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ABSTRACT

Purpose. To investigate whether multi-view convolutional neural networks can
improve a fully automated lymph node detection system for pelvic MR Lymphography
(MRL) images of patients with prostate cancer.

Methods. A fully automated computer-aided detection (CAD) system had been previ-
ously developed to detect lymph nodes in MRL studies. The CAD system was extended
with three types of 2D multi-view convolutional neural networks (CNN) aiming to
reduce false positives (FP). A 2D multi-view CNN is an efficient approximation of a 3D
CNN, and three types were evaluated: a 1-view, 3-view, and 9-view 2D CNN. The three
deep learning CNN architectures were trained and configured on retrospective data of
240 prostate cancer patients that received MRL images as the standard of care between
January 2008 and April 2010. The MRL used ferumoxtran-10 as a contrast agent and
comprised at least two imaging sequences: a 3D T1-weighted and a 3D T2*-weighted
sequence. A total of 5089 lymph nodes were annotated by two expert readers, reading
in consensus. A first experiment compared the performance with and without CNNs
and a second experiment compared the individual contribution of the 1-view, 3-view,
or 9-view architecture to the performance. The performances were visually compared
using free-receiver operating characteristic (FROC) analysis and statistically compared
using partial area under the FROC curve analysis. Training and analysis were performed
using bootstrapped FROC and 5-fold cross-validation.

Results. Adding multi-view CNNs significantly (p < 0.01) reduced false positive
detections. The 3-view and 9-view CNN outperformed (p < 0.01) the 1-view CNN,
reducing FP from 20.6 to 7.8/image at 80% sensitivity.

Conclusion. Multi-view convolutional neural networks significantly reduce false
positives in a lymph node detection system for MRL images, and three orthogonal views
are sufficient. At the achieved level of performance, CAD for MRL may help speed up
finding lymph nodes and assessing them for potential metastatic involvement.

Subjects Oncology, Radiology and Medical Imaging, Urology

Keywords Magnetic resonance lymphography, Machine learning, Multi-view convolutional
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INTRODUCTION

Approximately 220,000 men are diagnosed with prostate cancer (PCa) in the USA
each year, and 27,000 die as a consequence of the disease (Siegel, Miller ¢» Jemal, 2017).
Assessment of lymph node status is crucial in determining the best treatment for a patient.
MR Lymphography (MRL) is currently the only imaging modality with a reported negative
predictive value over 95% for detection of metastatic lymph nodes (Fortuin et al., 2014). In
a prospective study using histopathology as a reference standard, MRL was shown to be an
accurate imaging technique with sensitivities up to 91%, at 98% specificity (Harisinghani
et al., 2003). In contrast, conventional MRI has a substantially lower diagnostic accuracy,
according to a meta-analysis reporting a pooled sensitivity of 39% with a pooled specificity
of 82% (Havels et al., 2008).

MRL is MR imaging with a contrast agent based on ultra-small super-paramagnetic
particles of iron oxide (USPIO), which result in signal intensity differences between
metastatic and normal lymph node tissue (Heesakkers et al., 2008; Daldrup-Link, 2017).
Analysis of MRL images by radiologists is very time-consuming, with average reading times
up to 80 min, and requires readers with a very high level of experience for the assessment
of the images (Thoeny et al., 2009).

MRL interpretation time, as well as its dependence on high experience level, can be
reduced via computer-aided detection (CAD) systems. The first goal of CAD is to reduce
search time by detecting all lymph nodes visible in the MRL images, whether healthy or
diseased, and present each one subsequently to the human reader for interpretation. In
other words, such a CAD system is not intended to detect disease, but rather to detect a
certain type of anatomical structure (i.e., the lymph nodes). A modest number of studies
have been published on the development of lymph node CAD systems, most of them using
CT imaging rather than MR imaging (Kitasaka et al., 2007; Roth et al., 2014; Roth et al.,
20165 Seff et al., 2014).

We have previously shown that a feature-based CAD system levering anatomical models
with an atlas approach can, after being properly trained, sensitively detect lymph nodes
in abdominal MR imaging (Meijs, Debats & Huisman, 2015; Debats et al., 2016). However,
the number of false positive detections was too high for clinical application. Various types
of conventional image features were explored but we could not find a set that was able to
discriminate true lymph nodes from false positive detections with high enough accuracy.

Recently, deep learning and, more specifically, convolutional neural networks (CNNs)
have been shown to outperform conventional machine learning strategies based on hand-
crafted features. Deep learning is successfully applied in the field of medical image analysis
outperforming classical machine learning and achieving expert performance (De Fauw et
al., 2018; Litjens et al., 2017). Examples of the application of CNNs in abdominal imaging:
kidney segmentation (7hong et al., 2016), pancreas segmentation (Cai et al., 2016), and
prostate segmentation (Cheng et al., 2016). Due to hardware and data constraints, recent
studies use 2D CNNs (Greenspan, Summers & Van Ginneken, 2016). However, lymph
nodes are nodular structures for which 3D information is needed to discriminate them
from tubular structures, as both can appear as a blob-like structure in a 2D image. Fully 3D
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Figure 1 Flowchart of the computerized lymph node detection method, which comprises two stages:
initial lymph node detection (upper blue pipeline) and false positive reduction (lower blue pipeline).
Full-size Gal DOI: 10.7717/peer;j.8052/fig-1

CNNs have a strongly increased neural complexity compared to 2D CNNs, and therefore
require much more training data, a disadvantage that has induced research into multi-view
2D CNNs. A three-orthogonal-views CNN (“2.5D representation”) has been used for
lymph node detection in CT images (Roth et al., 2014) and was recently expanded to
random views (Roth et al., 2016). In pulmonary nodule classification, nine views (adding
six additional oblique views to the standard orthogonal planes) were shown to outperform
3 orthogonal views in a multi-view CNN utilized for false positive reduction (Setio et
al,, 2016).

In this study, we hypothesized that a multi-view CNN can be used to reduce false
positive CAD for lymph node detection in MRL images. We extended a conventional CAD
system with a 1-view, 3-view, and 9-view CNN optimized for MRL imaging. We compared
the performance of the extended system and the original system using bootstrapped
free-response receiver operating characteristic (FROC) analysis.

METHODS

Lymph node detection methods

The flow chart of the lymph node detection method is shown in Fig. 1. It comprises two
stages: initial lymph node detection (upper blue pipeline) and false positive reduction
(lower blue pipeline).

Initial lymph node detection method
The lymph node detection stage comprised an existing prototype described in Debats et al.

(2016). The prototype is based on a pattern recognition system that is configured to work
with MRL data sets.
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A set of image features are defined, which are implemented as feature filters, each of
which uses one of the available MR images as input and has a feature map as output. Several

image features are computed, including

e image intensity of the VIBE, MEDIC and FLASH images, scaled by the mean pand
standard deviation o within each image volume

e Hessian-based blobness, vesselness, and sheetness features

e atlas features that provide positional information based on segmented pelvic anatomical
structures.

After feature calculation, a voxel classification was performed which results in a lymph
node likelihood between 0 and 1 for each voxel. For the voxel classification, a GentleBoost-
classifier was used with regression stumps as weak learners. The number of weak learners
was set to 200.

After voxel classification, a 3D likelihood map was obtained. On the likelihood map,
we perform local maxima detection using a spherical window with a diameter of 10
mm, which is the maximum size of non-enlarged lymph nodes in MRL. After the local
maxima detection, a merging step is performed to eliminate plateau-shaped maxima using
connected component analysis. All maxima comprising more than one voxel are reduced
to only the voxel nearest to their center of gravity. The location and likelihood of the

remaining maxima define the lymph node detection points.

False positive reduction method using multi-view CNNs

The false positive reduction stage is an extension to the initial lymph node detection method
described in the previous paragraph. For each lymph node candidate, one or more small
patches (65 x 65 x 1) were extracted around the candidate position. The set of candidate
patches is presented to a convolutional neural network (CNN) classifier that discriminates
between lymph nodes and false positive detections from the previous stage. We used a
multi-view CNN, which takes multiple input patches across different branches. This idea
was successfully explored for pulmonary nodule detection in CT (Setio et al., 2016) as well
as for lymph node classification (Roth et al., 2014; Roth et al., 2016).

Three sets of views are considered in this paper, each one a subset of the set of views
presented in Fig. 2. The 1-view set uses only the original 2D plane image information and
may be limited in its ability to discriminate lymph nodes from, for example, blood vessels.
The 3-view set adds two orthogonal planes which may allow incorporation of 3D structure
and more surrounding information. The 9-view set provides a more finely sampled 3D
view as the 3-view set and might allow better 3D shape assessment.

The CNN architecture is shown in Fig. 3 for the 3-view configuration. Each patch
in the candidate set is input to a 5-layer CNN branch consisting of three convolutional
layers and two max-pooling layers. The pooling operations occur after the first and
second convolutional layer. Subsequently, the feature maps of the different branches were
concatenated in the feature dimension and fed to the last layers of the CNN. Weights
between view branches are not shared; this allows each branch to learn filters for each
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Figure 2 Nine types of patch samplings used to compile a 1-view, 3-view, or 9-view set of patches that
sample the surroundings of a lymph node candidate location for the CNN model. The 1-view set com-
prises only the original image view, The 3-view set extends the 1-view set with 2 additional orthogonal
planes, The 9-view set extends the 3-view set with six oblique planes.

Full-size Gl DOI: 10.7717/peer;j.8052/fig-2
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Figure 3 Schematic representation of the multi-view network for three-views. Cyan lines indicate con-
volution operations, dark green lines max-pooling operations. The black lines indicate a feature map con-
catenation. A full parameter listing is specified in Table 1.

Full-size & DOLI: 10.7717/peerj.8052/fig-3

view separately. In all layers, rectified linear units (Relu) were used as non-linearities. The
detailed configuration of the CNN architecture is given in Table 1.

Network weights were optimized using standard stochastic gradient descent with a
learning rate of 10~* and a Nesterov momentum of 0.9. The loss function was categorical
cross-entropy and a A, of 0.0005 was used for regularization. Finally, during training, a
dropout of 20% was applied to the fully connected layers. Batches of 32 multi-view patches
where used during training for 200 epochs. Each epoch was defined as 200 mini-batches.
Patches where randomly selected from the training set and added to a mini-batch while
making sure that each mini-batch had a balanced class distribution. Training was stopped
if validation accuracy did not improve for more than 20 epochs.
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Table 1 Parameters of the multi-view network. Sizes are specified as (width, height, channels).

Layer Type Filter size Stride Image size
Per view

1 Input 65x65x1

2 Convolution 5x5x%x1 1x1 61 x61 x24

3 Max Pool 2x2x1 2x2 30x30x24

4 Convolution 5x5x24 1x1 26 % 26 x 48

5 Pooling 2x2x1 2x2 13x 13 x 48

6 Convolution 5x5x48 1x1 9x9x96
After view concatenation

7 Fully-connected 1x1x512

8 Logistic regression Ix1x2

Table2 Scan parameters of the MRL sequences.

Description Acronym TE TR Flip Matrix PS ST
angle
(ms) (ms) (deg) (mm) (mm)
T1-weighted spin echo VIBE 2.45 4.95 10 320320 0.8x0.8 0.8
T2*-weighted gradient echo ~ MEDIC 11 20 10 320x320 0.8x0.8 0.8
Notes.

TE, echo time; TR, repetition time; PS, pixel size; ST, slice thickness.

Data collection

Imaging

The lymph node detection system was evaluated using retrospectively collected MRL
images of a consecutive set of patients who fulfilled the following inclusion criteria:

e Biopsy-proven prostate cancer
e Ferumoxtran-10 MRL between January 2008 and April 2010
e Successful acquisition of VIBE, MEDIC, and FLASH image volumes

A total of 240 patients were included in the analysis. Each patient underwent MR
imaging enhanced with the USPIO-based lymph node specific contrast agent ferumoxtran-
10 (Sinerem®, Guerbet, Paris, France) at the Radboud University Medical Center in
Nijmegen, The Netherlands, as part of their clinical evaluation. The contrast agent was
administered intravenously, 36 to 24 h before MR imaging was performed. All patients
received a drip infusion with a duration of approximately 30 min, containing a dose of 2.6
mg Fe per kg body weight. Immediately before the MR examination, Buscopan (20 mg i.v.
and 20 mg i.m.) and Glucagon (20 mg i.m.) were administered in order to suppress bowel
peristalsis.

All imaging was performed using a 3.0 T MR imaging system (Magnetom TrioTim;
Siemens, Erlangen, Germany). Images were acquired in the coronal plane, covering the
whole pelvis. Two MR series, called VIBE and MEDIC respectively, were used in this
analysis. The scan parameters are shown in Table 2. All MRL studies had sufficient image
quality to be included; none needed to be discarded.
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Ethical approval and informed consent

The scientific use of clinically obtained image data was approved by the CMO Regio
Arnhem-Nijmegen (the institutional review board). The IRB approval number is
CMO2016-3045. All patients provided written informed consent for the use of their
clinical images for research purposes.

Annotation

To train the system and assess the performance of the automated lymph node detection,

reference lymph node annotations were created for each MRL. The annotation comprised
a consensus reading by two expert readers: an MD researcher specially trained in reading
MRL scans (2 years of MRL experience, >300 MRLs), and an abdominal radiologist (>10
years of MRL experience, >1000 MRLs).

The T1-weighted (VIBE) sequence, which is insensitive to USPIO contrast, was used
for localization and assessment of shape and size of the lymph nodes. In the VIBE images,
the individual lymph nodes were interactively segmented using the application Lymph
Node Task Card, developed by Siemens, Malvern, PA (USA). The T2*-weighted (MEDIC)
sequence was used to assess USPIO uptake for the clinical diagnosis of the patient but was
not used in our analysis. A total of 5,089 lymph nodes were annotated, 21 per patient on
average. All lymph nodes visible in the images were annotated; none were excluded based
on small size or otherwise.

Training and performance evaluation

The first stage Gentleboost classifier was trained with training sets containing feature data
from randomly selected equal amounts of background voxels and lymph node voxels. To
avoid partial volume effects and annotation errors, edge boundary voxels were excluded
from the voxel training set. This was implemented by including only training voxels that
were within a four mm radius of the center of gravity of the annotated lymph node. Lymph
nodes with a volume of less than 0.1 ml (approx. 195 voxels) were excluded from the
training set.

The multi-view convolutional networks were trained with all lymph nodes (true positives
and false negatives from the first stage) and a random subset of false positives from the first
stage. For each lymph node candidate, nine image patches were extracted within a cube
of 52 x 52 x 52 mm (65 x 65 x 65 voxels) which encloses the candidate. The nine patches
are extracted on planes corresponding to the planes of symmetry of a cube. Three of the
planes run parallel to pairs of faces of the cube. These planes are commonly known as axial,
coronal, and sagittal planes. The other six planes run diagonally from one edge of the cube
to the opposite edge, as shown in Fig. 2.

To obtain an unbiased performance estimate, a commonly used 5-fold cross validation
scheme was used. Available data were randomly split into five parts at the patient level,
ensuring each part had an equal number of true positive lymph nodes. In each of the
five cross-validation runs, four folds were used for training and one fold was used as the
test set. In the training, three folds were used to train the CNN and one fold was used as
the validation set. The predicted outputs in the 5 independent cross-validation runs were
collected and used for statistical analysis.
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Figure 4 FROC plot of detection performance. The shaded areas indicate the 95% confidence intervals,
obtained with bootstrapping.
Full-size Gal DOI: 10.7717/peerj.8052/fig-4

Experiments

The first experiment assessed the general effect of adding the second-stage multi-view CNN
to the lymph node detection system. The diagnostic performance is determined using a
free-response receiver operating characteristic (FROC) analysis. The curves are compared
analytically and statistically using bootstrapping analysis.

The second experiment assessed the effect of the number of views on the performance of
the lymph node detection. Multiple statistical comparisons were made between the 1-view,
3-view, and 9-view configuration.

Both experiments were performed using a one-sided bootstrap test on the partial area
under the FROC curve (pAUC) ranging from 0.25 false positives per lymph node to 32
false positives per lymph node. Bonferroni correction was applied to account for multiple
comparisons.

Statistical analysis
The authors have used NumPy and SciPy to conduct the bootstrap statistical tests. A
p-value less than 0.05 was considered statistically significant.

RESULTS

False positive reduction performance
The FROC analysis (Fig. 4) showed that adding the multi-view CNN increases the sensitivity
of the lymph node detection at low FP levels. At a fixed level of sensitivity, the curves clearly
show a reduced number of false positives. This is confirmed by the statistical analysis
(Table 3). The difference in pAUC between the stage 1 system and the CNN-enhanced
stage 2 lymph node detection with 1, 3, or 9 views was statistically significant (p < 0.01 in
all cases).

The FROC analysis also showed that the differences in performance between the three
multi-view CNNs are small. Statistical tests (Table 3) showed that the 3-view and 9-view

systems significantly outperformed the 1-view system (p < 0.01 in both cases).
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Table 3 Partial area under the FROC curve (pAUC) for the four different systems. The 95% confidence
intervals are indicated between brackets. P-values were obtained using one-sided bootstrapped compari-
son of the systems after which Bonferroni correction was applied. The three rightmost columns show the
p-values of the six pairwise comparisons. CD, candidate detector.

System pAUC p (CD) p (1-view) P (3-view)
CD 24.39 (23.81-24.97)

1-view 27.55(27.14-27.97) <0.01

3-view 28.02 (27.54-28.51) <0.01 <0.01

9-view 27.91 (27.47-28.34) <0.01 <0.01 0.86

Figure 5 Examples of false positives that were correctly dismissed by the CNN false positive reduction stage.
Full-size & DOI: 10.7717/peer;j.8052/fig-5

Figure 6 Examples of image patches containing lymph nodes which were correctly retained by the CNN false positive reduction stage.
Full-size il DOI: 10.7717/peer;j.8052/fig-6

Example images (Figs. 5 and 6) illustrated how the multi-view convolutional network
correctly dismisses false positive lymph nodes and retains true positives.
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Figure 7 Examples of image patches not annotated as lymph nodes, but with high lymph node likelihood according to the CNN.
Full-size Gal DOI: 10.7717/peerj.8052/fig-7

DISCUSSION

Magnetic resonance lymphography (MRL) can help reduce unnecessary surgery or provide
image-guided treatment in the management of prostate cancer. MRL is, unfortunately, an
imaging modality that is difficult to read. Tools to help assist MRL reading are essential to
help make MRL part of regular diagnostic procedures. This study shows that an automatic
lymph node detection tool may become more feasible when extending an existing prototype
with a Deep Learning false positive reduction system. The results confirm our hypothesis
and show that multi-view convolutional neural networks can improve an automated
lymph node detection system for pelvic MR Lymphography images of patients with
prostate cancer. The performance achieved with the new system (5-10FP/85% sensitivity)
may allow clinical implementation as a tool that helps to reduce the tedious task of finding
all lymph nodes.

Figure 4 shows that adding a multi-view convolutional network enables correct
discrimination of a substantial number of true positive findings from false positive ones, as
evidenced by the strongly improved FROC curve. The performance of the enhanced CAD
system now reaches for the first time a level where we were able to observe several false
positives that are likely to have been missed in the expert annotation and are in fact true
positives (Fig. 7).

The increased performance is mostly due to the ability of the CNN to extract problem
specific image features. The fact that most of the performance increase is already visible
with a 1-view systems means that the previously built prototype lacked basic image
texture features that could properly describe the aspects of the lymph node tissue and
its surroundings. It is generally known that lymph nodes are usually surrounded by fatty
tissue. Yet, in practice, the nodes are often observed very near vessel walls with little to
no fat in between the node and the vessel wall. These kinds of heterogeneities in the
surrounding anatomy make it difficult to find and implement hand-crafted features that
help discriminate true lymph node regions from other regions. The CNN is able to learn
image features that capture these more complex anatomical surroundings. The relatively
small improvement in performance seen when adding the third dimension in a 3-view or
9-view multi-view CNN was unexpected. It shows that although the third dimension is
helpful, it is the in-plane image appearance that provides the most information. This agrees
with radiology practice in which an in-plane view triggers a lymph node finding and back
and forth slice scrolling is used as a confirmation.
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Annotation is fundamental in training machine learning systems to perform data analysis
in general, and in medical diagnosis more specifically. In this study, significant effort was
spent on carefully annotating the imaging data by trained experts. The advent of deep
learning is starting to produce systems that operate at or above the expert level (De Fauw
et al., 2018). This allows creating systems that can help support clinical decision making.
On the other hand, the systems start to challenge the expert by detecting patterns missed
by the expert during system training. In this study as well, lymph nodes were detected
that the experts had missed. The consequence is that it is difficult to design a system that
outperforms an expert given that the expert provided the annotations. A possible solution
is to do further iterations of consensus reading whereby the system output is included in
the consensus. This will likely lead to improved performance of the CNN and is part of
future research.

This research confirms an earlier observation by Setio et al. that multi-view CNNs are
highly suited to be used for false positive reduction of a CAD system (Setio et al., 2016). The
performance increase in our study is similar, although at a low number of false positives
the gain in performance is not as high. We believe this might be due to the fact that not
all lymph nodes were annotated by the observers and as such some false positives are
actually true positives. The paper by Setio et al. used the LIDC lung nodule dataset which
has seen a much more elaborate consensus annotation of experts. This study did not
observe a significant benefit when using 9-view CNN as compared to 3-view CNN. The
difference may be attributed to the observation that for lymph nodes, it is the in-plane
image appearance that provides the most information, while the CT images used for
pulmonary nodule detection contain much more intersections with small vessels that are
hard to distinguish from lung nodules in the in-plane image.

The amount of training data was limited. For the first stage of the CAD system, this
probably didn’t affect performance, but for the multi-view CNN, more training data would
potentially have resulted in an increased performance of the 9-view system with respect to
the 3-view system.

In conclusion, we presented a method using multi-view convolutional networks to
improve a fully automated lymph node detection system for pelvic MR Lymphography.
Our method has reached a level of performance where clinical implementation may help
reduce reading time.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This project was funded by Grant No. KUN2007-3971 from the Dutch Cancer Society. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Dutch Cancer Society: KUN2007-3971.

Debats et al. (2019), PeerJ, DOI 10.7717/peerj.8052 1114


https://peerj.com
http://dx.doi.org/10.7717/peerj.8052

Peer

Competing Interests
Henkjan J. Huisman is an Editor for Peer].

Author Contributions

e Oscar A. Debats and Geert J.S. Litjens conceived and designed the experiments,
performed the experiments, analyzed the data, prepared figures and/or tables, authored
or reviewed drafts of the paper, approved the final draft.

e Henkjan J. Huisman conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The name of the institutional review board is CMO Regio Arnhem-Nijmegen
(CMO2016-3045).

Data Availability
The following information was supplied regarding data availability:

The source code of the deep learning system and the four data sets are available as
Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.8052#supplemental-information.

REFERENCES

CaiJ, LuL, Zhang Z, Xing F, Yang L, Yin Q. 2016. Pancreas segmentation in MRI
using graph-based decision fusion on convolutional neural networks. In: Medical
image computing and computer-assisted intervention, volume 9901 of Lecture Notes in
Computer Science. Cham: Springer, 442—450 DOI 10.1007/978-3-319-46723-8_51.

Cheng R, Roth HR, Lu L, Wang S, Turkbey B, Gandler W, McCreedy ES, Agarwal
HK, Choyke P, Summers RM, McAuliffe MJ. 2016. Active appearance model
and deep learning for more accurate prostate segmentation on MRI. In: Med-
ical imaging, volume 9784 of proceedings of the SPIE. Bellingham: SPIE, 978421
DOI10.1117/12.2216286.

Daldrup-Link HE. 2017. Ten things you might not know about iron oxide nanoparticles.
Radiology 284:616—629 DOI 10.1148/radiol.2017162759.

De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S,
Askham H, Glorot X, O’Donoghue B, Visentin D, Van den Driessche G, Lak-
shminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, ChopraR,

King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan
C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman
M, Cornebise J, Keane PA, Ronneberger O. 2018. Clinically applicable deep

Debats et al. (2019), PeerJ, DOI 10.7717/peerj.8052 12/14


https://peerj.com
http://dx.doi.org/10.7717/peerj.8052#supplemental-information
http://dx.doi.org/10.7717/peerj.8052#supplemental-information
http://dx.doi.org/10.7717/peerj.8052#supplemental-information
http://dx.doi.org/10.1007/978-3-319-46723-8_51
http://dx.doi.org/10.1117/12.2216286
http://dx.doi.org/10.1148/radiol.2017162759
http://dx.doi.org/10.7717/peerj.8052

Peer

learning for diagnosis and referral in retinal disease. Nature Medicine 24:1342—1350
DOI10.1038/s41591-018-0107-6.

Debats OA, Meijs M, Litjens GJS, Huisman HJ. 2016. Automated multistructure atlas-
assisted detection of lymph nodes using pelvic MR lymphography in prostate cancer
patients. Medical Physics 43:3132-3142 DOI 10.1118/1.4951726.

Fortuin AS, Smeenk R], Meijer HJM, Witjes AJ, Barentsz JO. 2014. Lymphotropic
nanoparticle-enhanced MRI in prostate cancer: value and therapeutic potential.
Current Urology Reports 15:Article 389 DOI 10.1007/s11934-013-0389-7.

Greenspan H, Summers RM, Van Ginneken B. 2016. Deep learning in medical imaging:
overview and future promise of an exciting new technique. IEEE Transactions on
Medical Imaging 35:1153—-1159 DOT 10.1109/TM1.2016.2553401.

Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, Hulsbergen
van de Kaa C, De la Rosette J, Weissleder R. 2003. Noninvasive detection of
clinically occult lymph-node metastases in prostate cancer. New England Journal of
Medicine 348:2491-2499 DOI 10.1056/NEJMo0a022749.

Heesakkers RAM, Hovels AM, Jager GJ, Van den Bosch HCM, Witjes JA, Raat HPJ,
Severens JL, Adang EMM, Hulsbergen van der Kaa C, Fiitterer JJ, Barentsz J. 2008.
MRI with a lymph-node-specific contrast agent as an alternative to CT scan and
lymph-node dissection in patients with prostate cancer: a prospective multicohort
study. Lancet Oncology 9:850-856 DOI 10.1016/51470-2045(08)70203-1.

Hovels AM, Heesakkers RAM, Adang EM, Jager GJ, Strum S, Hoogeveen YL, Severens
JL, Barentsz JO. 2008. The diagnostic accuracy of CT and MRI in the staging
of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clinical
Radiology 63:387-395 DOI 10.1016/j.crad.2007.05.022.

Kitasaka T, Tsujimura Y, Nakamura Y, Mori K, Suenaga Y, Ito M, Nawano S. 2007.
Automated extraction of lymph nodes from 3-D abdominal CT images using 3-D
minimum directional difference filter. In: Medical image computing and computer-
assisted intervention, volume 10 of Lecture Notes in Computer Science. Heidelberg:
Springer, 336343 DOI 10.1007/978-3-540-75759-7_41.

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van der Laak
JAWM, Van Ginneken B, Sanchez CI. 2017. A survey on deep learning in medical
image analysis. Medical Image Analysis 42:60-88 DOI 10.1016/j.media.2017.07.005.

Meijs M, Debats OA, Huisman H]J. 2015. The evaluation of multi-structure, multi-
atlas pelvic anatomy features in a prostate MR Lymphography CAD system. In:
Medical imaging, volume 9414 of proceedings of the SPIE. Bellingham: SPIE, 94140T
DOI10.1117/12.2082708.

Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM. 2016. Improv-
ing computer-aided detection using convolutional neural networks and ran-
dom view aggregation. IEEE Transactions on Medical Imaging 35:1170-1181
DOI10.1109/TMI1.2015.2482920.

Roth HR, Lu L, Seff A, Cherry KM, Hoffman J, Wang S, Liu J, Turkbey E, Summers
RM. 2014. A new 2.5D representation for lymph node detection using random sets
of deep convolutional neural network observations. In: Medical image computing

Debats et al. (2019), PeerJ, DOI 10.7717/peerj.8052 13/14


https://peerj.com
http://dx.doi.org/10.1038/s41591-018-0107-6
http://dx.doi.org/10.1118/1.4951726
http://dx.doi.org/10.1007/s11934-013-0389-7
http://dx.doi.org/10.1109/TMI.2016.2553401
http://dx.doi.org/10.1056/NEJMoa022749
http://dx.doi.org/10.1016/S1470-2045(08)70203-1
http://dx.doi.org/10.1016/j.crad.2007.05.022
http://dx.doi.org/10.1007/978-3-540-75759-7_41
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1117/12.2082708
http://dx.doi.org/10.1109/TMI.2015.2482920
http://dx.doi.org/10.7717/peerj.8052

Peer

and computer-assisted intervention, volume 8673 of Lecture Notes in Computer Science.
Cham: Springer, 520-527 DOI 10.1007/978-3-319-10404-1_65.

Seff A, Lu L, Cherry KM, Roth HR, Liu J, Wang S, Hoffman ], Turkbey EB, Summers
RM. 2014. 2D view aggregation for lymph node detection using a shallow hierarchy
of linear classifiers. In: Medical image computing and computer-assisted interven-
tion, volume 17 of Lecture Notes in Computer Science. Cham: Springer, 544—552
DOI 10.1007/978-3-319-10404-1_68.

Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel S, Wille MW, Naqibullah
M, Sanchez C, Van Ginneken B. 2016. Pulmonary nodule detection in CT images:
false positive reduction using multi-view convolutional networks. IEEE Transactions
on Medical Imaging 35:1160—-1169 DOI 10.1109/TMI.2016.2536809.

Siegel RL, Miller KD, Jemal A. 2017. Cancer statistics, 2017. CA: A Cancer Journal for
Clinicians 67:7-30 DOI 10.3322/caac.21387.

Thoeny HC, Triantafyllou M, Birkhaeuser FD, Froehlich JM, Tshering DW, Binser
T, Fleischmann A, Vermathen P, Studer UE. 2009. Combined ultrasmall super-
paramagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic
resonance imaging reliably detect pelvic lymph node metastases in normal-sized
nodes of bladder and prostate cancer patients. European Urology 55:761-769
DOI 10.1016/j.eururo.2008.12.034.

Thong W, Kadoury S, Piché N, Pal CJ. 2016. Convolutional networks for kidney seg-
mentation in contrast-enhanced CT scans. Computer Methods in Biomechanics and
Biomedical Engineering: Imaging & Visualization 6:277-282
DOI10.1080/21681163.2016.1148636.

Debats et al. (2019), PeerJ, DOI 10.7717/peerj.8052 14/14


https://peerj.com
http://dx.doi.org/10.1007/978-3-319-10404-1_65
http://dx.doi.org/10.1007/978-3-319-10404-1_68
http://dx.doi.org/10.1109/TMI.2016.2536809
http://dx.doi.org/10.3322/caac.21387
http://dx.doi.org/10.1016/j.eururo.2008.12.034
http://dx.doi.org/10.1080/21681163.2016.1148636
http://dx.doi.org/10.7717/peerj.8052

