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Abstract

Video techniques for monitoring exposure, such as NIOSH’s “Helmet-CAM,” employ both real-

time dust monitors and mobile video cameras to assess workers’ respirable dust exposures. Many 

real-time personally worn dust monitors utilize light scattering sensing elements, which are subject 

to measurement biases as a function of dust type (size, composition, shape factor) and 

environmental conditions such as relative humidity. These biased and inaccurate dust 

measurements impair the monitor’s ability to properly represent actual respirable dust 

concentrations. In the testing described, instrument mass concentration data was collected using 

three different types of commonly used commercial off-the-shelf personal dust monitors and 

compared to a reference standard. This testing was performed in a calm air (Marple) dust chamber 

in which three units of each make and model (for a total of nine monitors) were used for each test. 

Equivalency factors (EF, a multiplier to match the Thermo TEOM 1400a reference instrument) 

ranged between 0.746 and 1.879 across all dusts and environmental conditions tested, and between 

0.821 and 1.519 on the ISO test dust.
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1 Introduction

Exposure to respirable crystalline silica remains a serious health concern for U.S. miners. 

Silica’s toxicity has led the Mine Safety and Health Administration (MSHA) to set a 

personal exposure limit that is 15 times lower than that for coal dust (100 μg/m3 for silica vs. 

1500 μg/m3 for coal). Outside of mining, the 2015 Occupational Safety and Health 

Administration (OSHA) rule has even further reduced the exposure limit to 50 μg/m3. The 
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latest estimate of non-coal mining employment (Spring/Summer 2008) estimates the number 

of workers at 161,542 [1]. The MSHA health samples data of that year reveals that there 

were 3642 samples collected for respirable dusts including quartz [2]; therefore, 

approximately 2.2% of metal/nonmetal (M/NM) and stone, sand, and gravel workers had a 

compliance sample taken in that year. Given the varied nature of miners’ job tasks, dust 

content, and environmental conditions, it is difficult to estimate their daily personal 

exposures.

To assist mines in pinpointing elevated dust exposures in their workforce, NIOSH has 

developed a video exposure monitoring (VEM) technology termed “Helmet-CAM” [3]. 

Helmet-CAM hardware consists of a wearable video camera (typically mounted on the 

worker’s hardhat or shoulder) and a wearable real-time respirable dust monitor. NIOSH has 

also developed a custom software package called EVADE [4] (Enhanced Video Analysis of 

Dust Exposures), which is downloadable from the NIOSH website (https://www.cdc.gov/

niosh/mining/Works/coversheet1867.html). EVADE allows users to quickly and easily 

merge recorded video and monitor results, perform simple analysis, and identify events that 

led to higher exposures. Specific hardware is not required and EVADE can merge data from 

multiple cameras and monitors (in generic, universal formats). In its research, NIOSH has 

routinely used the Thermo pDR-1500 (Waltham, MA) instrument because of its onboard 

filter option, which allows for a secondary analysis technique such as silica estimation by 

XRD [5] to be used after the Helmet-CAM session. Prior studies have shown that the 

pDR-1500 is accurate when mass corrected with measurements from the onboard filter [6].

The light scattering techniques commonly used in real-time recording dust monitors are 

based on the principle of the Mie theory [7, 8]. Light scattering methods direct a fixed 

wavelength laser at the dust particles, causing them to scatter electromagnetic radiation 

which is then measured by photodetectors whose response is proportional to the amount of 

dust in the air. It is well known that light scattering methods are dependent on particle 

characteristics such as size, shape, and refractive index and are only corrected by calibrating 

with dust with the same optical properties [9, 10]. Prior studies have assessed the response 

of similar instruments with different industrial dusts [11] including stone dust, solid and 

engineered wood dusts, and white flour. In support of a similar video exposure monitoring 

system (named PIMEX), another study [12] examined the performance of direct reading 

personal respirable dust monitors and found good response linearity for monitors in both 

active (air drawing) and passive modes.

The objective of this work was to establish equivalency factors (EF is the multiplier required 

to match the reference instrument) for three personal respirable dust monitors used in the 

U.S. M/NM industry across various mineral dusts. This would aid the plant-level industrial 

hygienist in collecting more accurate data in the absence of specific, routine, gravimetrically 

derived corrections for the monitors. The study focused on the determination of these EFs 

with specific dusts rather than isolating certain dust characteristics such as size and 

refractive index, although there certainly were these kinds of differences present in the 

materials tested. While instrument manufacturers recommend instrument/aerosol-specific 

corrections as a best practice [13], this step is not always taken, given the resource 

constraints on plant health and safety personnel. The EFs provided from this research should 
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further demonstrate the necessity for such corrections, but in cases where this simply cannot 

be accomplished, the provided multipliers may yield more accurate results.

2 Methods

2.1 Instruments Tested

A total of nine individual dust monitors were used in this experiment—three units for each 

type of monitor (Fig. 1). The dust monitors tested were chosen because of their prevalence in 

the U.S. industrial minerals industry. All of the monitors are intended to be worn by the 

worker, most commonly employing belt loops, with the unit being supported by a heavy 

duty “miner’s belt.” Two of the three instruments were active and allowed for the use of an 

external cyclone—in this case, the Dorr-Oliver (DO) 10-mm nylon cyclone, since it is 

specified for compliance sampling in the U.S. M/NM mining industry. The DO nylon 

cyclones were used at a flow rate of 1.7 l/min for the active instruments. A summary of the 

instruments used and their basic characteristics are listed in Table 1. All sample lines were of 

consistent length (~ 81 cm) and conductive tubing (Thermo part no. 32-006785-0050, 0.48-

cm ID) was used between the instrument and the cyclone. The use of a sampling line, even 

when a conducting material, can result in a loss of dust (by deposition in the tube) [14]. 

However, because the sampling line is an inherent part of the monitor that transfers the 

sample from the inlet to the size selector and the sensor, the losses are intrinsically included 

in the calculation of EFs.

Descriptions and capabilities of the three different monitors used in this comparative testing 

are given below.

2.1.1 pDR-1000—The pDR-1000, or “personalDataRAM” (Thermo Scientific, Waltham, 

MA), is a passive, non-size-selective instrument whose light scattering sensing configuration 

is optimized to measure the respirable fraction of airborne dust, smoke, fumes, and mists in 

industrial and other indoor environments [15]. Dust enters the pDR-1000 via natural ambient 

airflow and moves under a rubber hood which shrouds the sensing chamber (to address 

sensitivity to ambient light).

2.1.2 pDR-1500—The pDR-1500 (Thermo Scientific, Waltham, MA) utilizes more 

modern electronics than the pDR-1000. This instrument is active, drawing from ambient air 

via a flow-controlled pump which allows for the use of a cyclone mounted to the inlet. The 

instrument includes an onboard, internal 37-mm filter holder which can provide a physical 

sample for further analysis (e.g., methods NIOSH 0600 for gravimetric correction or NIOSH 

7500 for silica quantification).

In this testing, to better focus on the raw response of the monitor, software options to correct 

for the effects of relative humidity (RH) were disabled.

2.1.3 AM520—The AM520 personal aerosol monitor (TSI, Shoreview, MN) is active, 

pulling a sample through custom inlets with stated cut points in the respirable range. For the 

purposes of this experiment, the null inlet was used with a remote-mounted cyclone. The 
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AM520 was factory calibrated with emery oil which is then correlated to ISO 12103–1, A1 

test dust (fine Arizona Road Dust).

2.2 Dusts

As shown in Fig. 2, the ISO test dusts used in this study (Arizona road dusts, ISO 12103–1 

A2, “ISO FINE” and ISO 121013–1 A4, “ISO COARSE”) were obtained from Powder 

Technology International (Arden Hills, MN). The other dusts were collected in the course of 

NIOSH studies from producing U.S. mining operations. A “sand” dust was obtained from a 

surface sand operation, the “metal” dust from an underground platinum mine, and the 

“limestone” dust from an underground limestone mine. The fourth dust was obtained from a 

commercially available high purity silica product (MIN-U-SIL 5; U.S. Silica, Fredrick, 

MD). It is noted that smaller dusts are, in general, easier to control within the dust generator 

than larger dusts.

Sizing (volume mean diameter) of the bulk materials was performed using a Beckman 

Coulter Particle Size Analyzer, model LS 13320 (Brea, CA), using an assumed constant 

index of refraction of 1.68. The volume mean diameter is not the same as the aerodynamic 

diameter, but still is provided to give an indication of the relative sizes of dusts (before 

aerosolization) (Table 2).

2.3 Chamber and Reference Equipment

The aerosol testing chamber (Fig. 3) at NIOSH’s Pittsburgh Mining Research Division 

Laboratory was of the Marple design [16]. Equipped with reference instrumentation, it 

provided an optimal environment for side-by-side instrument comparisons and has been 

documented for low spatial variability [17, 18]. Concerns of the effects of over- or under-

sampling due to inlet efficiency as a function of wind speed are eliminated due to the calm 

air environment [19]. Filtered air is supplied to the chamber by first entering a mass flow, 

humidity, and temperature controller (Miller-Nelson; model HCS-501; Livermore, CA). The 

air then enters a fluidized bed aerosolizer (TSI 3400A) where it is mixed with the particular 

dust used for the experiment. Next, this dust/air mixture proceeds into the radioactive charge 

neutralizer (TSI 3012A NRC) and then enters the top of the chamber and flows through a 

honeycomb flow straightener. Finally, the air is drawn down through the chamber via an 

adjustable damper meant to apply a slight vacuum. The chamber features a circular moving 

base with oscillating rotation about its center axis, to reduce any spatial variability. Eighteen 

gravimetric assemblies were also used for each day of testing, again distributed in a circle 

within the chamber. The gravimetric assemblies included 10-mm nylon DO cyclone, two-

piece plastic cassette, and a 5-μm pore, 37-mm PVC filter (SKC, Eighty-Four PA, Cat. No. 

225–80,601 K). The flow rates of these gravimetric assemblies were also checked with the 

flow calibrator. Critical orifices, designed for 1.7 l/min flow, were connected in groups of 

six, and the filter samples were connected to each of three manifolds so that the vacuum 

could be simultaneously turned on for six (6) filter assemblies when each steady-state 

concentration level had been reached.
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2.4 Test Plan and Design of Experiments

Side-by-side comparisons were performed under controlled conditions within the Marple 

chamber against a reference instrument. The test plan used a Thermo Scientific TEOM 

1400a equipped with a DO cyclone and operated at 1.7 l/min as the reference. The various 

dust monitors under evaluation were compared to the 1400a real-time concentration readings 

and EFs determined. By using a real-time reference, it was possible to directly compare the 

data points from the dust monitors to those of the reference instrument. All instruments were 

set to sample at their highest possible rate—one reading every 2 s—but the reference TEOM 

recorded rolling 15-min averages every minute. A 6 × 2 test grid was used, with six dusts 

and two humidity levels per dust. To achieve the greatest possible differences in instrument 

response, the lowest and highest humidities possible in the chamber were targeted 

(approximately 30% and 90% RH).

Each test attempted to reach and maintain three distinct dust concentration plateaus (Fig. 4)

—700, 2500, and 4300 μg/m3. These concentrations were chosen based on the actual ranges 

observed in the field as well as those used in prior instrument comparisons [6, 17]. Each 

concentration plateau was held for approximately 90 mins, and accounting also for an initial 

zero period as well as transitions between levels each test lasted around 6.5 h. This approach 

ensured that the dust concentrations would be achievable by the chosen experimental setup 

and relatable to previous work performed in the same NIOSH laboratory.

Before each day of sampling, each of the test monitors was zeroed with a HEPA filter on its 

inlet, with flow adjusted against a Gilibrator-2 primary airflow calibrator (Sensidyne, St. 

Petersburg, FL). The flow rate of the TEOM reference instrument was also checked. The 

instruments were then set into the chamber and their cyclone inlets attached around the 

circular ring at a fixed height. The monitors were distributed spatially in the chamber in 

three sets, with one unit of each monitor type per set, such that they were offset from each 

other by 120°. The environmental controller was then turned on and the conditions in the 

Marple chamber were allowed to stabilize for 30 mins. This period also served as a zero 

point of reference to further ensure that the instruments were operating normally. The 

process of achieving the dust concentration plateaus involved monitoring the concentration 

levels and adjusting the flow rate to the chamber and dust generation rate accordingly. 

Between testing of each dust type (ISO fine, sand, limestone, etc.), the chamber was 

thoroughly cleaned with pressurized air and a HEPA vacuum.

2.5 Data Processing and Statistical Approach

As previously stated, the objective of these experiments was to determine the coefficient by 

which specific light scattering instruments’ dust concentrations should be multiplied to best 

estimate the reference monitor concentrations for different types of dust and relative 

humidity levels.

To obtain better fits of the linear models, data was edited to remove time periods of rapid 

concentration change, which can be problematic when comparing instruments with different 

response times and recording rates. Data analysis focused on plateau concentration periods, 

where concentrations were most accurately known and there were no time offsets between 
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the correlated data records. Weighted least squares (WLS) regression equations included 

intercepts in order to enhance the accuracy of derived slopes. The majority of the WLS 

regressions were performed using an iterative weight estimation process described in 

statistics literature [20]. The other regressions were performed using an SPSS weight 

estimation procedure. This procedure tests weight transformations based on a range of 

powers of the predictor variable and identifies the transformation that provides the best fit to 

the data. The homogeneity of variance of the weighted residuals was examined by the 

Levene test [21]. All statistical calculations were performed using IBM SPSS Statistics for 

Windows, Version 24.0, released in 2016, IBM Corporation, Armonk, NY.

The testing generated 130 individual data files with approximately 1.5 million raw data 

pairs. To ensure that the data would be handled consistently and to reduce the potential for 

human error in file manipulation, all of the data pre-processing was handled in Matlab 

(version 9.2, 2017). First, a software routine was created for each instrument type 

(pDR-1500, AM520, etc.) which would read in the raw ASCII files (Fig. 5). These files 

contain some header information and then rows of time and date records, concentration 

values, error codes, and other diagnostics.

For each test, data was pooled (not averaged) for each type of monitor. Next, the pooled data 

was plotted to visually inspect for potential anomalies (for example, a dust monitor that 

failed mid-way during testing). Because the reference data was not sampled at the same rate 

as the dust monitors, it needed to be digitally resampled; this was done using an anti-aliasing 

finite-duration impulse response (FIR) low-pass filter with delay compensation. Once at the 

same rate, the data sets were cropped to match the length of the shortest set (no meaningful 

data was lost since all instruments were started well before and stopped well after the target 

concentration plateaus were reached).

Because the data was recorded individually to each dust monitor, all monitors were manually 

started by the test technician in an effort to synchronize the data sets. Later, the data sets 

were better synchronized using a peak identification scheme, because of its robustness and 

the presence of strong, unmistakable peaks in the data sets. Even though all of the 

instruments are “real-time” or “nearly real-time,” they all have their own characteristic 

response times. While every effort had been made to resample and synchronize the data sets, 

it was worthwhile to remove transitionary data in between the target concentration plateaus, 

since this would further eliminate the effects of varying response times.

To accomplish this transition period removal (and to address when a plateau did not occur in 

a single uninterrupted time span), again an automated routine was written that identified two 

factors of data to reject. The first criterion was to remove data that was not within ± 10% of 

the target concentration. The second criterion removed data whose positive rate of change 

was > 200 when the first derivative of the concentration versus time data was plotted 

(removal of black data points, Fig. 4). While both of these criteria were obtained by trial and 

error, they did allow for a fixed set of minimal conditions to screen the data into a form that 

met the intended test conditions.
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After these steps, the data was finally hand-edited where the few transition outliers that 

made it through the previously outlined steps were removed. The ordinal plots of the 

reference concentration were presented to the authorship team and consensus was reached 

on which points to remove (typically not more than 20 points in a data set of 600 were 

identified and removed). There were then three clusters of data remaining, one for each of 

the concentration plateaus. These data sets, still pooled by monitor type, were then written 

back into an ASCII format for statistical processing, including WLS regressions in SPSS.

3 Results and Discussion

3.1 Data Quality and Results Presentation

A total of twenty-six (26) linear regressions were completed. All dust types were tested at 

two humidity conditions except for the ISO Fine which had three RH levels. The process of 

collecting and analyzing the gravimetric filter results ended with the research team deciding 

that no correction to the reference TEOM was justified (the mean gravimetric correction 

required would be only 1.014).

The response of the pDR-1000 had substantial scatter (Fig. 6) likely due to its design as a 

passive instrument intended for moving air environments (which precludes its use with a 

size classifier). As such, the calm air Marple chamber may not be an appropriate 

environment in which to test passive dust samplers. The pDR-1000 units were positioned in 

the Marple chamber in their normal (dust hood up) orientation, which possibly impeded the 

very low airflow from entering the sensing chamber. For this instrument, the R2 values were 

much lower (~ 0.680), and for that reason, the EFs are not presented, since the data is not of 

the same quality as from the other instruments. Fitting data with a high level of the variance 

would have required different statistical methods for a single instrument type, compromised 

the cohesiveness of the larger study, and produced presumptive EFs that would be used with 

much less confidence.

For each regression, the EF (slope), slope intercept, lower and upper 95% confidence 

interval limits, R2 (coefficient of determination), and SEE (standard error of the estimate) 

values are reported (Table 3). The mean R2 value was 0.985 for the combined AM520 and 

pDR-1500 regressions.

While all of the tests were run for the same approximate duration, the final trimmed data sets 

vary in size from 173 points to 831. Some of the dusts were more difficult to control with the 

dust generator than others. Therefore, stable concentration plateaus were more difficult to 

achieve with those dusts and fewer final data points survived the selection criteria described 

above.

3.2 Discussion of Equivalency Factors

Comparing the pDR-1500 and AM520, on average across all dusts and humidities in Fig. 7, 

the pDR-1500 had an EF average of 1.564 compared to the 0.931 for the AM520. 

Examining the calibration dust at 30% RH, the EFs were similar to those pooled means, with 

an EF of 1.506 for the pDR-1500 and 0.821 for the AM520. The metal dust required the 

highest EF and limestone the lowest for both instruments. This means that the instruments 
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tended to over-read for limestone and under-read for the metal dust. To illustrate the 

application of these EFs, consider a hypothetical sand plant operator (sand corrections are 

1.627 and 0.949 for the pDR-1500 and AM520) whose crystalline silica content averages 

50%. Assuming that the sampling was conducted in low humidity and the mean shift 

concentration reported by the dust monitor was 150 μg/m3, this would yield an exposure of 

122 μg/m3 (silica content only, with total respirable dust higher) with the pDR-1500 and 71 

μg/m3 using the AM520. The magnitude of these differences could significantly impact the 

mine’s decision to implement engineering controls.

While the pDR-1500 required higher EFs compared to the AM520, the relative standard 

deviation (RSD) instrument response across dust types was lower (0.105) for the pDR-1500 

than for the AM520 (0.156). Note that this describes the variation of the instrument’s 

response across dusts, not the intra-instrument response to a single test condition (i.e., 

noise).

Averaged across instrument and humidity, the EFs ranged between 1.049 and 1.497 for the 

limestone and metal dusts, respectively. For the pDR-1500, the limestone dust provided EFs 

closest to unity (1.373 and 1.318) for 30% and 90% RH, respectively. For the AM520, the 

sand dust had the closest EFs to unity (0.949 and 0.990) for 30% and 90% RH. Generally, 

EF was not greatly affected by RH level. For any given instrument/dust combination, 

varying RH did not prove to be a decisive factor. While this cannot guarantee the same 

outcome for all possible dusts that might be measured in the field, it was the consistent result 

among the dusts used in this current research.

On average, the larger-size coarse dust caused the pDR-1500 to under-read (larger EFs) by 

3.4% and the AM520 by 7.2% (even in the presence of a size selector). The light scattering 

instruments were, as expected, sensitive to dust composition. When compared to ground 

silica, the sand material resulted in higher average EFs, which agrees with the trends seen 

with other test dusts (i.e., larger dusts result in higher EFs).

The metal dust had the darkest color and produced the highest EFs. The ground silica had 

the lightest color and its EFs were statistically similar to the calibration aerosol; though not 

identical, they are both lighter, smaller size dusts.

Because the data sets were logged individually on each instrument and then resampled and 

synchronized with a post-processing scheme, some small residual or artificial offsets 

between data sets are possible. The limitations of the environmental controller used, as well 

as ambient conditions during testing, caused humidity to be controlled within more limited 

boundaries than targeted. For example, when 90% RH was targeted, it was more realistic 

that 78% ± 6% was achieved. The dusts that were used were not particularly hygroscopic, 

which would consequently limit the absorption response of their particles and thus any 

humidity-related effect on EF.

4 Conclusions

Survey quality results are presented and discussed comparing the performance of three 

commercially available light scattering dust monitors to a reference monitor tested within a 
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laboratory aerosol chamber. The resulting regressions and EFs show that even on a 

calibration test aerosol, averaging the 30% and 90% RH results, the instruments require 

significant correction, with multipliers of 0.859 and 1.513 for the AM520 and pDR-1500, 

respectively. The fact that calibration factors stray from unity on test dust suggests 

differences in the specific calibration practices of each manufacturer (aerosol testing 

chamber, charge neutralization, dust generation mechanism, specific calibration dust used, 

etc.). Across the six (6) different dusts tested, EFs ranged from 0.746 to 1.879.

The calibration of personal dust monitors must be completed for each “location” of their 

intended use. Here, location is used to define where dust composition and environment are 

consistent enough to not significantly change the EF required for instrument correction. It is 

not uncommon for changing strata to include different minerals that could then potentially 

change the optical properties of the dust and hence the performance of the light scattering 

instrument. Individual operators have the best sense on how varied their mine’s ore 

composition is and are advised to conduct gravimetric corrections of their light scattering 

instruments in each location until they have established confidence that the performance is 

consistent with the dust being sampled.

Personal dust monitors have great utility in helping safety personnel locate areas and tasks of 

overexposure. This work has shown that the monitor’s performance is tied (in part) to the 

physical properties of the dust being sampled. A controlled laboratory calibration such as the 

one provided here should allow operators to have an initial calibration factor for dusts 

similar to those tested. Further, the differences shown with material type should encourage 

mining operators to conduct their own gravimetric sampling in parallel with the personal 

dust monitors to develop their own correction scheme. The decision to employ various dust 

mitigation strategies (engineering, administrative, or otherwise) is driven by exposure 

monitoring data. When that data is generated from real-time light scattering instruments, 

operators should take reasonable precautions to ensure it is corrected with respect to their 

particular aerosol.
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Fig. 1. 
Instruments tested—pDR-1000 (top), AM520 (lower left), and pDR-1500 (lower right)
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Fig. 2. 
Dust types used for the study, including ISO fine and coarse, sand, metal, high purity silica, 

and limestone
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Fig. 3. 
Calm air Marple chamber used for experiments—exterior cutaway view (left) and internal 

sampler layout (right). Sampler cyclone inlets were distributed around the circular ring (0.8-

m diameter, mid-height in chamber)
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Fig. 4. 
Typical respirable dust concentration profile as measured by the reference TEOM 1400a 

monitor (ISO Fine test dust shown)
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Fig. 5. 
Initially imported signals for each tested instrument before synchronization for time offset 

and data processing

Patts et al. Page 15

Min Metall Explor. Author manuscript; available in PMC 2019 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Final data clusters for the calibration test dust, ISO Fine A1. The increased scatter of the 

pDR-1000 data can be clearly seen in this calm-air environment (upper left)
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Fig. 7. 
Equivalency factor results for the pDR-1500 and AM520 with exact values shown in table
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Table 2

Bulk dust particle sizes

Dust Volume median diameter (μm)

ISO Fine 6.97

ISO Coarse 36.12

Sand 30.54

Metal 11.38

Silica 2.49

Limestone 10.89
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