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Abstract

The article proposes a method for evaluation of the consistency of human movements within the 

context of physical therapy and rehabilitation. Captured movement data in the form of joint 

angular displacements in a skeletal human model is considered in this work. The proposed 

approach employs an autoencoder neural network to project the high-dimensional motion 

trajectories into a low-dimensional manifold. Afterwards, a Gaussian mixture model is used to 

derive a parametric probabilistic model of the density of the movements. The resulting 

probabilistic model is employed for evaluation of the consistency of unseen motion sequences 

based on the likelihood of the data being drawn from the model. The approach is validated on two 

physical rehabilitation movements.
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1. Introduction

Mathematical modeling and analysis of human motions is challenging, due to the high 

variability and uncertainty in movement data. Sources of variability include the inherently 

stochastic nature of human movements and individual characteristics, such as age, gender, or 

weight, whereas sources of uncertainty include the errors associated with the sensory 

measurement in data processing. The development of mathematical models that have 

abilities to encode human movements of arbitrary complexity and are robust to the 
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variability and uncertainty in movement data remains to be realized [1–8]. The presented 

research investigates the application of mathematical movement models for evaluating the 

consistency of exercises that are commonly performed in physical therapy and rehabilitation 
programs. Despite the design of a variety of new tools and devices in support of physical 

therapy and rehabilitation, such as robotic assistive systems [9], use of graphical avatars to 

demonstrate the prescribed exercises [10,11], and virtual reality and gaming interfaces [12], 

there is still a lack of versatile and robust systems for automatic evaluation of patient 

movements. Most of the existing studies on modeling therapy exercises focus on 

classification of the type of therapy movement [13–15], rather than on evaluation of 

movement consistency. Furthermore, the few studies in the published literature that propose 

methods for movement evaluation rely on a set of handcrafted features and posture 

descriptors for that purpose. An example of such system based on Kinect-acquired skeletal 

data proposed by Anton et al. [16] employed a set of 30 manually selected features for 

posture description. Several other works proposed similar sets of manually preselected 

movement features [11,17–19]. Although such movement descriptors are effective for 

evaluating the movements for which they were specifically designed, their performance 

often degrades when applied to new type of movements. In addition, current methods for 

movement evaluation typically employ performance metrics based on distance functions, 

such as Dynamic Temporal Warping distance [16, 20] or Mahalanobis distance [18], 

calculated at the level of individual data measurements without accounting for the variability 

and uncertainty of movement data.

Our proposed method is based on applying machine learning methods for automatic 

selection of relevant features for each individual movement from collected data of multiple 

repetitions of the movement. To that end, an autoencoder neural network is applied for 

dimensionality reduction and for extracting the most important attributes in the recorded 

high-dimensional movement data. Subsequently, the resulting low-dimensional data 

sequences are encoded with a Gaussian mixture model (GMM) yielding a parametric density 

estimation model of the studied motions. The derived model is used for evaluation of new 

instances of the movements, by using the likelihood of the movement data with respect to 

the mixture of Gaussian probability density functions as a performance metric. The proposed 

approach is validated on human skeletal data [21] collected with an optical tracking system 

for two physical rehabilitation exercises: deep squat and standing shoulder abduction.

The goal of the presented research is to apply machine learning algorithms for mathematical 

modeling of movement data and assessment of the level of correctness in the movement 

performance. Our long term-goal is to develop a commercial system for evaluating the 

quality of exercises performed by patients in rehabilitation programs. Such system can 

potentially provide instant feedback to patients of the correctness of their performance, as 

well as it can assist physical therapists in tracking the patient progress in the program. In 

home-based rehabilitation, the system can encourage patient engagement in the program, 

potentially resulting in faster functional recovery, fewer in-patient visits, and reduced 

healthcare costs.
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2. Methods

This section begins with an introduction to the data and the data notation, and afterwards it 

presents the proposed method for modeling and evaluation of physical therapy movements. 

Autoencoder neural network used for reducing the dimensionality of the movement data is 

first described. Afterward, mathematical formulation of GMM is presented, which is 

employed for density estimation of the low-dimensional movement data produced by the 

autoencoder network.

2.1. Data

The movement data used in this research consists of the joint angles of 10 subjects 

performing 2 exercises commonly performed by patients undergoing rehabilitation therapy 

[21]. The two exercises are a deep squat movement and a standing shoulder abduction 

movement. As this research is focused on developing a model to evaluate patient consistency 

in performing physical therapy exercises, each subject performed 10 repetitions of the 

movements both correctly, i.e., simulating performance by a physical therapist (PT), and 

incorrectly, i.e., simulating performance by a patient with musculoskeletal constraints 

performing the movements in an unsupervised, home-based scenario.

The data was collected using a Vicon optical tracking system which utilizes eight cameras 

with high speed and resolution attributes for tracking a set of 39 retroreflective markers 

placed on strategic locations on the subject’s body. The collected data contains a total of 117 

dimensions, representing all the joint angles recorded by the system throughout the 

movements. The frame rate for the data collection was set to 100 Hz. A more detailed 

description of the data can be found in reference [21]. The data collection was approved by 

the Institutional Review Boards at the University of Idaho on April 26, 2017 under the 

identification code IRB 16–124. The demographic information of the ten subjects who 

participated in the data collection is provided in Table 1. The average age of the subjects was 

29.3 years, with the standard deviation of 5.85 years. The exclusion criteria included 

musculoskeletal injuries, pregnancy, neurological disorders that affect balance, less than 6 

months postorthopedic surgery, less than 2 months post-visceral surgery, contagious 

illnesses, and taking medications that affect proprioceptive capabilities. In addition, the 

study did not include children under the age of 18.

The exercise data was next segmented into individual repetitions of the movements. This 

was completed by manually selecting the beginning and ending points of each repetition. 

This results in a total of 100 correct and 100 incorrect sets of data for each movement. For 

each set of segmented data, inconsistent or incompletely recorded repetitions were removed. 

For the deep squat exercise, multiple inconsistent repetitions were removed resulting in a 

total of 72 sequences. For the standing shoulder abduction exercise, along with removing 

inconsistent sequences, the data from two subjects were also removed due to them using 

their left arm to perform the movement versus the rest of the subjects using their right arm. 

This resulted in a total of 63 sequences for the standing shoulder abduction.

The angular movements of a single sequence for each exercise after the segmentation are 

shown in Fig. 1. One can note that a majority of the 117 dimensions for both movements 
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exhibit little to no variation throughout the exercise. This is more noticeable in the standing 

shoulder abduction in Fig. 1(b), as the exercise involves only the movement of one of the 

subject’s arms. As a result, both movements can be represented by only a few of the 117 

dimensions, and therefore modeling of said movements can be achieved by the extraction 

and evaluation of these key components through dimensionality reduction. The 

corresponding length of the sequences for the two movements is 240 and 229 time steps, 

respectively.

Prior to performing analysis of the proposed methods, the movement sequences for both 

exercises were aligned utilizing a temporal linear alignment method based on cubic 

interpolation of the data points. This was accomplished by determining the mean sequence 

length for each exercise, and applying that length to all remaining sequences.

2.2. Notation

The number of correct instances of a movement is denoted N, and the time series data for 

each instance of the movement is represented with Xn, where n is used to index the 

individual movement instances. The set of correct demonstrations of a movement is denoted

𝒳 = Xn n = 1
N . (1)

Each movement Xn represents a temporal sequence of Tn measurements taken at successive 

time steps, i.e.,

Xn = xn
(1), xn

(2), …, xn
Tn , (2)

where superscripts are employed for indexing the temporal position of the measurements 

within each movement sequence. Due to the inherent variability of human motions, the 

movement sequences have varying lengths, i.e., Tn corresponds to the number of 

measurements of the instance Xn. Each individual measurement xn
(t) for t = 1, 2, …, Tn is a D-

dimensional vector, consisting of the values for all joint displacements in the human body. 

The following notation is used for the vectors of joint positions

Xn
(t) = 𝒳n

(t, 1) 𝒳n
(t, 2) … 𝒳n

(t, D) T . (3)

The dimensionality D of the output data for different motion capturing systems ranges from 

40 to 120 dimensions. One should note that the above notation employs bold font type for 

representing vectors and matrices.

The set of incorrect movements is denoted

𝒴 = Yl l = 1
L , (4)
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where Yl symbolizes the individual movement sequence l. Similar to the notation for the 

correct sequences, the movement Yl consists of Tl temporal measurements, i.e.,

Yl = yl
(1), yl

(2), …, yl
Tl . (5)

Each measurement yl
(t) ∈ ℝD for t = 1, 2, …, T l, i.e., it is a D-dimensional vector containing 

the joint displacement values in the human body at the time step t.

2.3. Dimensionality reduction

Dimensionality of the output data from sensory systems for capturing human motion is quite 

large, as the data encompasses displacements of the different body parts during the execution 

of the movements. As previously stated, the dimensionality of the various available mocap 

systems typically ranges between 40 and 120 dimensions. In addition, motion capture units 

acquire measurements of the locations of the body parts with a frame rate typically in the 

range from 30 Hz to 120 Hz. High frame rates are required for furnishing the ability to 

capture fast movements and to output smooth time series trajectories of performed body 

movements. Consequently, the combination of high acquisition frequency and high 

dimension of the streams of human motion data may impose a high computational burden in 

processing the data. Therefore, dimensionality reduction of recorded motion data is often 

considered an essential step in processing human movements.

2.3.1. Autoencoder neural networks—Autoencoders [22] are an unsupervised form 

of neural networks designed to learn an alternative representation of input data, through a 

process of data compression and reconstruction. The data processing involves a step of 

compressing input data through one or multiple hidden layers, i.e., encoding, followed by a 

step of reconstructing the output from the encoded representation through one or multiple 

hidden layers, i.e., decoding. Autoencoders are used for a variety of tasks in machine 

learning and other fields, including dimensionality reduction, feature extraction, and data 

denoising.

A graphical representation of an autoencoder is presented in Fig. 2. As illustrated in the 

figure, the structure of an autoencoder network comprises an encoder sub-net which maps 

the input data 𝒳IN = xn
(t, d) ∈ R

Tn × D
 into a code representation 𝒳 = xn

(t, m) ∈ R
Tn × M

, 

and a decoder sub-net which reprojects the code 𝒳 into the output 

𝒳OUT = Xn
(t, d) ∈ R

Tn × D
. If the mapping function of the encoder is denoted φ:𝒳IN 𝒳, 

and the mapping function of the data reconstruction by the decoder is denoted ψ :𝒳 𝒳OUT

the autoencoder network parameters are trained by minimizing the mean squared deviation 

between the output data and the compressed and then reconstructed input data, i.e.,

argmin
φ, ψ

𝒳OUT − ψ φ 𝒳IN
2 . (6)
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In terms of the current research, the key characteristic of the autoencoder is the ability to 

learn a sparse lower-dimensional representation of the human motion data, i.e., to extract the 

most significant dimensions representing the movement set 𝒳. Autoencoder networks 

belong to the nonlinear techniques for dimensionality reduction, and as such provide greater 

representational capacity in comparison to the linear techniques, such as PCA [23].

2.4. Gaussian mixture model

GMM is a parametric probabilistic model for representing data with a mixture of Gaussian 

probability density functions [24]. GMM is parameterized with a set of mixing coefficients 

(also called mixture weights) for the Gaussian components, as well as means and 

covariances for the components. For a dataset 𝒳 consisting of multidimensional data vectors 

xn
(t) ∈ R

Tn × D
, for n = 1, 2, …, N, and t = 1, 2, …, Tn, a GMM with C Gaussian density 

components has the form

𝒫 xn
(t) = ∑

c = 1

c
πc𝒩 xn

(t) μc, Σc , (7)

where πc for c = 1, 2, …, C denote the mixing coefficients for the Gaussian components, and 

𝒩 xn
(t) | μc, Σc  are the multivariate Gaussian probability density functions of the form

𝒩 xn
(t) μc, Σc = 1

(2π)D + 1 Σc

e
− 1

2 xn
(t) − μc

TΣc
−1 xn

(t) − μc . (8)

In the above equation, the mean and covariance matrix for the cth Gaussian component are 

denoted μc and Σc, respectively. The mixing coefficients satisfy the constraint ∑c = 1
C πc = 1. 

The complete GMM includes the parameters for all mixture components λ = πc, μc, Σc  for 

c = 1, 2, …, C.

The most popular method for estimating the model parameters λ is the expectation 

maximization (EM) algorithm [25]. The objective of the EM algorithm is to maximize the 

likelihood of the mixture model parameters given the set of training data points 

𝒳 = xn
(t) ∈ R

Tn × D
. Other approaches for estimating GMM parameters include Maximum 

A Posterity estimation [26] and Mixture Density Networks [27].

3. Results

The presented approach for evaluation of the consistency of physical therapy movements 

includes a step of dimensionality reduction of movement trajectories, a step of encoding the 

reduced-dimensionality data into a parametric probabilistic model, and a step of quantifying 

the level of correctness of each movement repetition. This section first presents the 

implementation details of the proposed autoencoder neural network for dimensionality 
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reduction. A comparison to other methods for dimensionality reduction is next provided, 

demonstrating improved capacity for data representation and feature extraction by the 

autoencoder network. Next, modeling the movement sequences with GMM is presented. The 

log-likelihood of the resulting GMM models is calculated and used to quantify the quality of 

the movements. A performance indicator is introduced that maps the values of the log-

likelihood into a movement quality score in the range between 0 and 1.

The two most significant findings of the presented approach are: (1) dimensionality 

reduction of movement data with autoencoder neural networks outperforms two related 

conventional approaches on the therapy movement data; and (2) employing GMM for 

movement modeling and subsequently using the log-likelihood of the GMM model for 

assessment of movement consistency is efficient in distinguishing between correctly and 

incorrectly performed instances of the movements.

3.1. Autoencoder network architecture

A deep autoencoder artificial neural network with stacked layers of recurrent LSTM 

computational units [28] was employed for reducing the dimensionality of the rehabilitation 

exercise data. The data preprocessing steps included mean-shifting of each data dimension 

to a zero mean, and scaling the data in each sequence to values between −1 and 1. 

Furthermore, synthetic data was added at the beginning and ending of each input sequence, 

consisting of 50 vectors of equal values replicating the data at the first and last time frame, 

respectively. Adding synthetic data instances to the movement sequences resolved the 

problem of incorrect reconstruction of the beginnings and endings of the sequences by the 

autoencoder network.

Adam optimizer was used for training the neural network with the following parameters: 

learning rate 0.001, first and second moment exponential decay rates of 0.9 and 0.999, and 

zero division prevention value of 10−8. The set of motion sequences was split into a training 

subset containing 75% of the data, and a testing subset containing 25% of the data. The 

batch size was set to 20 sequences, and early stopping criterion was used in the training 

phase.

In a hyperparameters tuning phase it was found that three hidden layers yield the lowest loss 

on the testing subset for both studied movements, which is also shown in Fig. 3(a). Further 

increasing the number of layers resulted in overfitting on the training subset. Fig. 3(b) 

displays the loss on the testing subset for different numbers of encoded dimensions. The 

experiments indicated that four dimensions in the code vector produce the lowest validation 

loss.

The resulting deep stacked autoencoder network with three layers of hidden units and four-

dimensional code is shown in Fig. 4.

3.2. GMM encoding

GMM is next employed for encoding the low-dimensional movement sequences. For 

comparison, two commonly used approaches for dimensionality reduction of human 

movements are employed: maximum variance and PCA [23]. Maximum variance is a simple 
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approach that presumes that the dimensions that have the highest variance of the 

displacement are the most important for motion representation, and the low-dimensional 

representation consists of the M dimensions with the largest variance. PCA is one of the 

most widely used approaches for dimensionality reduction. It projects the data into a lower-

dimensional space by maximizing the total variance of the data, e.g., by either performing 

eigen decomposition of the covariance matrix or via singular value decomposition of the 

data matrix.

The results of GMM encoding of the dimensionality-reduced sequences for the standing 

shoulder abduction movement are shown in Figs. 5–7, where the figures present the GMM 

components for four dimensions of the input data, extracted via the maximum variance, 

PCA, and autoencoder neural network, respectively. The number of Gaussian mixture 

components was empirically set to five, based on the complexity of the movement 

trajectories. For the maximum variance method shown in Fig. 5, the largest angular variation 

corresponded to the joint angles of the right upper hand, right lower hand, and two of the 

angles of the right wrist. Similar, for the deep squat movement, the largest variance was 

noted in the angular displacements of the right and left hip joints, and the right and left knee 

joints. For the dimensionality reduction with PCA presented in Fig. 6 the set of motion 

sequences was zero mean-shifted before the four principal components were extracted. In 

the dimensionality reduction with the autoencoder neural network, the obtained code vectors 

for the movement sequences were employed as input to GMM, as shown in Fig. 4. The 

result of the data modeling with GMM is displayed in Fig. 7.

3.3. Movement evaluation

The log-likelihood of the correct and incorrect sequences with respect to the resulting GMM 

model parameters is calculated and used for evaluation of the probability that the individual 

repetitions of the rehabilitation movements were drawn from the model. Let’s denote ℒcn

the log-likelihood of the correct sequence with reduced dimensionality Xn, which is obtained 

from

ℒcn = 𝒫 Xn λ = 1
Tnm ∑

t = 1

Tn
ln ∑

c = 1

C
πc𝒩 xn

(t) μc, Σc . (9)

And analogously, let’s denote ℒin the log-likelihood of the incorrect sequence Yn, which is 

calculated in an identical manner by using the same GMM parameters λ. One should note 

again that the GMM model is trained by using only the correct movement sequences, 

because they represent the desired way to perform the movement.

The values for the log-likelihood of the correct and incorrect sequences for the two 

movements are shown in Fig. 8. For most of the motion repetitions the log-likelihood of the 

correct sequences is higher in comparison to the values for the incorrect sequences, and 

there is a clear separation between the correct and incorrect sequences. For several instances, 

this is not the case. As multiple subjects performed the movement repetitions in the dataset, 

some of the repetitions were performed in a less consistent manner with respect to the other 
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repetitions of the movement. Also, one can notice in Fig. 8(b) that for the standing shoulder 

abduction there is a more clear differentiation between the correct and incorrect movements, 

in comparison to the deep squat results presented in Fig. 8(a). The higher variation in the 

values of the log-likelihood for the deep squat movement in comparison to standing shoulder 

abduction stems from the increased complexity due to the greater number of joints involved 

in completing the deep squat repetitions.

Next, a distance metric is defined, which quantifies the absolute value of the difference 

between the log-likelihood values of the correct sequences ℒcn and incorrect sequences ℒin, 

and is normalized by the root mean squared difference between ℒcn and ℒin, i.e., it is 

calculated as:

𝒟n =
ℒcn − ℒin

1
N ∑n = 1

N ℒcn − ℒin
2

, for n = 1, 2, …, N . (10)

The values of the mean and standard deviation for the distance metric 𝒟n for n = 1, 2, ..., N 

for the described dimensionality reduction approaches are presented in Table 2. The 

autoencoder neural network demonstrated the largest separation between the correct and 

incorrect sequences, in comparison to the values obtained with the other two methods. In 

general, data models that are able to better discriminate between the correct and incorrect 

examples of the movements are preferred.

The distance metric 𝒟 is scaled and employed to derive another performance indicator S, 

which quantifies the distance of the log-likelihood values of the sequences from the average 

log-likelihood of the GMM model of the movement on a scale between 0 and 1. The 

proposed forms for the correct and incorrect movements are:

𝒮cn =
1 − ℒcn − ℒc

ℒc
, 𝒮in =

1 − ℒin − ℒc
ℒc

, for n = 1, 2, …, N (11)

where ℒc denotes the mean values of the log-likelihood of the correct sequences.

The values of the performance indicator S for the two movements are plotted in Fig. 9. This 

metric can be used to provide a score of a repetition of rehabilitation exercise as a 

percentage relative to a model of the movement. Arguably, the values of the parameter S 
calculated in this manner do not reflect the level of inconsistency in a qualitative fashion, 

and are based only on a numerical estimation of the log-likelihood deviation.

The accuracy in distinguishing the correct from incorrect movements based on the 

performance indicator Sis presented in Table 3. For the range of the scores of correct 

movements three different options are considered, according to the distances from the mean 

of the correct score values Sc of one, two, and three standard deviations (denoted σ in the 

table). The table provides the number of correct repetitions that are accurately predicted as 

correct, versus the number of correct repetitions that are outside of the considered region and 

Williams et al. Page 9

Med Eng Phys. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are predicted as incorrect (i.e., false positives). Similarly, the number of accurately predicted 

incorrect movements versus the inaccurately predicted incorrect movements (i.e., false 

negatives) is also presented. For the mid-region in the table that pertain to Sc ± 2σ, the 

accuracy of predicting the correct movements is 94.44% and 96.83% for the two 

movements, whereas for the incorrect movements the accuracy values are 70.83% and 

93.65%, respectively.

3.4. Comparison to related approaches

For validation of the proposed approach, movement quality scores are assigned by the 

authors Vakanski and Paul based on visual observation of the recorded videos for the 

incorrect repetitions of the exercises. The employed metrics for movement assessment are 

listed in Table 4. For each metric, a score in the range from 0% to 100% is assigned to each 

exercise repetition, quantifying the performance in accomplishing the target posture. The 

metrics scores are multiplied with a set of weighting coefficients, adopted based on the 

metric importance in achieving the movement goal. A final ground truth score is obtained by 

averaging the assigned scores by the two graders, followed by dividing the scores with the 

maximum value for each exercise (in order to obtain ground truth score values less than 1).

We compared the predicted movement quality scores by the proposed approach with three 

approaches for movement assessment that employ distance functions: dynamic temporal 

warping (DTW) distance [16,20,29], Mahalanobis distance [18], and Euclidean distance 

[30]. The resulting movement scores by these approaches are first scaled into a range that 

extends from the minimum ground truth score to the maximum ground truth score (i.e., 1). 

Mean squared error (MSE), mean absolute error (MAE), and mean absolute percentage error 

(MAPE) are used for comparison. The values of MSE, MAE, and MAPE for the four 

approaches are displayed in Table 5. The results indicate that the proposed approach based 

on GMM modeling produced the lowest deviation from the ground truth scores for the two 

considered exercises.

4. Discussion

The paper presents a machine learning approach for modeling and quality assessment of 

movement data related to physical rehabilitation exercises.

Dimensionality reduction of the high-dimensional measurements of full body skeletons is 

performed with an autoencoder neural network. The network reduces the recorded 

117dimensional data into 4-dimensional sequences, by extracting the important features and 

eliminating the non-relevant and redundant attributes of the movement data. The 

performance of the autoencoder network is compared to two other approaches that are 

traditionally used for dimensionality reduction: maximum variance, and PCA, based on the 

ability to distinguish between correctly and incorrectly performed repetitions of movements. 

For that purpose, a distance metric is introduced, and the results of the comparison are 

presented in Table 2. In conclusion, the autoencoder network produced larger distances 

between the correct and incorrect repetitions of the movements. This can be interpreted as an 

indicator that this technique was able to extract data features in the raw measurements of the 
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body movements that are conducive toward the quantification of the level of correctness in 

the performance of the movements. The potential reasons for the improved performance of 

the autoencoder neural network stem from the capacity of the nonlinear activations in the 

network structure to capture richer data representations for dimensionality reduction, in 

comparison to PCA and maximum variance that employ a linear mapping of the input data 

into a lowerdimensional space. In addition, stacking multiple consecutive encoding and 

decoding layers in the autoencoder network produces a deep learning architecture that 

further increases the representational capacity in comparison to PCA and maximum variance 

approaches.

The proposed approach employs a Gaussian mixture model for encoding the low-

dimensional data sequences into a statistical parametric representation of the movements. 

The motivation for using GMM for data modeling originates from the potential to utilize the 

likelihood, i.e., the probability of a motion sequence of being drawn from the model, as a 

statistical measure for assessment of the level of correctness of a recorded motion. The 

resulting log-likelihood values are further scaled into the [0,1] range, in order to produce 

performance quality scores that can be intuitively understood by patients and clinicians. The 

implementation results indicate that the approach was efficient in the assessment of the 

movement quality. The accuracy in predicting the correct movements was 94.44% and 

96.83% for deep squat and standing shoulder abduction, respectively, and the corresponding 

accuracy for predicting the incorrect movements was 70.83% and 93.65% respectively. The 

potential reasons for the achieved results is the ability of GMM to handle the inter- and 

intra-subject variability in the movement performance.

The proposed method has several limitations. First, the data processing with the autoencoder 

neural network is computationally expensive, and takes several hours on a high-end 

computer with a graphic processing unit (GPU). Second, the presented methodology was 

evaluated on a dataset of movements performed by healthy subjects, where the data was 

acquired by using an expensive optical tracking system. In the future, we have plans to 

employ an inexpensive color-depth camera for collecting movements performed by patients 

enrolled in physical rehabilitation programs for valuation of the approach. Similarly, we will 

validate the proposed methodology on a larger number of movements.

The proposed method can also find use in other applications. One example is for automatic 

assessment of participant performance in functional screening tests, where the approach can 

eliminate the subjectivity of the screening procedure by the clinician. The methodology can 

also be employed for movement assessment by occupational therapists or athletic trainers, 

and in other general non-medical human movement applications.

Our ultimate goal is to develop a system that can automatically provide a score of the 

correctness of patient performance in homebased rehabilitation. Reports in the literature 

indicate that more than 90% of all therapy sessions are performed in a home-based setting 

[10]. Under these circumstances, the patients are asked to record their daily progress and 

periodically visit the PT for assessment of their progress and perhaps to be prescribed a new 

series of exercises. Still, numerous medical sources report of low levels of patient motivation 

and adherence to the recommended plans in home-based therapy, leading to prolonged 
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treatment times and increased healthcare cost [31,32]. And although many different factors 

have been identified that contribute to the low compliance rate, the major impact factor is the 

absence of continuous feedback and oversight of patient exercises in a home environment by 

a healthcare professional. We believe that the provision of a system that provides a feedback 

to the patients will improve the therapy programs and benefit both patients and healthcare 

providers.
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Fig. 1. 
Single sequence representation of all 117 dimensions for: (a) Deep squat; (b) Standing 

shoulder abduction.
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Fig. 2. 
Graphical representation of an autoencoder neural network.
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Fig. 3. 
Minimum validation loss for: (a) Different number of hidden layers; (b) Different number of 

encoded dimensions.
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Fig. 4. 
Autoencoder neural network with 3 hidden layers of neurons. The input and outputs are 

vectors of size Tn × 117, and the code is of size Tn × 4. The code is used as an input to a 

five-state GMM.
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Fig. 5. 
GMM results for data with reduced dimensionality via the maximum variance method.
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Fig. 6. 
GMM results for data with reduced dimensionality via principal component analysis.
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Fig. 7. 
GMM results for data with reduced dimensionality via autoencoder neural network.

Williams et al. Page 20

Med Eng Phys. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Log-likelihood values for the correct and incorrect sequences for: (a) Deep squat movement; 

(b) Standing shoulder abduction movement.
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Fig. 9. 
Performance indicator S values for the correct and incorrect sequences for: (a) Deep squat; 

(b) Standing shoulder abduction.
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Table 5

MSE, MAE, and MAPE between the ground truth scores and the predicted movement quality scores of four 

approaches for movement assessment.

Exercise Deep squat Standing shoulder
abduction

MSE GMM 0.0071 0.0029

DTW 0.0086 0.0042

Mahalanobis 0.0144 0.0079

Euclidean 0.0088 0.0037

MAE GMM 0.0708 0.0408

DTW 0.0756 0.0514

Mahalanobis 0.1013 0.0701

Euclidean 0.0764 0.0459

MAPE GMM 1.0342 1.0164

DTW 1.0606 1.0154

Mahalanobis 1.1104 1.0516

Euclidean 1.0635 0.9909
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