Skip to main content
. 2019 Nov 24;9(2):020601. doi: 10.7189/jogh.09.020601

Table 3.

Discriminative ability and calibration of the different 6-year hypertension incident risk models for both genders in training and testing set, respectively

Models Cut-off AUC (95% CI) Calibration χ2 P-value
Training set:
Men
M1
0.1926
0.765 (0.745, 0.784)
4.91334
0.84180
ANN
0.2305
0.767 (0.747, 0.786)
24.54347
0.00352
NBC
0.2205
0.751 (0.730, 0.770)
105.88180
<0.00001
CART
0.0994
0.720 (0.699, 0.741)
4.56824
0.10186
Women
W1
0.1920
0.806 (0.791, 0.820)
4.72712
0.31645
W2
0.1922
0.806 (0.791, 0.820)
1.18206
0.88104
ANN
0.2512
0.809 (0.795, 0.823)
5.44370
0.24472
NBC
0.2588
0.796 (0.780, 0.810)
193.18980
<0.00001
CART
0.0909
0.740 (0.724, 0.756)
17.95192
0.00012
Testing set:
Men
M1
0.1745
0.771 (0.750, 0.791)
6.30570
0.70898
ANN
0.2799
0.773 (0.752, 0.793)
29.27430
0.00058
NBC
0.2205
0.760 (0.738, 0.781)
82.26996
<0.00001
CART
0.0994
0.722 (0.699, 0.743)
5.249259
0.07247
Women
W1
0.1798
0.765 (0.746, 0.783)
6.78323
0.14780
W2
0.1446
0.764 (0.746, 0.783)
7.40462
0.11599
ANN
0.2022
0.756 (0.737, 0.775)
4.74466
0.31451
NBC
0.1860
0.761 (0.742, 0.779)
189.75400
<0.00001
CART 0.0909 0.698 (0.677, 0.717) 19.73303 0.00005

AUC – area under the receiver operating characteristic curve, CI – confidence interval, M1 – men office-based model, ANN – Artificial Neural Network, NBC – Naive Bayes Classifier, CART – Classification and Regression Tree, W1 – women office-based model, W2 – women laboratory-based model