Figure 2(a)). The full development
of the oxidative burst (i.e., the time to reach the peak
(TTP) of fluorescence recovery after iron overload)
occurred earlier in KO MEFs than in WT MEFs (with a
mean of 48 vs. 70min; Figure 2(b)). On a wider time
window, the average of TTP in WT could be even higher
than that indicated. Indeed, the majority of WT MEFs
(155 out of 255 cells) was able to maintain iron under a
reduced form, without signs of oxidative burst for the entire
duration of the experiments (120min); in this case, the TTP
was considered 120min even though it might have not
occurred at all. On the contrary, all KO cells undergo oxidative
burst within the same time window, thus indicating a
lower reducing capacity. This oxidative burst could be
accompanied by alteration of plasma membrane integrity
and cell death, a condition revealed by the loss of fura-2
dye and confirmed by Sytox nuclear staining (Figure 2(c))
[28]. Of note, cells were protected when preexposed to ROS
scavengers no matter whether acting at the cytosolic (Tem-
pol) or mitochondrial (MitoTEMPO) level, thus indicating
the role of oxidative stress in cell death (Figure 2(d)).

Altogether, these results indicate that KO MEFs are
constitutively exposed to higher oxidative stress and that
they develop higher cellular reducing capacity, mainly
attributable to intracellular glutathione potentiation.

3.2. Response of Afg3l2-KO Cortical Neurons to Oxidative
Conditions. Having demonstrated a higher vulnerability
of KO MEFs to oxidative insults, we applied the same
experimental design to cortical primary neurons obtained
by both WT and Afg3l2-KO mice (WT and KO neurons,
respectively).

Neurons were exposed to the protocol of acute iron
overload, in which, however, a more physiological Fe2+

concentration (1 μM instead of 100μM) was administered,
to take into account the higher sensitivity of neuronal cells
to oxidative insults. For the same reason, neurons were
analyzed at the very early stage in culture (2 days in vitro
(DIV)), when they are expected to be more resistant to
oxidative environment [28]. Despite these attentions to
contain the oxidative effects, KO neurons showed a very
fast iron oxidation (fura-2 dequenching), an indication of
their limited reducing capacity; moreover, shortly after
fluorescence recovery, fura-2 signal disappeared from the
majority of the cells, a sign of membrane permeabilization
preceding cell death. Meanwhile, the age-matched WT neu-
rons appeared more resistant to the iron insult: the increase
in the fluorescence signal was typically delayed and did not
necessarily lead cells to death during the 2 hours of image
acquisition (Figures 3(a) and 3(a′); the two traces in
Figure 3(a) represent the time course of averaged fluores-
cence signals from all neurons analyzed in separate experi-
ments). Neurons were then analyzed after one week in
culture, to exacerbate the response to oxidative stress.
Indeed, after 8-9DIV, the oxidative burst was sped up in
WT neurons, as already observed in aged hippocampal
neurons [28]. Unexpectedly, KO neurons showed a delayed
fluorescence recovery and no signs of cell death within the
experimental time window (Figure 3(b)). The overall
resistance to oxidative stress conditions is analyzed in
Figure 3(c), where the peaks of the oxidative bursts in
WT and KO neurons are compared at 2 and 8DIV. The
analysis clearly shows that KO neurons are initially more
susceptible to oxidative stress (oxidative burst occurring at
a mean of 32 and 95 minutes in KO and WT neurons,
respectively), but in few days acquire higher resistance than
controls (51 and 88 minutes in KO and WT neurons,
respectively).

3.3. Role of Glutathione in the Protective Mechanisms. In
order to investigate the compensatory mechanism that
develops with time in culture and taking into consider-
ation the results obtained in MEF, we assessed the levels
of GSH by the mBCl assay. GSH levels were somewhat
lower in KO neurons (although not significantly different)
at both time points, showing a tendency to further
decrease, rather than increase, in the older cells
(Figure 4(a)), suggesting that GSH is not the main respon-
sible for the observed protective mechanism. The role of
this antioxidant molecule was further investigated in a sec-
ond set of experiments, in which neurons were virtually
depleted of GSH (overnight incubation with 300 μΜ
BSO) before being subjected to iron-overload protocol
and single-cell analysis. The four traces in Figure 4(b),
which represent the mean of all neurons analyzed in each
condition, show a much faster fluorescence recovery and
fluorescence loss, compared to the untreated counterpart
(Figures 3(a) and 3(b)), suggesting lower cellular reducing
capability and higher neuronal death. The bar graph in
Figure 4(c) showed that GSH depletion speeds up all
kinetics, thus making the TTP values not significantly
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different. Nonetheless, even without GSH, the oxidative
burst appeared still delayed in 8DIV KO neurons (a
TTP mean of 14 versus 27 minutes in neurons of 2 and
8DIV, respectively). These data were further confirmed
by a quantitative analysis of the neuronal death, performed
by high-throughput microscopy (Array Scan XTI platform,
Thermo Fisher Scientific). As soon as 30 minutes after
Fe2+ administration, the 2DIV KO neurons showed an

elevated percentage of death, significantly higher than the
WT counterpart. At 8DIV, the toxicity increased in WT
and decreased in KO neurons reaching comparable values
(Figure 4(d)).

Overall, even in conditions of glutathione depletion, the
KO neurons appeared more resistant to iron-mediated oxi-
dative stress at 8DIV than at 2DIV, thus suggesting that
other protective mechanisms play a major role.
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Figure 2: Single-cell analysis in GSH-depleted MEF cells. (a) The acute Fe2+ entry was followed kinetically at single-cell level in fura-2-loaded
MEFs: pyrithione-mediated Fe2+ entry promoted fura-2 fluorescence quenching (excitation at 360 nm, the Ca2+-insensitive wavelength)
followed, after a variable period of time, by fluorescence recovery due to oxidation of Fe2+ to Fe3+ likely induced by Fenton reaction. The
interval between Fe2+ entry and the peak (indicated by a dot in the representative curve) of oxidative burst (TTP: time to peak) occurred
significantly early in KO compared to WT MEFs, as described by the graph in (b); ∗∗∗p < 0:001. (c) The fura-2 dequenching phase can be
followed by a loss of fura-2 fluorescence signal (observable also in (a)) as a consequence of an increase in plasmalemma permeability also
documented by a concomitant Sytox blue nuclear staining. (d) The percentage of live MEFs (negative for Sytox staining and still loaded
with fura-2) at the end of the experiments (120 minutes after acute iron overload) was evaluated, by considering all cells analyzed, under
untreated conditions or after pretreatment with 100 μM Tempol and 100μM MitoTEMPO, cytosolic and mitochondrial ROS scavengers,
respectively. Both treatments completely prevented cell death.
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3.4. Role of Mitochondrial SOD2 and Prx3 Enzymes. Alto-
gether, our results ruled out a prominent role for GSH in
the compensatory and protective mechanisms that develop
in cortical neurons during aging in culture. Accordingly, we
investigated other protective pathways, paying specific atten-
tion to the role played by mitochondria for two main reasons:
(i) AFG3L2 is a mitochondrial protein and its deficiency
affects mainly these organelles; (ii) in hippocampal neurons,
the iron-mediated oxidative stress causes a mitochondrial
impairment and fragmentation that can be prevented only
by MitoTEMPO, a mitochondrial-targeted superoxide scav-
enger [28]. Indeed, when cortical KO neurons were pre-
treated (1 h) with MitoTEMPO, before exposure to acute

iron overload, the oxidative burst was abolished and the neu-
ronal death was completely prevented at both 2 and 8DIV, as
shown in the two graphs of Figure 5(a), where the responses
of treated (red traces, averaged from all cells analyzed in 3
separate experiments) and untreated (black dotted traces,
already shown in Figures 3(a) and 3(b)) cells were superim-
posed. Similar results were obtained with 8DIVWT neurons
(not shown). Since these data provide a direct evidence of an
involvement of mitochondria, we investigated the possible
contribution of different antioxidant enzymes residing in
these organelles. Manganese superoxide dismutase (MnSOD
or SOD2) plays a crucial role in the scavenging of the super-
oxide anion, and its expression can be controlled in different
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Figure 3: Responses of Afg3l2-KO andWT cortical neurons to oxidative conditions. (a, a′) The graph and the image gallery represent the fura-
2 fluorescence of 2DIV cortical neurons, subjected to protocol of acute iron overload (as described in Figure 1(a), but with 1 μMFe2+ instead of
100μM). The traces in graphs (a) and (b) correspond to the average of fluorescent signals obtained from all the neurons analyzed per condition
(~25 neurons per experiment, from6-8 independent experiments per condition) and correspond to Fe2+ entry (fura-2 fluorescence quenching),
followed by iron oxidation (fluorescence recovery) and possibly by neuronal death (fluorescence loss). KO neurons show fluorescence recovery
and more massive fluorescence loss, compared to their WT counterpart. Scale bar: 30 μm. (b) At 8DIV, KO neurons became more resistant to
iron overload, with delayed oxidative burst compared to WT neurons and no signs of neuronal death. (c) The comparison of TTP in WT and
KOneurons (see (a) and (b)) shows that KOneurons are initiallymore susceptible to oxidative stress than theWTones, but they rapidly acquire
higher resistance when maintained few days in culture; ∗∗∗p < 0:001.
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physiological and pathological conditions. The analysis of
SOD2 protein expression in our cultured neurons revealed
an increase with time in culture (from 2 to 8DIV), which
was much more evident in KO neurons than in WT
(Figure 5(b)).

However, an increased competence of neurons in dis-
mutation of superoxide anion implies a more efficient pro-

duction of hydrogen peroxide that in turn has to be
detoxified. The conversion of hydrogen peroxide into
water can be catalyzed by 3 classes of redox enzymes:
glutaredoxins, catalase, and peroxiredoxins. The first group
is GSH-dependent; therefore, based on our previous exper-
iments, it is not expected to be primarily involved in the
protective mechanisms that develop in culture. Catalase
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Figure 4: Role of glutathione in the protection of KO cortical neurons from oxidative stress. (a) During aging in culture, GSH content,
analyzed by mBCl as described in Figure 1(c), remained at comparable levels in WT neurons, while it showed a decreasing trend in KO
neurons, indicating a minor role for GSH in the establishment of protective mechanisms. (b, c) Glutathione depletion (by O/N treatment
with BSO, 300μM) speeds up all cellular processes following Fe2+ entry (compared with the 2 graphs in Figures 3(a) and 3(b)), but still,
8 DIV KO neurons are more resistant than the 2DIV KO ones. This was confirmed by the kinetics of oxidative burst (evaluated as in the
previous two figures), therefore indicating no major role of GSH in antioxidant protective mechanism. (d) Under conditions of
glutathione depletion (as in (b) and (c)), neuronal death was significantly higher in 2DIV KO compared to WT neurons, while it was
similar in 8DIV neurons; ∗∗p < 0:01.

8 Oxidative Medicine and Cellular Longevity



is expressed on peroxisomes and, from our biochemical
data, does not increase with the time in culture (supple-
mentary figure S1). We therefore considered Prx3 that is
mainly expressed in the mitochondrial matrix and is
responsible for 90% of hydrogen peroxide detoxification
[31]. The Prx3 expression was very low at 2DIV

(western blot in Figure 5(c)), a condition that can
explain their high susceptibility to oxidative stress but
showed a remarkable increase in 8DIV KO neurons;
although the increase was significant also in WT neurons
(~10 times), it was even more impressive in KO neurons
(~40 times; Figure 5(c)).
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Figure 5: Role of mitochondrial SOD2 and Prx3 enzymes. (a) The pretreatment of KO neurons with MitoTEMPO (red traces, averaged from
all neurons of three representative experiments), a mitochondrial-targeted superoxide scavenger, prevents the oxidative burst and the loss of
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levels) reveal an increase in both SOD2 and Prx3 expression from 2DIV to 8DIV; this raise was much more remarkable in KO neurons
than in WT. ∗p < 0:05; ∗∗∗p < 0:001.
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4. Discussion

Several neurodegenerative disorders are characterized by a
selective neuronal vulnerability, meaning that subpopulations
of neurons are more prone to death in response to a common
pathological condition [32]. This selective toxicity may be
caused by a higher expression of the altered gene, by specific
features that make neurons intrinsically more vulnerable to
insults [33], or by their lower competence to develop compen-
satory mechanisms against the neurotoxic conditions. In neu-
rodegenerative disorders primarily involving mitochondrial
alterations (such as SCA28, Friedreich’s ataxia [34], and
HSP-SPG7 [1]), oxidative stress is expected to contribute
to the neurotoxic process.

In this study, we exposed two cell types, MEF cells and
cortical neurons from Afg3l2-KO mice to oxidative insults
by acute iron overload [28] in order to challenge the cellular
redox homeostasis and also because the accumulation of
intracellular iron reproduces, within the experimental time
window, a condition typical of several neurodegenerative
disorders as well as of normal brain during aging [35–37].

The evidence that iron overload does not affect KOMEFs
more than WT indicates that mutants acquire higher resis-
tance to oxidative stress to compensate for the mitochondrial
defects. The significant increase in GSH levels found in KO
cells can, at least partially, account for this enhanced antiox-
idant competence; indeed, glutathione depletion reduces the
ability of KOMEFs to maintain the physiological redox state,
therefore increasing the susceptibility to the effects of iron
overload compared to the WT counterpart. The higher GSH
production in mutants could be mediated by an increase in
cellular cystine levels, which are known to be controlled by
oxidative stress. Indeed, the cystine/glutamate antiporter
system Xc- is induced by the NF-E2-related factor 2 (Nrf2)
transcription factor, via the antioxidant response element
(ARE) [38].Moreover, Nrf2, togetherwith other transcription
factors such as AP-1 and NFκB, contributes to regulate the
expression of glutamate cysteine ligase and glutathione syn-
thetase, the two main enzymes involved in glutathione
synthesis [39].

Whatever the mechanism, the evidence of a compensa-
tory antioxidant mechanism at the steady state confirms the
presence of higher basal levels of oxidative stress in Afg3l2-
deficient MEFs and indicates the cellular ability of main-
taining this protective competence over time. The capability
of the cells to become resistant to oxidative challenge is
particularly important for neurons, which intrinsically
produce more ROS and are more susceptible to ROS
production, given their lower level of antioxidant defenses.
Indeed, our data showed that Afg3l2-KO neurons 2 days
after plating were more sensitive than their WT counterpart
to the oxidative conditions. On the other hand, as mentioned
before, KO cortical neurons developed, very early in culture,
mechanisms able not only to maintain under control oxida-
tive stress consequent to Afg3l2 deficiency but also to
counteract the increased susceptibility to oxidative condi-
tions observed in the aged neurons [28]. Indeed, while the
WT older neurons decrease their reducing capability, the
8DIV KO neurons become more resistant to oxidative

damage through mechanisms that are different from those
established in MEFs. GSH appears to be important for KO
MEFs but less for cortical KO neurons, possibly because of
its very low level in neuronal cells [28, 40]. In our Afg3l2-
KO neuronal model, antioxidant defenses can be primarily
attributed to the induction of the mitochondrial enzymes
SOD2 and Prx3. SOD2 detoxifies the superoxide by convert-
ing it into hydrogen peroxide [41], in physiological condi-
tions as well as in some neurodegenerative diseases, where
it can contribute to prevent neurodegeneration. However,
high levels of SOD2 may have detrimental effects on neuro-
nal lifespan, if the increased hydrogen peroxide is not
efficiently detoxified by glutaredoxins, catalase, or peroxire-
doxins [42]. This was certainly not the case in older Afg3l2-
KO neurons, where Prx3 protein levels were massively
increased. The role played by Prx3 in scavenging mitochon-
drial hydrogen peroxide has recently attracted considerable
attention. In particular, data in the literature directly corre-
late Prx3 expression level with a neuroprotective role under
oxidative conditions [43–45]. For instance, an upregulation
of Prx3 was observed in hippocampal pyramidal neurons as
soon as one day after cerebral ischemia/reperfusion and
was reported to remain high for several days, contributing
to protect neurons from ischemic damage [46]. Moreover,
neuronal death caused by excitotoxic hippocampal injury
was prevented by in vivo Prx3 overexpression [47]. On the
other hand, when Prx3 expression is downregulated, higher
sensitivity to oxidative stress is observed; this is reported in
Fanconi anemia [48], in brains of Alzheimer’s and Down
syndrome patients [49], and in the motor neurons of amyo-
trophic lateral sclerosis patients [50]. Prx3 is regulated at
the transcriptional level by the FOXO (Forkhead box, class
O) subfamily of Forkhead transcription factors, which are
regulators of antioxidant cellular response and whose activity
is, in turn, modulated by ROS levels [51]. Our results suggest
that 8DIV cultured Afg3l2-KO neurons reach an oxidative
stress level that, instead of making them more susceptible
to external oxidative insults, triggers a protective program
in which massive upregulation of Prx3 confers a resistance
to stress even higher than that of WT neurons.

We hypothesize that this emergency escape of ROS chal-
lenge is neuronal-specific and contributes to degeneration of
selective populations of neurons that failed to activate the
Prx3-associated detoxifying pathway. In this context, it will
be important to evaluate whether the PCs from SCA28
models are as efficient as the cortical neurons in developing
this compensatory antioxidant pathway or, conversely, if
they cannot prevent or compensate ROS production. In this
case, the oxidative stress induced by mitochondrial impair-
ment might contribute to alter mitochondrial trafficking, as
reported by Kondadi and coworkers [52]. On the other hand,
ROS elevation can participate to calcium dysregulation [53]
or directly contribute to the neurodegenerative process
affecting PCs in SCA28.

Finally, it might be also interesting to assess whether the
Prx3-dependent protective pathway is also activated in other
neurodegenerative diseases involving mitochondria and
oxidative stress, such as Friedreich’s ataxia [54, 55], which
might represent a good model to test this hypothesis.
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Overall, our data support the antioxidant role of Prx3 in
neuronal cells in vitro and open new perspective for the study
of its involvement also in in vivo models, also in view of its
recognized role in neuronal disorders associated to oxidative
conditions [56].
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