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Abstract

Medication dosing in a critical care environment is a complex task that involves close monitoring 

of relevant physiologic and laboratory biomarkers and corresponding sequential adjustment of the 

prescribed dose. Misdosing of medications with narrow therapeutic windows (such as intravenous 

[IV] heparin) can result in preventable adverse events, decrease quality of care and increase cost. 

Therefore, a robust recommendation system can help clinicians by providing individualized dosing 

suggestions or corrections to existing protocols. We present a clinician-in-the-loop framework for 

adjusting IV heparin dose using deep reinforcement learning (RL). Our main objectives were to 

learn a new IV heparin dosing policy based on the multi-dimensional features of patients, and 

evaluate the effectiveness of the learned policy in the presence of other confounding factors that 

may contribute to heparin-related side effects. The data used in the experiments included 2598 

intensive care patients from the publicly available MIMIC database and 2310 patients from the 

Emory University clinical data warehouse. Experimental results suggested that the distance from 

RL policy had a statistically significant association with anticoagulant complications (p < 0.05), 

after adjusting for the effects of confounding factors.

I. Introduction

Heparin is an effective intravenous (IV) anticoagulant used to prevent the formation of blood 

clots in susceptible patients. However, due to IV heparin’s narrow therapeutic window, its 

administration requires frequent monitoring and dose adjustment to prevent adverse events 

associated with supraor sub- therapeutic anticoagulation. Latent endogeneous and 

exogeneous factors are continuously affecting patient’s ability to maintain normal blood 

coagulation. Yet, dosing and sequential adjustment of IV heparin is often performed by 

following clinical protocols based on a limited number of clinical measurements, collected 

at the initiation of care (e.g. weight, history of complications and intermittent monitoring of 

coagulation factors). In practice, deviations from such protocols are common due the 

complex and dynamic nature of patient’s physiology [1]. While the rationale for deviations 

from established protocols are often not directly reported in electronic medical records 

(EMRs), EMRs may provide indirect evidence of the work-flow related factors, drug-
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interactions, and other complex scenarios that informed the decision to deviate from clinical 

guidelines.

In recent years, there has been a growing number of clinical studies both through prospective 

trials as well as retrospective analysis of electronic medical records [2], [3], [4] aimed at 

refining the heparin dosing protocols. The prospect of learning optimal dosing protocols 

from retrospective clinical data is particularly intriguing in a time when 90% of health 

providers now store detailed electronics medical records [5], allowing algorithmic 

approaches to leverage heterogeneity in both dosing behavior, and patient characteristics, 

when identifying ‘optimal’ policies. Indeed, retrospective analyses are a necessary precursor 

to motivate prospective trials, which produce smaller data archives, at higher cost, and must 

necessarily exclude patients at ‘high-risk’ for adverse outcomes (e.g. the elderly). Important 

previous work has found associations between observational trial results and RCTs [6].

Retrospective analysis starts by extracting sequential dose-response data, laboratory and 

other clinical data, as well as outcome variables corresponding to adverse events. However, 

dose-response data is often sparse, since blood draws are required to measure the relevant 

biomarkers (such as ‘Heparin Level’, ‘activated Partial Thromboplastin Time’ or aPTT, and 

‘Activated Clotting Time’ or ACT). This feedback delay is akin to the problem of delayed 

rewards and credit assignment in the Reinforcement Learning (RL) literature, wherein the 

rewards associated with a state-action pair can occur terribly delayed [7]. As a consequence, 

such reward signals will only very weakly affect all temporally distant states that have 

preceded it, resulting in a difficulty to assign the appropriate credit to a given state-action 

pair.

In this work, we utilize the framework of reinforcement learning in continuous state-action 

spaces to learn a better policy for heparin dosing from observational data. Furthermore, we 

aim to statistically assess if the learned policy is in fact better than the existing hospital 

protocols. When evaluating a new policy, we perform multivariate regression analysis to test 

the hypothesis that adherence to the learned RL policy is significantly associated with 

improved outcomes after adjusting for confounding factors.

II. Method

A. Data

Data for this multicenter-study was collected from two sources: The first dataset was 

collected from the publicly available Medical Information Mart For Intensive Care (MIMIC) 

dataset [8], the second dataset was collected from the Emory Hospital intensive care unit 

data. Of note, inclusion of two separate datasets was meant to show the generalizability of 

the proposed framework, but not necessarily a set of model coefficients. We identified 2598 

patients in MIMIC database who received IV heparin infusion during their ICU stay, and 

who had activated partial thromboplastin time measures (aPTT), which is used in MIMIC to 

monitor the response of patients. We extracted high resolution data including laboratory 

results, and time-lagged aPTT and heparin dose measurements over the three hours period 

prior to the selected time (t-1h : t-3h). Additionally, we collected the following covariates: 

gender, age, weight, ICU unit, ethnicity, history of pulmonary embolism and the overall 
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Sequential Organ Failure Assessment (SOFA) score. The dosing protocol at the Beth Isreal 

Medical Deaconess Medical Center (where MIMIC was collected) defines a threapeutic 

aPPT as between 60 and 100.

The second dataset included 2310 ICU patients from Emory Healthcare (Atlanta, GA). All 

patients were admitted between Jan. 2013 and Dec. 2015 and received IV heparin during 

their admission. Collected data included demographic information (gender, ethnicity, etc.), 

laboratory testing result and the heparin level, which is used in Emory hospital as a 

biomarker of dose response. Additionally, we obtained the healthcare system’s weight-based 

IV heparin infusion protocol to help determine the level of adherence to the official dosing 

protocol. The dosing protocol at Emory was divided into low-standard and high-standard 

according to a patient’s indication for IV heparin.

For both datasets, we determined the patient’s history of medical condition using daily 

International Classification of Diseases-9 (ICD-9) codes (assigned by the clinical team) [9]. 

From the daily diagnostic codes assigned by the bedside clinical team, we extracted the 

timestamps of complications related to bleeding instance, blood clots including pulmonary 

embolism (PE) and deep vein thrombosis (DVT). These complications were used as a 

prediction target for the analysis. Sample-and-hold was used to handle missing data when 

applicable. In all other cases, mean imputation was used by calculating the mean value of 

each feature across the training data, and utilizing the same values on the testing data.

B. Reinforcement learning

1) Policy Architecture: The methods in this study are based on the deep deterministic 

policy gradient approach (DDPG) described by Lillicrap et al. [10]. DDPG is a technique 

designed for RL in the continuous action domain. The algorithm combines Deterministic 

Policy Gradient (DPG) [11] and Deep Q-Networks (DQN) [12]. Let (st, at) denote the state 

and action pair at the time-step t, and πθ (st, at) = P (at|st, θ) represent the policy which 

provides a parametric conditional probability distribution over the space of possible actions 

given a state st, and model parameters θ. In our setting, the state may represent the set of 

measurements that characterizes a patient at a given time, or a lower dimensional 

representation of such measurements. The action is the continuous dosage of the drug, and 

the policy is a deterministic function, at = μθ(st), that corresponds to the behavior of the RL 

dosing protocol. For our purposes, the form of μθ is a neural network that maps from the 

state of the patient to the appropriate dose of heparin. Finally, the objective of learning is to 

find a policy that maximizes the discounted long-term accumulated reward (across) 

associated with a state-action pair, denoted by R st, at = rt + γrt + 1 + γ2rt + 2 + ⋯ + γT − trT. 

Therefore the goal of learning is to maximize the objective function:

J(θ) = Es ∫a
πθ st, a R st, a da

The gradient of the above objective function can be calculated by the policy gradient 

theorem [13]:
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∇θJ(θ) = Es, a ∇θ log πθ(s, a)Qw
π (s, a)

where πθ (s, a) is known as the actor network and Qw
π (s, a) is known as the critic network 

(see Figure 1). The actor follows a deterministic policy to suggest an action. The critic 

estimates the long-term value of this act ion:

Qw
π st, μθ st = Eμ R st, μθ st

and utilizes a TD (Temporal-Difference) error signal (the difference between the left and 

right-hand sides of the above equation) to drive the learning in both the actor and the critic. 

The deterministic policy gradient theorem provides the update rule for the weights of the 

actor network, while the critic network is updated from the gradients obtained from the TD 

error signal. In the online setting, the RL agent executes a series of actions following an 

exploration-exploitation policy and observes the resulting rewards and state transitions. Each 

mini-batch of size N includes examples of the form 𝒟 = st
(n), at

(n), rt
(n), st + 1

(n)
n = 1
N

. Learning 

occurs through mini-batch gradient decedent by following the policy gradient. For a more 

detailed explanation of the DDPG algorithm and description of the learning procedure see 

Lillicrap et al. [10].

2) Reward Function: For each dataset, We defined a function that translates the 

measured outcomes into a continuous reward ∈[−1, 1].

• MIMIC: Rewards were assigned according to the following a scaling function:

rt = 2

1 + e
− aPTTt − 60

− 2

1 + e
− aPTTt − 100

− 1

which assigns a value close to 1 to aPTT values that fall within the therapeutic 

range of 60–100, and negative values elsewhere.

• Emory: We generated a reward function for each dosing standard (low and high). 

For patients on the low-standard protocol, reward was defined as:

rt
(low) = 2

1 + e
−10 HLt − 0.3

− 2

1 + e
−10 HLt − 0.5

− 0.5

For patients on the high-standard protocol, reward was defined as:

rt
(high) = 2

1 + e
−10 HLt − 0.5

− 2

1 + e
−10 HLt − 0.7

− 0.5
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C. Assessing Policy Value

Following Hirano and Imbens [14], the adjusted treatment effect can be measured by 

estimating the treatment-outcome curve with a regression models. More specifically, the 

conditional expectation of the outcome under different IV heparin dosing can be estimated 

using the observed outcomes, which corresponds to the potential outcome under the level of 

treatment received:

E[Y(t)| X = x] = E[Y | T = t,  X = x]

where Y is the outcome, X is the vector of patient’s covariates and T is the continuous 

heparin treatment level. We used regression estimators to model the outcome as a function of 

the treatment level and covariates. With parametric models for the outcome, we can further 

analyze the expected value of the outcome under different levels of treatment.

In order to evaluate the adjusted treatment effect, we need to model the treatment-outcome 

curve using a regression model. Let us first define the notion of distance from RL policy as 

the difference between the recommended dose of IV heparin (by the RL agent) and actual 

dose of IV heparin given to the patient over an entire dosing trajectory: Distance = 

Et[recommended dose(t) − administered dose(t)]. We define five distance levels (indexed as 

−2, −1, 0, 1, 2) by binning the continuous distance into five quantiles, which we 

interchangeably call the treatment level. For instance, a treatment level of zero corresponds 

to receiving the exact dose as recommended by the RL agent, while a treatment level of −2 

means that the administered dose was higher than the RL agent’s recommendation.

D. Clinician-in-the-loop framework

While traditionally RL has been successful in online learning scenarios (with either real-

world or simulated environments), clinical applications of RL have been limited to learning 

from offline data. If an accurate pharmacological drug dose-response model is available, an 

RL agent can learn an optimal policy through exploration-exploitation and execution of 

various dosages. However, when it comes to real world clinical scenarios, random 

exploration over the action space during the training phase is not realistic. Therefore, instead 

of generating new episodes by interacting with environment, a potential approach to learning 

is to utilize real episodes from retrospective clinical data. Again, the retrospective data is 

organized into tuples of the form st
(n), at

(n), rt
(n), st + 1

(n)
n = 1
N

, where the actions correspond to 

the actual dose of medication given to the patient. One interpretation of this setting is that 

the RL agent only recommends an action, and it’s up to the clinician to either take the 

recommendation or execute an alternative action. We call this a clinician-in-the-loop 

framework, as depicted in Figure 1. In this scheme, regardless of the action of the clinician, 

the agent learns by analyzing the trajectory of states, actions, and associated rewards. As 

long as there is sufficient variability in the actions performed the agent will be able to learn 

from historical data to arrive at a better policy. However, the true value of a new policy can 

only be determined with respect to meaningful clinical outcomes, and after adjusting for 

confounding factors. We utilize the framework of adjusted treatment effects (also known as 
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causal treatment effects) to assess the value of a new policy, where a new policy plays the 

role of a treatment that only a subset of the population may receive.

E. Results

In Figures 2, we provide an example of the heparin dosing decisions by the clinical team, 

compared to the official weight-based protocols, and the suggestions of the RL agent.

In Figure 3, we depict the reward associated with the five distance levels defined above(−2, 

−1, 0, 1 2) on the Emory datasets. We observe here that the average reward of distance level 

zero (corresponding to exactly following the RL agent’s recommendation) provides the 

greatest reward. Furthermore, as the distance between the recommended dose and the actual 

dose increases, there is a decline in the average accumulated reward. These observations 

suggest that our RL agent is providing reasonable and useful recommendations for the 

patients within the Emory dataset. These findings were consistent across the MIMIC dataset.

While these results are encouraging, one may argue that patients in distance 0 class are 

simply healthier than other patients. In order to adjust for confounding factors when 

assessing the relationship between treatment levels and outcomes, we performed a multiple 

linear regression analysis, with the continuous variable ‘average reward’ as the outcome of 

interest, to determine whether the treatment level (or distance from policy) is as significant 

(p-value < 0.05). The regression results using the MIMIC and Emory data are shown in 

Table I and II.

The other evaluation was focused on the under anticoagulation (i.e., thrombus/embolus) and 

over anticoagulation (i.e., bleeding) complications in Emory ICU data. In Figures 4 and 5 

and Tables IV and III, we illustrate the results of a logistic regression model used to predict 

the presence or absence of complications (thrombus/embolus and bleeding) given distance 

from policy, after adjusting for confounding factors using the Emory dataset.

For the under anticoagulation complications, the distance from policy is the only significant 

variable with a p-value smaller than 0.05, and a positive regression coefficient indicating an 

increase in risk of under anticoagulation complications with the increasing distance from the 

RL policy (i.e., receiving less heparin than recommended by the RL agent). For the over 

anticoagulation complications, a decrease in distance from policy (i.e., receiving more 

heparin than recommended by the RL agent) is associated with an increase in bleeding 

probability. The second variable with significant p-value is the coagulation SOFA scores 

which is directly related to platelets count, and is positively associated with over 

anticoagulation complications (as expected).

III. Discussion and Conclusion

The major finding of this study is that the DDPG method can learn an improved policy for 

IV heparin dosing using retrospective data. We utilized the adjusted treatment effect 

framework to show that the learned policy is significantly associated with improved 

outcomes even after adjusting for confounding factors. The multiple linear regression and 

logistics regression analysis revealed that the distance between recommended dosing and 
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clinicians’ dosing is significantly associated with total accumulated reward and coagulation-

related complications. These findings indicate that following the RL agent’s 

recommendations, on average, would have likely resulted in improved clinical outcomes.

The DDPG method, which operates in continuous state and action spaces, does not require 

arbitrary discretization of actions, which was used in prior studies that utilized Q-learning 

[2]. However in practice, the continuous nature of the actions often results in smooth 

changes in the RL agent’s recommendations. While this may be an advantage if the RL 

agent successfully learns to never over-dose the patients, in the cases when such events do 

happen, the clinical protocols dictate an immediate stop of IV heparin infusion. In our 

setting, the RL agent was not able to suggest such rapid transitions, which may be a 

consequence of the way negative and positive rewards were defined in this study. For 

instance, designing asymmetric rewards based on patients underlying risk factors may be a 

potential approach to mitigate this issue. For instance, one may increase the penalty 

(negative reward) associated with over-dosing in a patient at risk for bleeding complications.

Our future work includes a closer examination (via chart review) of the underlying causes of 

occasional large discrepancies between the recommended and actual dosing of heparin. We 

hypothesize that the underlying causes of such discrepancies are multifactorial, which may 

include confounding clinical factors that were not adequately captured by the structured data 

within the EMR, and work flow-related issues that may have slowed down a timely response 

to an overshoot or an undershoot.

In conclusion, our preliminary results suggests that the RL framework allows for learning 

improved IV heparin dosing policies from retrospective data by considering the high-

dimensional static and dynamic observations that are commonly available in electronic 

medical records. The adjusted treatment effect framework in association with the RL 

modeling approach provides a powerful tool for learning medication recommendation and 

surveillance models from retrospective clinical data. Further advancement in this clinical 

space has the potential to improve personalized delivery of care, reduce anticoagulation-

related complications, and reduce healthcare expenditures.
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Fig. 1. 
Clinician-in-the-loop framework. The Actor network suggests a dose, which is presented to 

a clinician who in-turn either accepts the recommendation or executes a different dose. The 

Critic network receives the corresponding reward from the environment and produces a TD 

error for updating the network.
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Fig. 2. 
Emory dosing: heparin level and therapeutic range; clinicians dosing (green stem with 

circle), protocol dosing (red stem with cross) and recommendation dosing (blue stem with 

cross).
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Fig. 3. 
Association between distance from policy and average accumulated reward (Emory data): 

mean and standard deviation
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Fig. 4. 
Association between distance from policy and percentage of clotting complication (Emory 

data): mean and standard deviation
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Fig. 5. 
Association between distance from policy and percentage of bleeding complication (Emory 

data): mean and standard deviation
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TABLE I

REGRESSION ON REWARD (MIMIC). SOFA: SEQUENTIAL ORGAN FAILURE ASSESSMENT. PE: PULMONARY EMBOLISM

Feature β p-value [95% Interval]

Constant −0.3503 0.000 [−0.37, −0.32]

| Distance From Policy | −0.1235 0.000 [−0.15, −0.10]

Gender −0.0108 0.376 [−0.03,0.01]

Age 0.001 0.887 [−0.02,0.03]

Weight −0.0166 0.193 [−0.04,0.0]

PE 0.0093 0.438 [−0.01,0.03]

SOFA −0.0090 0.454 [−0.02, −0.00]
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TABLE II

REGRESSION ON REWARD (EMORY DATA)

Feature β p-value [95% Interval]

Constant 0.0032 0.397 [ −0.004 , 0.011 ]

| Distance From Policy | −0.0198 0.001 [ −0.030 , −0.008 ]

History Of Clot 0.0074 0.224 [ −0.005 , 0.019 ]

History Of Bleed 0.0048 0.431 [ −0.007 , 0.017 ]

Weight 0.0004 0.952 [ −0.011 , 0.012 ]

Age 0.0059 0.306 [ −0.005 , 0.017 ]

SOFA −0.0029 0.605 [ −0.014 , 0.008 ]
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TABLE III

REGRESSION ON CLOTTING COMPLICATIONS (EMORY DATA)

Feature β p-value [95% Interval]

Constant −2.3724 0.000 [−2.522, −2.223]

Distance From Policy 0.0146 0.001 [0.007,0.022]

History Of Clot 0.1156 0.073 [−0.011,0.242]

Weight 0.0740 0.282 [−0.061,0.209]

Age −0.1416 0.053 [−0.285,0.002]

SOFA −0.1059 0.202 [−0.269,0.057]
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TABLE IV

REGRESSION ON BLEEDING COMPLICATION (EMORY DATA)

Feature β p-value [95% Interval]

Constant −3.0050 0.000 [ −3.200 , −2.810 ]

Distance From Policy −0.0282 0.000 [ −0.036 , −0.021 ]

History Of Bleed −0.1086 0.303 [ −0.315 , 0.098 ]

Weight −0.0112 0.912 [ −0.210 , 0.187 ]

Age 0.0027 0.978 [ −0.190 , 0.196 ]

SOFA 0.2492 0.001 [ 0.104 , 0.395 ]
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