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Glioblastoma multiforme (GBM) diffusely infiltrates normal brain tissue. ,e presence of the blood-brain barrier (BBB) poses
difficulties for targeted delivery of currently available antitumor drugs. Novel brain drug delivery strategies are far from sat-
isfactory for glioma treatment. Recently, focused ultrasound (FUS) combined with microbubbles presents a transient, reversible,
and noninvasive approach for local induction of BBB opening. ,is strategy demonstrated its potential to increase local
concentrations of both diagnostic and therapeutic agents in glioma therapy. Current status and related physic mechanisms of this
drug delivery technique are discussed in this review. Delivery efficiency enhancement in many preclinical glioma models was
obtained by FUS-BBB opening combined with various nanoparticles. And, the clinical translational status of FUS-BBB will
be discussed.

1. Introduction

Glioblastoma multiforme (GBM), characterized by high
recurrence and poor prognosis, is the most malignant pri-
mary brain tumor in adults [1, 2]. ,e prognosis of patients
with gliomas still remains very poor after tremendous efforts
in both basic and clinical research. Patients were treated by
adjuvant chemotherapy and radiation therapy after ag-
gressive surgery. However, the 5-year survival rate is less
than 5% and with approximately 12–14months of median
overall survival durations [3].

,e blood-brain barrier (BBB) is a highly specialized
structure in brain [4]. ,e BBB is formed by brain micro-
vascular endothelial cells. Endothelial cells (EC) were sealed
by tight junctions (TJs), basement membrane of pericyte,
and end-feet of astrocyte. It acts as a selective physical barrier
for maintaining the homeostasis of the brain by regulating
immune cell transport, passive diffusion of chemicals, and
entry of xenobiotics [5, 6]. In physiology, the BBB selectively

allows only certain substances to pass between the brain
tissue and the blood vessels. ,erefore, the BBB protects the
brain from possible toxic elements and unfortunately also
severely prevents potential antitumor drugs into glioma. In
this case, it is very necessary and important to disrupt the
BBB, `allowing the diffusion or delivery of therapeutic or
diagnostic agents into the brain [7–9].

Various approaches were developed to overcome the
BBB problem in glioma treatment. Gliadel wafer, bio-
degradable 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU)
containing wafer, was approved by FDA in 1995 for glioma
treatment [10]. After glioma resection, they were implanted
on the surface of the surgical resection cavity for local release
of BCNU. It could bypass BBB because it involves local
surgical treatment. Convection-enhanced delivery (CED)
directly delivers high concentrations of drug within and
around brain tumors by surgical placement of catheters into
the brain. It also bypasses the blood-brain barrier and limits
systemic exposure of chemotherapeutics. CED of drugs in
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glioma has shown promise in animal studies and clinical
trials [11, 12]. However, this method also needs invasive
surgical exposure of the brain.

Ultrasound refers to mechanical waves with frequencies
greater than 20 kHz, the audible limit of human hearing.
Ultrasound is best known as a real-time, noninvasive medical
imaging method using sound waves. Focused ultrasound
(FUS) enables producing precisely focused acoustic energy
within a small volume noninvasively [13]. Focused ultrasound
(FUS) combined with microbubbles can locally disrupt the
BBB.

,is procedure is usually noninvasive and reversible
within several hours, after systemically injecting the thera-
peutic agents, thus providing great potential for therapeutic
agents to extravasate into targeted glioma area [14].

1.1. Mechanisms of BBB Disruption with Focused Ultrasound.
Focused ultrasound- (FUS-) induced BBB disruption is
facilitated by microbubbles. Microbubbles expand and
contract upon sonications by FUS, producing cavitation
effects. In general, there are two kinds of cavitations: stable
and inertial cavitations, as shown in Figure 1. Stable cavi-
tation is induced by relatively lower amplitude of FUS,
referring to repetitive contractions and expansions of
microbubbles [15]. Microstreamings are formed around
oscillating microbubbles, and cells near around would ex-
perience shear stress, eventually producing pore formation
on the cell membrane. Inertial cavitation occurs when
acoustic pressure is amplified, and then microbubbles would
be destructed or collapsed [7]. When shockwaves and
microjets are generated, tight junctions would be temporally
disassembled, vascular permeability would increase, and
thus drug transportation would enhance eventually [16, 17].

To induce these biological effects, utilization of micro-
bubbles is important. Microbubbles could significantly re-
duce the US power level by two orders of magnitude at least,
when compared with US without microbubbles [18].
Microbubbles, microsized microspheres, are filled with
hydrophobic gas like perfluorocarbons or sulfur hexa-
fluoride. Microbubbles are usually manufactured by lipid,
denatured protein (albumin), surfactant, or polymer. ,ree
kinds of commercially available microbubbles: Optison,
Definity [19], and SonoVue were proved to open BBB with
FUS successfully [20, 21].

Besides microbubbles, different ultrasound parameters
also showed various effects on BBB disruption. Choi et al.
showed that even very short pulses of ultrasound waves
could open the blood-brain barrier (BBB). In their study, a
3.5-cycle (2.3-μs) pulse was emitted by FUS. Microbubbles
and fluorescent-labeled dextrans were administered i.v and
the confocal microscopy results revealed the diffusion of
dextrans with different molecular weight after BBB dis-
ruption [22]. Chen and Konofagou found that during FUS-
BBB opening, compared with other parameters, higher
acoustic pressure was responsible for dextrans with larger
molecular weight to pass BBB [23]. ,eir data indicated that
different molecular sizes which were allowed to penetrate
through BBB need different acoustic pressures. It also means

that it is possible to select appropriate acoustic pressure to
deliver the drugs according to their molecular sizes. Gen-
erally, various acoustic parameters, such as pulse repetition
frequency, exposure time, [24] pressure amplitude, [24], and
pulse length [25], were fully tested in the previous research.
And different kinds of microbubbles [21, 26] and dosage of
microbubbles [25] were also contributed to different BBB
opening effects. For example, Marquet et al. utilized FUS at
500 kHz frequency to achieve BBB opening in nonhuman
primates. ,e acoustic parameters were listed as follows:
pressure amplitude at 0.3MPa and 0.45MPa, pulse length of
10ms, PRF at 2Hz, and total exposure time of 120 s. Two
kinds microbubbles—Definity and customized micro-
bubbles—were used in this study [27].

Most studies have shown that BBB is restored in a few
hours after sonication. However, the duration of BBB
opening could stay open for days and even can be per-
manently damaged when parameters are suboptimal. A
linear proportionate was found between the sonication
duration and the opening size of BBB [28]. ,e magnitude
of FUS-BBB opening differs greatly between studies be-
cause of various sonication parameters. Over the past years,
many safety studies of FUS-BBB opening have been
thoroughly investigated including histopathological
changes, neural function, physiological effects, biochemical
assays [29], and behavior tasks [30]. For a safe and suc-
cessful clinical translation of FUS-BBB opening, real-time
feedback control of acoustic parameters has been de-
veloped recent years [31, 32]. ,e passive cavitation de-
tector (PCD) was used by Maimbourg et al. to quantify
acoustic signal of microbubbles when sonicated by focused
ultrasound [33]. ,e feedback control algorithm for real-
time monitoring of microbubbles’ acoustic emissions un-
der FUS has been evaluated by Bing et al. [21].

1.2. FUS-BBB Opening for Targeted Chemotherapeutics De-
livery in Glioma Treatment. Many chemotherapeutics fail to
cross the BBB, and thus the clinical application has been
severely limited. Doxorubicin (DOX) is a widely used
chemotherapeutic agent with excellent antineoplastic effi-
cacy. However, DOX does not cross the BBB. Its insufficient
accumulation in brain tissue resulted in poor efficacy in
glioma treatment. Taking advantage of MRI-guided focused
ultrasound to open the BBB, Treat et al. achieved enough
concentrations of DOX in the brain tumors, and antitumor
efficacy was also significantly enhanced [34]. Another ex-
ample is 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU), a
chemotherapy drug used for glioma, which showed only a
relatively limited effect in the short-term survival study. By
contrast, Liu et al. employed FUS-BBB for delivery of BCNU
to glioma-bearing rats. It greatly increased the concentration
of BCNU in normal brains (by 340%) and tumor-bearing (by
202%) brains. Importantly, inhibition of tumor progression
and survival rate was both improved by these focused ul-
trasound and BCNU combination therapy [35].

In the clinical practice, current standard treatment for
newly diagnosed glioma includes maximal safe resection,
followed by radiotherapy and chemotherapy, in which the
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adjuvant temozolomide (TMZ) was used up to six cycles
[3, 36]. However, the median survival of standard treatment
was still only 4.0 months [37].,emain reasonmay lie in the
poor TMZ delivery efficiency. To overcome this problem,
Liu et al. revealed increased TMZ delivery into glioma-
bearing mice after being treated with FUS and microbubbles
[38]. TMZ degradation time also increased from 1.02 to 1.56
hours on U87 glioma animal models, and also FUS-BBB
with TMZ effectively inhibited the tumor growth. In another
report, Beccaria et al. used ultrasound to open the BBB, thus
significantly enhancing the concentration of both temozo-
lomide (TMZ) and irinotecan (CPT-11) in New Zealand
white rabbits [39]. Different with focused ultrasound
equipments, in their experiment, sonication was carried out
by using the 1.05-MHz planar transducer with injection of
microbubbles.

1.3. Drug-Loaded Microbubbles for Drug Delivery in Glioma
Treatment. In recent years, some advances can be seen in the
drug-loaded microbubbles for drug delivery for glioma
treatment. Boron neutron capture therapy (BNCT) showed
some clinical effect in patients with high-grade gliomas [40].
However, successful treatment of glioma by BNCT requires
more efficient boron delivery agents [41, 42]. For a more
efficient tumor-targeted delivery of boron, Fan et al. fabri-
cated PEG-b-PMBSH-Loaded MBs, which are formed by
boron-containing nanoparticles (PEG-b-PMBSH), coupling
with microbubbles, for GL261-bearing mouse glioma model
treatment [43]. LA-ICP-MS measurement showed quick
uptake of boron in tumor after FUS, with 3-fold increase in
the tumor-to-normal-brain ratio. Chemotherapeutic drug-
BCNU was encapsulated in the phospholipids of the MB
shell by Ting et al., with a loading capacity of 68.01± 4.35%

and significantly prolonging BCNU’ half-life by 5-fold [44].
FUS insonation was applied on tumor-implanted rats after
injection with BCNU-MBs, demonstrating excellent tumor
progression inhibition, with median survival being signifi-
cantly prolonged.

Gliomas have been reported to be highly expressed with
vascular endothelial growth factor (VEGF) which promotes
angiogenesis of tumor. Fan et al. designed VEGF-targeting
drug-loaded microbubbles, by conjugating VEGF-A ligand
to BCNU-loaded microbubbles (VEGF-BCNU-MBs). It
significantly enhanced the glioma-targeted BCNU release
and reduced the glioma progression in rat tumor models
after the combination of FUS-BBB opening [45]. ,ese
microbubbles could open the BBB when exposed to FUS,
and it could also extend circulation time of BCNU.

However, the loading capacity of drug-loaded micro-
bubbles is relatively low due to the restricted microbubbles’
surface area. To achieve therapeutic effects, the amount
injected may need to be increased to levels that should be
tested for safety in blood circulation.

1.4. BBB Opening and Drug Carriers in Glioma Treatment.
Paclitaxel (PTX) is a widely used clinically effective che-
motherapy drug. PTX liposomes are developed to deal with
its extremely lipophilic nature. ,erefore, liposomes sig-
nificantly increase maximum tolerated dose (MTD) of
PTX. However, the delivery of PTX liposomes into gliomas
is limited due to the presence of the BBB. Shen et al.
showed that the delivery efficiency of PTX liposomes ef-
fectively improved when BBB was opened by pulsed FUS
sonication. ,ey used FUS parameters with a 10ms pulse
length with microbubbles, improving the therapeutic ef-
ficacy of PTX-LIPO in nude mice glioma model [46].
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Figure 1: Physical mechanisms underlying FUS-BBB opening (reproduced from [7], an open-access journal printed by the Ivyspring
International Publisher, free to use).
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Recently, Li et al. have developed polysorbate 80- (PS-80-)
modified PLGA nanoparticles loaded with paclitaxel (PS-80-
PTX-NPs, PPNP) for glioma treatment [47]. ,e size of
nanoparticles was 170.5± 7.1 nm, with zeta potential of
–54.7± 0.46mV. Locally enhanced drug delivery into the
brain in vivo was achieved by combining with FUS-BBB
opening. ,e median survival time of U87-luc bearing mice
increased to 37 days after being injected with PPNP, com-
pared with the control group (26 days). Immunofluorescence
staining of tight junction- (TJ-) related protein (ZO-1) and
P-glycoprotein (P-gp) revealed that FUS could disrupt ZO-1
protein and reduce the expression of P-gp. PPNP attached
with the ApoE receptor with the help of PS-80 and then
activated receptor-mediated endocytosis. ,erefore, PPNP
and FUS-BBB enhanced the drug delivery and antiglioma
efficacy of paclitaxel. However, pharmacokinetics and phar-
macodynamics of each kind of drug carriers need to be ex-
plored for safety in human use.

1.5. FUS-BBB Opening and Magnetic/Ultrasound Focusing
System inGlioma Treatment. Focused ultrasound (FUS) can
increase the permeability of the BBB, with combination of
circulating microbubbles. However, the delivery efficiency of
free diffusion of drugs into brain in this passive manner is
low, because of the high interstitial fluid pressure (IFP) in
gliomas which inhibits convective transportation of drugs.
Many strategies have been explored, aiming for antiglioma
drug delivery more effectively [48]. For example, an ex-
ternally applied magnetic field (MT) could achieve targeting
of nanoparticles and localized drug delivery in deep-seated
gliomas [49, 50]. ,e combined use of FUS-BBB opening
and externally MT could deliver therapeutic particles across
the BBB both passively and actively. Chen et al. fabricated
Fe3O4/SPAnH nanoparticles (MNPs) with chemothera-
peutic BCNU immobilized on the MNPs [51]. ,e immo-
bilization ratio was 86.2%, and the size was about 10–20 nm.
,e magnetic/ultrasound focusing system was developed,
aiming for a lower dose of chemotherapeutic and clinical
therapy monitor. Firstly, FUS-BBB opening of rodent gli-
omas increased the passive diffusion of drugs. Subsequently,
magnetic field was utilized to enhance localization to glio-
mas. Quantitative analysis of iron showed that that MT/FUS
system increased the particle accumulation by 26-fold,
compared with animals only injected with MNPs without
MT/FUS. Combination of MT/FUS and BCNU-MNP en-
hanced the BCNU delivery, efficiently shrinking the tumors.

Liu et al. also developed epirubicin-MNPs in another
document. ,eir data revealed that MNP accumulation in
the brain could be detected by T2-weighted MRI imaging
[52]. ,erapeutic MNPs together with FUS/MT improved
deposition ofMNPs and controlled the tumor progression in
C6-bearing rat glioma models.

Superparamagnetic iron oxide (SPIO) nanoparticles
have been approved as clinical MRI diagnosis contrast drug.
Fan et al. designed an SPIO-labeled phospholipid-based
microbubbles, with doxorubicin (DOX) incorporated in it
[53]. ,is DOX-SPIO-MBs showed uniform size distribu-
tions of 1.04± 0.01 μm, with R2 relaxivity of 107.3mM–1s–1.

Magnetic field (MT) was applied after the FUS-BBB
opening. SPIO concentration in the tumor was greatly en-
hanced by 22.4%. DOX-SPIO-MBs could be insonated by
FUS, as well as by both MRI and US imaging, to open the
BBB, allowingMTto enhance glioma-targeted drug delivery.
How to scale up the setup for human applications will be
meaningful but challenging.

1.6. Image-Guided FUS-BBB Opening and Nanoparticle De-
livery inGliomaTreatment. Nanoparticles for both diagnosis
and therapy are potential for effective glioma treatment.
Diaz et al. fabricated a novel GNPs functionalized with
EGFR antibody. Nanoparticles were delivered across the
BBB by MRI-guided FUS, enabling spectral mapping of
nanoparticles for in vivo tumor tracking [54]. Recently,
Zhang et al. developed nanoparticles based on 99mTc-labeled
ultrasmall Cu2–xSe. ,is nanoparticle enabled dual modal
photoacoustic (PA) imaging and SPECT imaging at the same
time. ,erefore, noninvasive monitoring of the opening of
FUS-BBB and the recovery status of BBB in vivo were
demonstrated in this research [55].

Magnetic resonance imaging (MRI) has been applied for
years to monitor in vivo BBB disruption. To monitor BBB
disruptions and of individual vessels, the limited spatial
resolution of MRI is not the best choice. Instead of MRI,
two-photon microscopy was utilized on rats with a crani-
otomy by Cho et al. [56]. In this study, various acoustic peak
negative pressures were employed for in vivo visualization of
vasculature responses. Acoustic pressure could control
disruption type and size of the vessel in FUS-BBB opening.

Photoacoustic imaging demonstrated the potential to
overcome the limitations of optical imaging, allowing vi-
sualization of deep-seated glioma [57]. Recently, Wu et al.
constructed novel theranostic nanosystems for glioma
treatment under PA imaging [58]. In this study, Cu2–xSe-
PEG-SH was grafted onto hollow mesoporous organosilica
nanoparticles (HMONs), enabling excellent PA images in
the orthotopic U87-Luc glioma beneath the mouse skull.
Doxorubicin (DOX) was loaded into the hollow interior of
nanoparticles, designated as DOX-HCu. Combined with
FUS-BBB opening, DOX-HCu demonstrated great in-
hibition of tumor progression. ,e median survival time of
U87-bearing mice treated with DOX-HCu and FUS was
fifty-two days, much longer than mice treated with DOX-
HCu (thirty-five days), as shown in Figure 2. However, the
safety and efficacy of theranostics still need to be intensively
tested for clinical use. And in vivo stability, degradation, and
clearance of nanoparticles are also important aspects for
clinical translation.

1.7. FUS-BBB Opening and Gene *erapy in Glioma
Treatment. Gene therapy promises for effective treatment of
glioma. Mead et al. realized systemically administered DNA-
bearing BPN (DNA-BPN) delivery across the BBB. Localized
and sustained transgene expression was obtained in the rat
brain [59]. In this study, PEGylated DNA-BPN based on
polyethylenimine (PEI) was formulated. FUS-BBB opening
enhanced the DNA-BPN delivery across the BBB, showing
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astrocytes and neurons transfected in the brain. Jin et al.
designed a novel DNA-loading microbubble, showing po-
tential as a gene delivery carrier, as shown in Figure 3 [60].

Targeted delivery of “suicide” genes into gliomas is
believed to augment sensitivity to select prodrugs. Locally
delivered gene therapy for glioma is important for patients
who do not respond to standard chemotherapy [61]. Re-
cently, Pan et al. demonstrated noninvasive and local suicide
gene delivery can be achieved. In their study, FUS was used
for BBB opening, and herpes simplex virus thymidine kinase
gene was delivered to glioma. After exposure to GCV,
stronger in vivo antiglioma efficacy and longer survival time
were observed in glioma-bearing rats [62]. ,ere are still
many works need to be done for clinical translation of gene
therapy in glioma treatment.

1.8. FUS-BBB Opening and Immunotherapy in Glioma
Treatment. Glioma frequently undergoes relapses in clinics,

because of the resistance to chemotherapy and radiation
therapy. Immunotherapy may represent a promising ap-
proach, aiming to eliminate residual glioma cells [63]. Usu-
ally, immunological tolerance of brain tumors may partially
overcome host immune defenses, which limits primary im-
mune responses [64]. IL-12 had been reported to stimulate an
antitumor immune response, exerting anti-angiogenic and
antiglioma effects. Fifteen patients with malignant gliomas
participated to test the safety and clinical response of
recombinant human interleukin 12 (rhIL-12) [65]. Chen et al.
reported that FUS-BBB opening enhanced the immune-
modulating agent in C-6 glioma bearing rats [66].,ey found
that combination of FUS-BBB increased IL-12 significantly,
leading to increase of CTL and CTL/Treg ratio, tumor pro-
gression suppression, and animal survival prolonging.

FUS-BBB opening is promising for the delivery of anti-
body-based anticancer therapy. Bevacizumab, a VEGF anti-
body, was approved by the FDA for recurrent glioma
treatment. Liu et al. reported that FUS-enhanced bevacizumab
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delivery significantly enhanced its penetration into glioma and
retarded the tumor progression with a significantly increased
median survival [67]. Kinoshita reported that Herceptin, a
monoclonal antibody against HER2, can also be delivered into
the mouse brain through the BBB by using MRI-guided FUS-
BBB opening technique [68]. Before these techniques were
widely used, biodistribution of immunotherapy and safety
concerns need to be understood.

1.9. Clinical Trials. Alexandre et al. carried out a phase 1/2a
trial to test the safety and efficacy of the implantable
SonoCloud device, for BBB opening by pulse US repeatedly
[69]. ,e BBB of patient was opened monthly using pulsed
US and microbubbles. Presently, MRI-guided FUS has al-
ready been used in several clinical trials for the treatment of
cerebral tumors [70]. Five patients with glioma were enrolled
in the clinical trial (NCT0234399), and the BBB was safely
and successfully opened as shown by gadolinium en-
hancement by MRI [71]. And, transient FUS-BBB opening
with chemotherapy was safe and feasible.

2. Conclusions and Perspectives

Effective delivery of various diagnostic or therapeutic agents
across the blood-brain-barrier (BBB) remains a major
challenge in the treatment of glioma. Focused ultrasound
(FUS) combined with microbubbles is potential for non-
invasively and reversibly disrupting the BBB. For technical
optimization and further clinical application of this tech-
nology, intensive studies are required to focus on the
thorough understanding of exact mechanisms involved in
the FUS-mediated disruption of the BBB.
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