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Message passing is a fundamental technique for performing calcu-
lations on networks and graphs with applications in physics, com-
puter science, statistics, and machine learning, including Bayesian
inference, spin models, satisfiability, graph partitioning, network
epidemiology, and the calculation of matrix eigenvalues. Despite
its wide use, however, it has long been recognized that the
method has a fundamental flaw: It works poorly on networks that
contain short loops. Loops introduce correlations that can cause
the method to give inaccurate answers or to fail completely in
the worst cases. Unfortunately, most real-world networks contain
many short loops, which limits the usefulness of the message-
passing approach. In this paper we demonstrate how to rectify
this shortcoming and create message-passing methods that work
on any network. We give 2 example applications, one to the per-
colation properties of networks and the other to the calculation
of the spectra of sparse matrices.
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Networks occur in a wide range of contexts in physics, biology,
computer science, engineering, statistics, the social sciences,

and even arts and literature (1). Message passing (2–4), also
known as belief propagation or the cavity method, is a funda-
mental technique for the quantitative calculation of a wide range
of network properties, with applications to Bayesian inference
(3), NP-hard computational problems (4, 5), statistical physics
(4, 6, 7), epidemiology (8), community detection (9), and signal
processing (10, 11), among many other things. Message passing
can be used both as a numerical method for performing explicit
computer calculations and as a tool for analytic reasoning about
network properties, leading to new formal results about percola-
tion thresholds (7), algorithm performance (9), spin glasses (12),
and other topics. Many of the most powerful new results concern-
ing networks in recent years have been derived from applications
of message passing in one form or another.

Despite the central importance of the message-passing
method, however, it also has a substantial and widely discussed
shortcoming: It works only on trees, i.e., networks that are free
of loops (4). More generously, one could say that it works to
a good approximation on networks that are “locally tree-like,”
meaning that they may contain long loops but no short ones, so
that local neighborhoods within the network take the form of
trees. However, most real-world networks that occur in practi-
cal applications of the method contain short loops, often in large
numbers. When applied to such “loopy” networks, the method
can give poor results and in the worst cases can fail to converge
to an answer at all.

In this paper, we propose a remedy for this problem. We
present a series of methods of increasing elaboration for the
solution of problems on networks with loops. The first method
in the series is equivalent to the standard message-passing algo-
rithm of previous work, which gives poor results in many cases.
The last one in the series gives exact results on any network
with any structure, but is too complicated for practical applica-
tion in most situations. In between are a range of methods that
give progressively better approximations and can be highly accu-
rate in practice, as we will show, yet are still simple enough for
ready implementation. Indeed even the second member of the

series—just one step better than the standard message-passing
approach—already gives remarkably good results in real-world
conditions. We demonstrate our approach with 2 example appli-
cations. The first one is to the solution of the bond percolation
problem on an arbitrary network, including the calculation of
the size of the percolating cluster and the distribution of sizes of
small clusters. The second one is to the calculation of the spectra
of sparse symmetric matrices, where we show that our method
is able to calculate the spectra of matrices far larger than those
accessible by conventional numerical means.

A number of approaches have been proposed previously for
message passing on loopy networks. The most basic of these,
which goes by the name of “loopy belief propagation,” is simply
to apply the standard message-passing equations, ignoring the
fact that they are known to be incorrect in general. While this
might seem rash, it gives reasonable answers in some cases (11)
and there are formal results showing that it can give bounds on
the true value of a quantity in others (4, 7). Perturbation theories
that treat loopy belief propagation as a zeroth-order approxima-
tion have also been considered (13). Broadly, it is found that
these methods are suitable for networks that contain a subex-
tensive number—and hence a vanishing density—of short loops,
but not for networks with a nonvanishing density.

Some progress has been made for the case of networks that
are composed of small subgraphs or “motifs” which are allowed
to contain loops but which on a larger scale are connected in a
loop-free way (14–16). For such networks one can write exact
message-passing equations that operate at the higher level of
the motifs and give excellent results for problems such as struc-
tural phase transitions in networks, network spectra, and the
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solution of spin models (6, 14–17). While effective for theoret-
ical calculations on model networks, however, this approach is
of little use in practical situations. To apply it to an arbitrary
network one would first need to find a suitable decomposition
of the network into motifs, and no general method for doing
this is currently known or even whether such a decomposition
exists.

A third approach is the method known as “generalized belief
propagation,” which has some elements in common with the
motif-based approach but is derived in a different manner, from
approximations to the free energy (18, 19). This method, which
is focused particularly on the solution of inference problems
and related probabilistic calculations on networks, involves a
hypergraph-like extension of traditional message passing that
aims to calculate the joint distributions of 3 or more random
variables at once, by contrast with the standard approach which
focuses on 2-variable distributions. Generalized belief propaga-
tion was not originally intended as a method for solving problems
on loopy networks but can be used in that way in certain cases.
It is, however, quite involved in practice, requiring the construc-
tion of a nested set of regions and subregions within the network,
leading to complex sets of equations.

In this paper we take a different approach. In the following
sections we directly formulate a message-passing framework that
works on real-world complex networks containing many short
loops by incorporating the loops themselves directly into the
message-passing equations. In traditional message-passing algo-
rithms each node receives a message from each of its neighbors.
In our approach they also receive messages from nodes they
share loops with. By limiting the loops considered to a fixed
maximum length, we develop a series of progressively better
approximations for the solution of problems on loopy networks.
The equations become more complex as loop length increases
but, as we will show, the results given by the method are already
impressively accurate even at shorter lengths.

Message Passing with Loops
Message-passing methods calculate some value or state on the
nodes of a network by repeatedly passing information between
nearby nodes until a self-consistent solution is reached. The
approach we propose is characterized by a series of message-
passing approximations defined as follows. In the zeroth approx-
imation, which is equivalent to the standard message-passing
method, we assume there are no loops in our network. This
implies that the neighbors of a node are not connected to
each other, which means they have independent states. It is
this independence that makes the standard method work. In
the next approximation we no longer assume that neighbors
are independent. Instead, we assume that any correlation can
be accounted for by direct edges between the neighbors, which
is equivalent to allowing the network to contain triangles, the
shortest possible kind of loop. In the next approximation after
this one, we assume that neighbor correlations can accounted
for by direct edges plus paths of length 2 between neighbors.
Generally, in the r th approximation we assume that correla-
tions between neighbors can be accounted for by paths of length
r and shorter.

These successive approximations can be thought of as express-
ing the properties of nodes in terms of increasingly large neigh-
borhoods and the edges they contain. The zeroth neighborhood
N

(0)
i of node i contains i ’s immediate neighbors and the edges

connecting them to i , but nothing else. The first neighborhood
N

(1)
i contains i ’s immediate neighbors and edges plus all length

1 paths between neighbors of i . The second neighborhood N
(2)
i

contains i ’s neighbors and edges plus all length 1 and 2 paths
between neighbors of i , and so forth. Fig. 1 shows an example of
how these neighborhoods are constructed.

A

B C D

Fig. 1. (A) A node (red open circle) and its immediate surroundings in a net-
work. (B) In the zeroth (tree) approximation the neighborhood we consider
consists of the neighbors of the focal node only. (C) In the first approxi-
mation we also include all length 1 paths between the neighbors. (D) In
the second approximation we include all paths of lengths 1 and 2, and
so forth.

Just as the conventional message-passing algorithm is exact
on trees, our algorithms will be exact on networks with short
loops. We define a primitive cycle of length r starting at node
i to be a cycle such that at least one edge is not on a shorter
cycle beginning and ending at i . Then our r th approximation is
exact on networks that contain primitive cycles of length r + 2
or less only. For networks that contain longer primitive cycles
it will be an approximation, although as we will see it may be
a good one.

Applications
Our approach is best demonstrated by example. In this sec-
tion we derive message-passing equations on loopy networks
for 2 specific applications: the calculation of cluster sizes for
bond percolation and the calculation of the spectra of sparse
matrices.

Percolation. Consider the bond percolation process on an undi-
rected network of n nodes, where each edge is occupied inde-
pendently with probability p (20, 21). Occupied edges form
connected clusters and we wish to know the distribution of the
sizes of these clusters and whether there exists a giant or per-
colating cluster that occupies a nonvanishing fraction of the
network in the limit of large network size.

Let us define the r th neighborhood N
(r)
i of node i as previ-

ously and then define a random variable Γi for our percolation
process to be the set of nodes within N

(r)
i that are reachable

from i by traversing occupied edges only. Our initial goal is to
compute the probability πi(s) that node i belongs to a nonper-
colating cluster of size s . We do this in 2 stages. First, we compute
the conditional probability πi(s|Γi) of belonging to a cluster of
size s given the set of reachable nodes. Then we average over Γi

to get the full probability πi(s).
Suppose that node i belongs to a cluster of size s . If our net-

work contains no primitive cycles longer than r + 2, then the set
of nodes Γi would become disconnected from one another were
we to remove all edges in the neighborhood N

(r)
i —the removal

of these edges removes any connections within the neighborhood
and there can be no connections via paths outside the neigh-
borhood since such a path would constitute a primitive cycle of
length longer than r + 2. Hence the sizes sj of the clusters to
which the nodes in N

(r)
i would belong after this removal must
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sum to s − 1 (the sth and last node being provided by i itself).
This observation allows us to write

πi(s |Γi) =
∑

{sj :j∈Γi}

∏
j∈Γi

πi←j (sj )

δ (s − 1,
∑

j∈Γi
sj
)

, [1]

where πi←j (s) is the probability that node j is in a cluster of size
s once the edges in N

(r)
i are removed.

We can now write a generating function for πi(s |Γi) as
follows:

Hi(z |Γi) =

∞∑
s=1

πi(s |Γi) z
s

=

∞∑
s=1

z s

 ∑
{sj :j∈Γi}

∏
j∈Γi

πi←j (sj )

δ(s − 1,
∑

j∈Γi
sj )


= z

∏
j∈Γi

∞∑
sj =1

z sj πi←j (sj ). [2]

To calculate the full probability πi(s) we average πi(s |Γi) over
sets Γi to get πi(s) = 〈πi(s |Γi)〉Γi

, with the average weighted
according to the sum of the probabilities of all edge configura-
tions that correspond to a particular Γi . The probability of any
individual edge configuration is simply pk (1− p)m−k , where p
is the edge occupation probability as previously, m is the num-
ber of network edges in the neighborhood N

(r)
i , and k is the

number that are occupied. Performing the same average on
Eq. 2 gives us

Hi(z ) =

∞∑
s=1

πi(s) z s = zGi (Hi←(z )), [3]

where Gi(y) =
〈∏

j∈N (r)
i

y
wij

j

〉
Γi

is a generating function for the

random variable wij , which takes the value 1 if j ∈Γi and 0 other-
wise, and Hi←(z ) is the vector with elements Hi←j (z ) for nodes
j in N

(r)
i .

To complete the calculation we need to evaluate Hi←j (z ),
whose computation follows the same logic as for Hi(z ), the only
difference being that in considering the neighborhood of node j
we must remove the entire neighborhood of i first, as described
above. Doing this leads to

Hi←j (z ) = zGi←j (Hj←(z )), [4]

where Gi←j (y) is the equivalent of Gi(y) when N
(r)
i is removed.

(A detailed derivation of Eq. 4 is given in SI Appendix, Derivation
of the Message-Passing Equations.) If we can solve this equation
self-consistently for Hj←(z ), we can substitute the solution into
Eq. 3 to compute the full cluster size-generating function. The
message-passing method involves solving Eq. 4 by simple itera-
tion: We choose suitable starting values, for instance at random,
and iterate the equations to convergence.

From the cluster size-generating function we can calculate
a range of quantities of interest. For example, the probability
that node i belongs to a small cluster (of any size) is Hi(1) =∑

s πi(s). If it does not belong to a small cluster, then necessar-
ily it belongs to the percolating cluster and hence the expected
fraction S of the network taken up by the percolating cluster is

S = 1− 1

n

∑
i

Hi(1). [5]

Similarly, the average value of si is

〈si〉=
∞∑
s=1

sπi(s) =H ′i (1)

=Hi(1) +
∑

j∈N (r)
i

H ′i←j (1) ∂jGi(Hi←), [6]

where H ′ is the derivative of H and ∂jGi is the partial derivative
of Gi with respect to its j th argument. H ′i←j (1) can be found by
differentiating Eq. 4 and setting z = 1 to give the self-consistent
equation

H ′i←j (1) =Hi←j (1) +
∑

k∈N (r)
j\i

H ′j←k (1) ∂kGi←j (Hj←), [7]

where N
(r)

j\i denotes the neighborhood N
(r)
j with N

(r)
i removed.

While these equations are straightforward in principle, imple-
menting them in practice presents some additional challenges.
Computing the generating functions Gi(y) and Gi←j (y) can be
demanding, since it requires us to perform an average over
the occupancy configurations of all edges within the neigh-
borhoods N

(r)
i and N

(r)

j\i , and the number of configurations
increases exponentially with neighborhood size. For small neigh-
borhoods, such as those found on low-dimensional lattices, it
is feasible to average exhaustively, but for many complex net-
works this is not possible. In such cases we instead approximate
the average by Monte Carlo sampling of configurations—see
SI Appendix, Monte Carlo Algorithm for Gi(y) for details. A
nice feature of the Monte Carlo procedure is that the sam-
ples need be taken only once for the entire calculation and can
then be reused on successive iterations of the message-passing
process.

In practice the method gives excellent results. We show exam-
ple applications to 2 real-world networks in Fig. 2, the first one
a social network of coauthorship relations between scientists in
the field of condensed-matter physics (22) and the second one a
network of trust relations between users of the pretty good pri-
vacy (PGP) encryption software (23). Both networks have a high
density of short loops. For each network Fig. 2 shows, as a func-
tion of p, several different estimates of both the average size 〈s〉
of a small cluster and the size S of the percolating cluster as a
fraction of n . First we show an estimate made using standard
message passing (Fig. 2, dashed line)—the r = 0 approximation
in our nomenclature—which ignores loops and is expected to
give poor results. Second, we show the next 2 approximations
in our series, those for r = 1 and r = 2 (Fig. 2, dotted and solid
lines, respectively), with Gi(y) and Gi←j (y) estimated by Monte
Carlo sampling as described above. We use only 8 samples for
each node i but the results are nonetheless impressively accurate.
Third, we show for comparison a direct numerical estimate of the
quantities in question made by conventional simulation of the
percolation process.

For both networks we see the same pattern. The traditional
message-passing method fares poorly, as expected, giving esti-
mates that are substantially in disagreement with the simula-
tion results, particularly for the calculations of average cluster
size. The r = 1 approximation, on the other hand, does sig-
nificantly better and the r = 2 approximation does better still,
agreeing closely with the numerical results for all measures on
both networks. In these examples at least, it appears that the
r = 2 method gives accurate results for bond percolation, where
standard message passing fails.

The message-passing algorithm is relatively fast. For r ≤ 1
each node receives a message from each neighbor on each iter-
ation, and so on a network with mean degree c there are cn
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Fig. 2. Percolating cluster size (× symbols) and average cluster size (+
symbols) for 2 real-world networks. (Top) The largest component of a coau-
thorship network of 13,861 scientists (22). (Bottom) A network of 10,680
users of the PGP encryption software (23).

messages passed per iteration. For r ≥ 2 the number of mes-
sages depends on the network structure. On trees the number
of messages remains unchanged at cn as r increases but on
networks with loops it grows and for large numbers of loops it
can grow exponentially. In the common sparse case where the
size of the neighborhoods does not grow with n , however, the
number of messages is linear in n for fixed r and hence so is
the running time for each iteration. It is not known in general
how many iterations are needed for message-passing methods to
reach convergence, but elementary heuristic arguments suggest
the number should be on the order of the diameter of the net-
work, which is typically O(log n). Thus we expect overall running
time to be O(n log n) for sparse networks at fixed r .

This makes the algorithm quite efficient, although direct
numerical simulations of percolation run comparably fast, so
the message-passing approach does not offer a speed advantage
over traditional approaches. However, the 2 approaches are cal-
culating different things. Traditional simulations of percolation
perform a calculation for one particular realization of bond occu-
pancies. If we want average values over many realizations, we
must perform the average explicitly, repeating the whole simula-
tion for each realization. The message-passing approach, on the
other hand, computes the average over realizations in a single
calculation and no repetition is necessary, making it potentially
the faster method in some situations.

In the next section we demonstrate another example appli-
cation of our method, to the calculation of the spectrum of
a sparse matrix, where traditional and message-passing calcu-
lations differ substantially in their running time, the message-
passing approach being much faster, making calculations possi-
ble for large systems whose spectra cannot be computed in any
reasonable amount of time by traditional means.

Matrix Spectra. For our second example application we show
how the message-passing method can be used to compute the
eigenvalue spectrum of a sparse symmetric matrix. Any n ×n

symmetric matrix can be thought of as an undirected weighted
network on n nodes and we can use this equivalence to apply the
message-passing method to such matrices.

The spectral density of a symmetric matrix A is the quantity

ρ(x ) =
1

n

n∑
k=1

δ(x −λk ), [8]

where λk is the k th eigenvalue of A, and δ(x ) is the Dirac delta
function. Following standard arguments (24), we can show that
the spectral density is equal to the imaginary part of the complex
function

ρ(z ) =− 1

nπ

n∑
k=1

1

z −λk
=− 1

nπ
Tr(z I−A)−1

=− 1

nπz

n∑
i=1

∞∑
s=0

X s
i

z s
, [9]

where X s
i = [As ]ii is the i th diagonal element of As , and z = x +

iη and we take the limit as η→ 0 from above. The imaginary part
η acts as a resolution parameter that broadens the delta-function
peaks in Eq. 8 by an amount roughly equal to its value.

The quantities X s
i = [As ]ii can be related to sums over closed

walks in the equivalent network. If we consider the “weight” of
a walk to be the product of the matrix elements on the edges it
traverses, then X s

i is the sum of the weights of all closed walks of
length s that start and end at node i .

A closed walk from i need not visit i only at its start and end,
however. It can return to i any number of times over the course
of the walk. The simplest case, where it returns just once at the
end of the walk, we call an excursion. A more general closed walk
that returns to node i exactly m times can be thought of as a
succession of m excursions. Such a walk will have length s if those
m excursions have lengths s1 . . . sm with

∑m
u=1 su = s .

With this in mind, let Y s
i be the sum of the weights of all excur-

sions of length s that start and end at node i . Then the sum X s
i

over closed walks of length s can be written in terms of Y s
i as

X s
i =

∞∑
m = 0

[
∞∑

s1=1

· · ·
∞∑

sm=1

δ
(
s,
∑m

u=1su
) m∏
u=1

Y su
i

]
. [10]

Using this result, and defining the function

Hi(z ) =

∞∑
s=1

Y s
i

z s−1
, [11]

we find after some algebra that

ρ(z ) =− 1

nπ

n∑
i=1

1

z −Hi(z )
. [12]

(See SI Appendix, Derivation of the Message-Passing Equations for
a detailed derivation.) Thus, if we can calculate Hi(z ), then we
can calculate ρ(z ). This we do as follows.

Consider the neighborhood N
(r)
i around i . If there are no

primitive cycles of length longer than r + 2 in our network, then
all cycles starting at i are already included within the neighbor-
hood, which means that any excursion from i takes the form of
an excursion w within the neighborhood plus some number of
additional closed walks outside the neighborhood each of which
starts at one of the nodes in w and returns some time later to
the same node (Fig. 3). The additional walks must necessarily
return to the same node they started at since if they did not, they
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Fig. 3. An example excursion from the central node (red open circle). The
excursion is equivalent to an excursion inside the neighborhood, shown with
green arrows, plus closed walks to regions outside of the neighborhood,
shown in blue.

would complete a cycle outside the neighborhood, of which by
hypothesis there are none.

Let the length of the excursion w be l + 1, meaning that it visits
l nodes j1 . . . jl (not necessarily distinct) within the neighborhood
other than the starting node i , and let sj be the length of the
external closed walk (if any) that starts at node j or zero if there
is no such walk. The total length of the complete excursion from
i will then be l + 1 +

∑
j∈w sj and the sum of the weights of all

excursions of length s with w as their foundation will be

|w |
∑

{sj :j∈w}

δ
(
s, l + 1 +

∑
j∈w sj

)∏
j∈w

X
sj
i←j , [13]

where |w | is the weight of w itself and X s
i←j is the sum of

weights of length-s walks from node j if the neighborhood N
(r)
i

is removed from the network. By a similar argument to the one
that led to Eq. 10, we can express X s

i←j in terms of the sum Y s
i←j

of excursions from j ; thus

X s
i←j =

∞∑
m=0

[
∞∑

s1=1

· · ·
∞∑

sm=1

δ
(
s,
∑m

u=1su
) m∏
u=1

Y su
i←j

]
. [14]

And the quantity Y s
i appearing in Eq. 11 can be calculated by

summing Eq. 13 first over the set of excursions of length l + 1 in
the neighborhood of i and then over l . This allows us to write
Eq. 11 as

Hi(z ) =
∑

w∈Wi

|w |
∏
j∈w

1

z −Hi←j (z )
, [15]

where Wi is the complete set of excursions of all lengths in the
neighborhood of i and we have defined

Hi←j (z ) =

∞∑
s=1

Y s
i←j

z s−1
. [16]

Following an analogous line of argument for this function we can
show similarly that

Hi←j (z ) =
∑

w∈Wj\i

|w |
∏
k∈w

1

z −Hj←k (z )
. [17]

Eq. 17 defines our message-passing equations for the spec-
tral density. By iterating these equations to convergence from
suitable starting values we can solve for the values of the mes-
sages Hi←j (z ) and then substitute into Eqs. 12 and 15 to get the
spectral density itself.

As with our percolation example, the utility of this approach
relies on our having an efficient method for evaluating the sum

in Eq. 17. Fortunately there is such a method, as follows. Let
vi←j be the vector with elements vi←j ,k =Ajk if nodes j and k

are directly connected in N
(r)

j\i and 0 otherwise. Further, let Ai←j

be the matrix of the neighborhood of j with the neighborhood of
i removed, such that

Ai←j
kl =

{
Akl for k , l 6= j and edge (k , l)∈N (r)

j\i ,
0 otherwise,

[18]

and let Di←j (z ) be the diagonal matrix with entries D i←j
kk =

z −Hj←k (z ). As shown in SI Appendix, Derivation of the
Message-Passing Equations, Eq. 17 can then be written

Hi←j (z ) =Ajj + vTi←j

(
Di←j −Ai←j

)−1

vi←j . [19]

Since the matrices in this equation are the size of the neighbor-
hood, each message update requires us to invert only a small
matrix, which gives us a linear-time algorithm for each iteration
of the message-passing equations and an overall running time of
O(n log n) for sparse networks with fixed neighborhood sizes or
for the equivalent sparse matrices.

As an example of this method, we show in Fig. 4 spectra for
the same 2 real-world networks that we used in Fig. 2. To demon-
strate the flexibility of the method we calculate different spectra
in the 2 cases: For the coauthorship network we calculate the
spectrum of the graph Laplacian; for the PGP network we calcu-
late the spectrum of the adjacency matrix. For each network the
black curve in Fig. 4 shows the spectral density calculated using
the message-passing method with r = 1. We also calculate the
full set of eigenvalues of each network directly using traditional

Fig. 4. Matrix spectra for the same 2 networks that were used in Fig. 2.
(Top) The spectrum of the graph Laplacian of the coauthorship network.
(Bottom) The spectrum of the adjacency matrix of the PGP network. The
shaded areas show the spectral density calculated by direct numerical diag-
onalization. The black lines show the r = 1 message-passing approximation.
The broadening parameter η was set to 0.05 (Top) and 0.01 (Bottom).
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numerical methods and substitute the results into Eq. 9 to com-
pute the spectral density, shown as the shaded areas in Fig. 4. As
we can see, the agreement between the 2 methods is excellent for
both networks. There are a few regions where small differences
are visible but in general they agree closely. Extending the calcu-
lation to the next (r = 2) approximation gives a modest further
improvement in the results.

The O(n log n) running time of the message-passing algorithm
significantly outstrips that of traditional numerical diagonaliza-
tion. Complete spectra are normally calculated using the QR
algorithm, which runs in time O(n3) and is consequently much
slower as system size becomes large. The Lanczos algorithm is
faster, but typically gives only a few leading eigenvalues and
not a complete spectrum—it takes time O(rn) to compute r
eigenvalues of a sparse matrix. The kernel polynomial method
(25) is capable of computing complete spectra for sparse matri-
ces, but requires Monte Carlo evaluation of the traces of large
matrix powers, which has slow convergence and is always only
approximate, even in cases where our method gives exact results.

This opens up the possibility of using our approach to calculate
the spectral density of networks and matrices significantly larger
than those that can be tackled by traditional means. As an exam-
ple, we have used the message-passing method to compute the
spectral density of one network with 317,080 nodes. This is sig-
nificantly larger than the largest systems that can be diagonalized
using the QR algorithm, which on current (nonparallel) com-
modity hardware is limited to a few tens of thousands of nodes in
practical running times.

Conclusions
In this paper we have described a class of message-passing
methods for performing calculations on networks that contain
short loops, a situation in which traditional message passing
often gives poor results or may fail to converge entirely. We
derive message-passing equations that account for the effects
of loops up to a fixed length that we choose, so that calcula-
tions are exact on networks with no loops longer than this. In
practice we achieve excellent results on real-world networks by

accounting for loops up to length 3 or 4 only, even if longer loops
are present.

We have demonstrated our approach with 2 example applica-
tions, one to the calculation of bond percolation properties of
networks and the other to the calculation of the spectra of sparse
matrices. In the first case we develop message-passing equations
for the size of the percolating cluster and the average size of
small clusters and find that these give good results, even on net-
works with an extremely high density of short loops. For the
calculation of matrix spectra, we develop a message-passing algo-
rithm for the spectral density that gives results in good agreement
with traditional numerical diagonalization but in much shorter
running times. Where traditional methods are limited to matri-
ces with at most a few tens of thousands of rows and columns,
our method can be applied to cases with hundreds of thousands
at least.

There are a number of possible directions for future work on
this topic. Chief among them is the application of the method to
other classes of problems, such as epidemiological calculations,
graph coloring, or spin models (SI Appendix, Other applications,
for a brief discussion). Many extensions of the calculations in
this paper are also possible, including the incorporation of longer
primitive cycles in the message-passing equations, development
of more efficient algorithms for very large systems, and applica-
tions to individual examples of interest such as the computation
of spectra for very large graphs. Finally, while our example appli-
cations are to real-world networks, the same methods could in
principle be applied to model networks and in particular to
ensembles of random graphs, which opens up the possibility of
additional analytic results about such models. These possibilities,
however, we leave for future research.

Data Availability Statement. All data discussed in this paper are
available to readers.
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