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Abstract

Complex motor behavior is believed to be dependent on sensorimotor integration – the neural 

process of using sensory input to plan, guide, and correct movements. Previous studies have shown 

that the complexity of motor output is low when sensory feedback is withheld during precision 

motor tasks. However, much of this research has focused on motor behavior rather than neural 

processing, and therefore, has not specifically assessed the role of sensorimotor neural functioning 

in the execution of complex motor behavior. The present study uses a stimulus-tracking task with 

simultaneous electroencephalography (EEG) recording to assess the effect of visual feedback on 

motor performance, motor complexity, and sensorimotor neural processing in healthy adults. The 

complexity of the EEG signal was analyzed to capture the information content in frequency bands 

(alpha and beta) and scalp regions (central, parietal, and occipital) that are associated with 

sensorimotor processing. Consistent with previous literature, motor performance and its 

complexity were higher when visual feedback was provided relative to when it was withheld. The 

complexity of the neural signal was also higher when visual feedback was provided. This was 

most robust at frequency bands (alpha and beta) and scalp regions (parietal and occipital) 

associated with sensorimotor processing. The findings show that visual feedback increases the 

information available to the brain when generating complex, adaptive motor output.
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1 Introduction

The term complexity as has been frequently used to refer to physiologic signals that are 

highly variable and unpredictable [1–4] and has been operationally defined using various 

metrics including measures of entropy, spectral analysis, detrended fluctuation analysis, and 

Lempel-Ziv complexity [5,6]. High complexity is generally indicative of a healthy 

physiologic system as it signifies the ability of the system to integrate and respond 

adaptively to multiple sources of information about the ever-changing environmental 

conditions. The focus of the present study is to assess the effects of sensory feedback on the 

complexity of the neural and motor output during a sensorimotor task.

The influence of sensory feedback on the complexity of motor behavior has been 

demonstrated experimentally in children and adults through the manipulation of visual 

feedback during precision motor tasks (e.g., postural control or sustained grip force). These 

studies have found that when visual feedback is available, the motor output is more complex 

[7–10], implying a role for sensorimotor integration in the generation of complex and 

adaptive motor output. However, these studies have only evaluated motor behavior and have 

not assessed the neural mechanisms involved during these tasks.

Sensorimotor integration is the process through which the brain uses sensory information 

from the environment to plan and monitor movements, correct error in ongoing movements, 

and learn from previous motor experiences through feedforward and feedback processes 

[11–14]. These processes involve the translation of visual information in visual cortex to 

visuospatial information in posterior parietal cortex (PPC). PPC projects to frontal motor 

regions to generate the motor output. Cortico-pontinecerebellar circuitry is involved in 

comparing online visuospatial input from PPC with information about the motor command 

from motor cortex in order to monitor and correct motor error. There is also evidence that 

the basal ganglia are involved in the online generation and kinematic properties of corrective 

sub-movements [15,16].

As previously described, complex systems are those that integrate multiple sources of 

information to produce an adaptive output, which is often characterized by variability and 

unpredictability. The brain is an inherently complex system due to its highly integrative 

nature. As with other physiologic systems, measures of complexity (e.g. Multiscale Sample 

Entropy (MSE)) have been used to analyze the neural signal as a way to characterize brain 

function in disease states or experimental conditions [17–20]. The complexity of the neural 

signal has been shown to be positively associated with functional connectivity [21], and to 

relate to the level of information processing in the brain [20,22,23].

We recently proposed a conceptual model arguing that sensory feedback provides sensory 

systems with access to greater information, which is integrated into the motor system and 

used to generate a complex, adaptive motor output [24]. Consistent with the idea that more 
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complex motor behavior derives from a system with greater neural integration, studies of 

neural complexity across development have found age-related increases in neural complexity 

spanning from infancy to adulthood [25–27] that parallel the consistent increases in motor 

complexity that have been demonstrated in developmental studies of motor behavior [8–

10,28].

In the present study, we use EEG metrics of neural complexity to assess how the presence 

and absence of visual feedback influences the processing of sensorimotor information during 

the production of precision movements. We hypothesize that access to visual feedback will 

produce a more complex neural signal and more complex and accurate movements.

2 Methods

2.1 Participants

Participants included 18 healthy, right-handed adults (10 females, 8 males) between the ages 

of 18 and 34 years (mean: 25.6 ± 4.9 years) with normal or corrected to normal vision. All 

participants were recruited from the Vanderbilt University and Vanderbilt University 

Medical Center communities and gave written informed consent to participate. This study 

was approved by the Vanderbilt University Institutional Review Board.

2.2 Equipment

Task stimuli were presented on a 24-inch high-definition (1920 × 1080 pixels) LCD 

computer monitor (ASUS VG248) from a PC (LG Electronics, Inc.) with 32GB of RAM at 

4GHz. This PC was equipped with a NVIDIA GeForce GTX 770 graphics card and a dual 

monitor display. Participants used a wireless LED computer mouse to control the onscreen 

cursor during the sensorimotor task (described below). The sensorimotor task program was 

custom script programmed in MATLAB (The MathWorks, Inc., Natick, Massachusetts) 

using the Psychophysics Toolbox [29–31].

EEG data were collected using 128-electrode Electrical Geodesics, Inc (EGI) HydroCel 

Sensor Nets through EGI Net Station v.5 software on a Macintosh computer. The electrodes 

in the HydroCel Nets use a mild saline and shampoo solution. Electrodes were embedded in 

soft sponges and housed in pedestals.

2.3 Sensorimotor Task

Participants were seated in a dimly lit room, ~90cm in front of a 24-inch flat-screen 

computer monitor on which task instructions and stimuli were presented. Participants 

performed a stimulus-tracking task during which they controlled a cursor (green dot 

subtending a visual angle of ~0.3°) and followed a moving target (grey square subtending a 

visual angle of ~1°) that moved at a constant velocity of ~2°/s across the computer screen. 

The task consisted of two sensory conditions: (1) Visual feedback: participants saw the 

moving target and the cursor on the computer screen for the duration of the trial, (2) No 

visual feedback: the target and cursor were visible on the screen at the beginning of the trial, 

but disappeared mid-trial, and participants were instructed to continue moving the computer 

mouse as if the target and cursor were still visible. The target and cursor reappeared at the 
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end of the no visual feedback trials. The position of the cursor was sampled at 60Hz. The 

experiment consisted of eight experimental blocks, and each block consisted of 32 trials of a 

given sensory condition for a total of 256 trials (128 with visual feedback, 128 without 

visual feedback). The direction of target motion (up, down, left, right) was pseudo-

randomized within a block, and all blocks contained 8 trials of each direction. The sensory 

feedback condition (with or without) alternated from one block to the next, and the condition 

of the first block was counterbalanced across participants. Figure 1 illustrates the task 

stimuli and experimental conditions.

Each block began with a set of instructions pertaining to the sensory feedback condition of 

the proceeding trials. Forced breaks were built in to the task to minimize participant fatigue. 

A 10s break occurred after every 8 trials, and a 2min break occurred at the end of each block 

(32 trials). To ensure that participants were attending to the trials, they were presented with 

the instructions and prompted to press the space bar to continue the task after each break. 

Additionally, participants were required to move the cursor into the target to initiate each 

trial. The delay between the moment the participant moved the cursor into the target and the 

moment the target started moving was randomized between 1.5 and 2.25s to minimize 

anticipatory movements.

2.4 EEG Data Collection and Processing

EEG data were collected in Net Station v.5 software continuously throughout the 

sensorimotor task. Data were sampled at 1000Hz and online referenced to the vertex 

electrode (corresponding to Cz in the International 10–20 system). The initiation and 

termination of the EEG recording, and the signaling of event triggers were controlled by 

custom MATLAB script on the stimulus PC via hard wired signals sent through the 

amplifier. Event triggers marked the moment during each trial in the sensorimotor task when 

the target and cursor disappeared (No Feedback trials) or the corresponding time point in the 

Feedback trials (~1.7s after the onset of target motion). EEG data were processed and 

cleaned in EEGLAB version 14.1.1b software [32] for MATLAB. Data were high pass 

filtered at 0.5 Hz and low pass filtered at 30 Hz and re-referenced to the average of all 

electrodes. Data were epoched from the window of −1s to 3.6s surrounding the moment 

during each trial when the target and cursor disappeared (No Feedback trials) or the 

corresponding time point in the Feedback trials. This epoch encompassed a baseline period 

of 1s of target movement while the target and cursor were present (consistent across both 

feedback conditions) and the entire segment of the trial when the conditions differed (target 

and cursor were not visible during the No Feedback trials but were visible during the 

Feedback trials).

Impedance of all electrodes was maintained below 50kΩ. Noisy and bad electrode channels 

were identified based on visual inspection and spherically interpolated. No more than 12/128 

channels (~10%) per participant were interpolated. Eye blink artifact was identified using 

independent components analysis. Components related to blinks were identified based on 

strong frontal topography and punctate activation of the component, and these components 

were removed. For other types of artifact, epochs containing artifact were identified based 

on visual inspection and were removed. A minimum of 45 clean trials per condition was 
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required for the participant’s data to be included in the analyses. Based on these criteria, 

none of the participants’ data were excluded from the analyses. The number of trials retained 

did not differ significantly between the Feedback (mean: 81.78, standard deviation: 11.97) 

and No Feedback (mean: 74.78, standard deviation: 13.16) conditions.

2.5 Data Analysis

Participant movement was monitored through the position of the cursor on the screen. Only 

the data from the time the cursor and target disappeared to the time they reappeared (for the 

No Feedback trials) and the corresponding time segment from the Feedback trials were 

considered for the analyses as these represent the time segments during which the two 

conditions differed. Motor performance was analyzed according to two axes of movement: 

the axis of cursor movement that was parallel to the motion of the target, and the axis of 

cursor movement that was perpendicular to the motion of the target (e.g., if the target was 

moving rightward or leftward, parallel movements would be rightward or leftward 

movements made by the participant, and perpendicular movements would be upward and 

downward movements made by the participant). Error was calculated as the root mean 

squared error (RMSE) of the cursor position relative to the target position. The RMSE was 

calculated for each trial separately and then averaged across a participant for each condition 

and axis of motion such that each participant had two averaged RMSE values (parallel and 

perpendicular) for each feedback condition. All participants’ average RMSE values were 

included as dependent variables in a 2×2 ANOVA with feedback condition (Feedback, No 

Feedback) and axis of motion (Parallel, Perpendicular) as independent repeated measures 

variables.

To verify that motor learning was not contributing to RMSE, we ran a repeated measures 

ANOVA for each sensory feedback condition to compare RMSE across blocks. Block 

number was the independent repeated measures variable. Each sensory feedback condition 

had 4 blocks. Participants’ average RMSE across each block were the dependent variables.

Movement and neural complexity were assessed using entropy measures. Entropy measures 

were chosen as they are commonly used in studies of both motor [9,33–35] and neural 

[17,18,20,21,25] complexity. Additionally, sample entropy is relatively robust to short time 

series [36], allowing us to use short trial durations and limit the fatigue and time demands of 

the participants.

Movement complexity was assessed using the sample entropy (SampEn) [36,37] of the 

cursor position relative to the target over time. SampEn was calculated for each trial 

separately and then averaged across the participant for each condition and axis of motion 

such that each participant had two averaged SampEn values (parallel and perpendicular) for 

each feedback condition. All participants’ average SampEn values were included as 

dependent variables in a 2×2 ANOVA with feedback condition and axis of motion as 

independent repeated measures variables.

SampEn(m, r, N) is a calculation of the self-similarity or regularity of a time series, and it is 

defined as the negative natural logarithm of the conditional probability that two similar 

sequences of m points in a data series of length N remain similar within a tolerance level of r 
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at the next point in the time series, where m is the embedding dimension, r is the tolerance, 

and N is the length of the data series [36,37]. Lower values of SampEn indicate greater self-

similarity or regularity in the data series. SampEn is relatively robust to the length of the 

data series, and it has been shown to be reliable with data series as short as 200 data points.

To verify that motor learning was not contributing to SampEn, we ran a repeated measures 

ANOVA for each sensory feedback condition to compare SampEn across blocks. Block 

number was the independent repeated measures variable. Each sensory feedback condition 

had 4 blocks. Participants’ average SampEn across each block were the dependent variables.

Neural complexity was assessed using multi-scale sample entropy (MSE) [3,4] of the time 

series of the EEG data. MSE is calculated as the SampEn at different time scales of the time 

series. The SampEn of the original time series is the value for scale one. For scale two, the 

original time series is essentially down sampled by averaging across every 2 consecutive 

data points in the series and then calculating the SampEn for the down sampled time series. 

Each subsequent scale down samples across increasing numbers of consecutive data points 

in the original time series and calculating SampEn for each of these down sampled time 

series. MSE can be represented as a curve of SampEn across scales, or the average value 

across all scales can be used as a general measure of complexity.

The MSE for the broad-spectrum EEG signal (0.5–30Hz) was calculated for each electrode 

on each trial separately and then averaged across electrodes and participant for each 

condition such that each participant had two sets of averaged MSE values – one for the 

Feedback condition and one for the No Feedback condition. The broad-spectrum data were 

analyzed using a 2×17 repeated measures ANOVA with feedback condition (Feedback vs. 

No Feedback) and time scale (1–17) as the independent factors. Regional MSE analyses 

were conducted on the specific frequency bands alpha/mu (8–13Hz; referred to hereafter 

simply as alpha) and beta (13–30Hz). MSE analyses on specific frequency bands have been 

done in previous studies [38,39]. Alpha and beta were selected due to the relevance of these 

frequency bands to sensorimotor processing [40–42]. Additionally, previous studies 

assessing motor-related neural complexity have looked specifically at complexity in these 

frequency bands [43,44].

For regional analyses, electrode clusters were defined according to scalp region and are 

described in relation to the 10–20 system. These included left and right frontal clusters 

centered around F3 and F4, respectively; left and right central clusters centered around C3 

and C4, respectively; left and right parietal clusters centered around P3 and P4, respectively; 

left and right occipital clusters centered around O1 and O2, respectively; and left and right 

temporal clusters centered around T7 and T8, respectively. Frontal clusters were chosen 

based on their likelihood of capturing a signal relevant to executive functioning. Central and 

parietal clusters were chosen based on their likelihood of capturing a motor relevant signal. 

Occipital clusters were chosen based on their likelihood of capturing a visually relevant 

signal, and the temporal clusters were chosen as control regions, as these scalp regions are 

unlikely to capture task-relevant activity. MSE values for each cluster were calculated per 

participant per condition as the average MSE values across trials of all electrodes in the 

cluster. Regional data were analyzed according to region and feedback condition for each 

Shafer et al. Page 6

Behav Brain Res. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time scale. Additionally, the average MSE values across time scales were calculated for each 

region and condition. These averaged MSE values were included as the dependent variable 

in a 2 × 5 × 2 repeated measures ANOVA with feedback condition (Feedback, No 

Feedback), region (Frontal, Central, Parietal, Occipital, Temporal), and laterality (Left, 

Right) as the independent variables.

For whole scalp analyses, MSE values were calculated per participant as the average across 

trials within a condition and across all electrodes on the scalp. Whole scalp data were 

analyzed according to condition for each time scale. Additionally, the average MSE values 

across time scales were calculated for each condition, and a Tukey test was used to analyze 

differences in feedback conditions for these averaged values.

To relate the motor complexity findings to the neural complexity findings, correlational 

analyses between the motor complexity data and the neural complexity data were run for 

each participant and feedback condition. For this analysis, the broad-spectrum EEG data 

were down-sampled to 60Hz to match the sampling rate of the motor data. MSE was 

calculated on the down-sampled EEG, and the MSE values were averaged across time scales 

and electrodes for each participant. Within each feedback condition and participant, the 

motor complexity and the neural complexity were correlated across trials. Slope and fit were 

averaged across participants for each feedback condition. Only the motor data corresponding 

to the parallel axis of motion were used, since this axis had the greatest variability.

3 Results

3.1 Motor Performance

The results of the 2×2 rmANOVA with feedback condition (Feedback, No Feedback) and 

axis of motion (Perpendicular, Parallel) as independent variables are summarized in Figure 

2. This analysis revealed a significant main effect of feedback condition driven by greater 

RMSE in the No Feedback condition compared to the Feedback condition (F(1,17)=210.25, 

p<0.001, ηp
2 = 0.925), a significant main effect of axis of motion driven by greater RMSE in 

the Parallel axis than in the Perpendicular axis (F(1,17)=11.04, p=0.004, ηp
2 = 0.394), and a 

significant feedback condition x axis of motion interaction (F(1,17)=9.96, p=0.006, ηp
2 = 

0.370). Follow-up analyses revealed that RMSE was greater in the No Feedback condition 

than the Feedback condition for both the Parallel (F(1,17)=76.11, p<0.001, ηp
2=0.817) and 

Perpendicular (F(1,17)=65.74, p<0.001, ηp
2=0.795) axes of movement; however, the 

magnitude of the differences between sensory feedback conditions was significantly greater 

in the Parallel axis than the Perpendicular axis (t(17)=3.16, p=0.006, d=1.229).

The rmANOVAs used to assess learning effects on RMSE, with block number as the 

independent variable, did not find differences in RMSE across blocks for the Feedback or 

the No Feedback condition.

3.2 Motor Complexity

The results of the 2×2 rmANOVA with feedback condition and axis of motion as 

independent variables are summarized in Figure 3. This analysis revealed a significant main 

effect of feedback condition driven by greater SampEn in the Feedback condition relative to 
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the No Feedback Condition (F(1,17)=779.25, p<0.001, ηp
2 = 0.979), a significant main 

effect of axis of motion driven by greater SampEn in the Parallel axis of motion than in the 

Perpendicular axis (F(1,17)=564.1, p<0.001, ηp
2 = 0.971), and a significant feedback 

condition x axis of motion interaction (F(1,17)=690.63, p<0.001, ηp
2 = 0.976). Follow-up 

analyses revealed the SampEn was greater in the Feedback condition than the No Feedback 

condition for both the Parallel (F(1,17)=762.22, p<0.001, ηp
2=0.978) and Perpendicular 

(F(1,17)=301.46, p<0.001, ηp
2=0.947) axes of movement; however the magnitude of the 

differences between sensory feedback conditions was significantly greater in the Parallel 

axis than the Perpendicular axis (t(17)=26.28, p<0.001, d=7.843).

The rmANOVAs used to assess learning effects on SampEn, with block number as the 

independent variable did not find differences in SampEn across blocks for the or the No 

Feedback condition.

3.3 Neural Complexity

Results of the ANOVA with feedback condition and time scale as independent variables 

revealed a significant main effect of sensory feedback condition (F(1,17)=7.75, p=0.013, 

ηp
2=0.313), a main effect of time scale (F(1.55,17)=3642.60, p<0.001, ηp

2=0.995), and a 

sensory feedback condition by time scale interaction (F(1.234,17)=10.11, p=0.003, 

ηp
2=0.373). The main effect of sensory feedback condition was driven by the Feedback 

condition having higher complexity than the No Feedback condition. Results are depicted in 

Figure 4. Differences that remained significant after correcting for multiple comparisons 

using Least Squares Difference are reported.

The results of the alpha ANOVA including scalp region and laterality as independent 

variables revealed significant main effects of feedback condition (F(1,17) = 15.83, p = 0.001, 

ηp
2=0.482), laterality (F(1,17) = 4.92, p = 0.040, ηp

2= 0.224), and region (F(2.28, 17), p < 

0.001, ηp
2 = 0.522). The main effect of feedback condition was driven by greater MSE in 

the Feedback condition. The main effect of laterality was driven by greater MSE in the Left 

hemisphere. The main effect of cluster was driven by lower MSE in the occipital region than 

in all other regions (Frontal: t(17) = 5.53, p < 0.001, d = 1.30; Central: t(17) = 4.83, p < 

0.001, d = 1.11; Parietal: t(17) = 3.85, p = 0.001, d = 0.907; Temporal: t(17) = 5.29, p < 

0.001, d = 1.25) and greater MSE in the temporal region than in Central (t(17) = 2.82, p < 

0.001, d = 0.665) and Parietal (t(17) = 4.71, p < 0.001, d = 1.11) regions.

There were significant interactions between feedback condition and region (F(1.50, 17) = 

14.99, p < 0.001, ηp
2= 0.469) and laterality and region (F(2.09, 17) = 3.69, p = 0.033, ηp

2= 

0.178). Follow-up comparisons revealed that the feedback condition by region was driven by 

the strongest reduction in MSE in the occipital region in the No Feedback condition relative 

to the Feedback condition. Follow-up comparisons revealed that the laterality by region 

interaction was driven by greater MSE in the left hemisphere for the Parietal (t(17) = 2.36, p 

= 0.030, d = 0.557) and Occipital (t(17) = 2.13, p = 0.047, d = 0.504) regions only. Results 

for the alpha frequency band analyses are depicted in Figure 5. Condition differences at each 

scale that remained significant after correcting for multiple comparisons using Least 

Significant Difference are indicated.
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Results of the beta ANOVA including scalp region and laterality revealed a significant main 

effect of feedback condition (F(1,17) = 8.66, p = 0.009, ηp
2= 0.338). Follow-up analyses 

revealed that this main effect was driven by greater MSE in the Feedback condition. No 

other main effects were significant. There was a significant interaction between feedback 

condition and region (F(1.86, 17) = 5.18, p = 0.013, ηp
2= 0.234). Follow-up analyses 

revealed that this interaction was driven by higher MSE in the Feedback condition for the 

Central (t(17) = 2.43, p = 0.026, d = 0.573), Parietal (t(17) = 3.73, p = 0.002, d = 0.880), 

Occipital (t(17) = 2.63, p = 0.018, d = 0.620), and Temporal (t(17) = 2.34, p = 0.032, d = 

0.551) regions, but not the Frontal region. No other interactions were significant. Results for 

the beta frequency band analyses are depicted in Figure 6. Condition differences at each 

scale that remained significant after correcting for multiple comparisons using Least 

Significant Difference are indicated.

3.4 Relation of Motor and Neural Complexity

For the correlations between motor complexity (SampEn) and neural complexity (overall 

MSE) for the Feedback condition, the slopes of the trend lines for individual participants 

ranged from −1.06 to 1.05, and R2 values ranged from 0.00062 to 0.048 with an average 

slope of 0.078 and average R2 of 0.013. For the No Feedback condition, slopes ranged from 

−0.43 to 0.78 and R2 values ranged from 0.000078 to 0.050 with an average slope of 0.029 

and average R2 of 0.010. Indicating no significant relation between motor and neural 

complexity at the group level for either condition. These data are depicted in Figure 7.

4 Discussion

Visual feedback has repeatedly been shown to increase the complexity of motor output on 

precision motor tasks [7–10,45,46]. Though these studies have been limited to assessing the 

effect of visual feedback on motor behavior, it is assumed that visual feedback increases the 

complexity of precision motor behavior through sensorimotor integration. In the present 

study, we examined the role of sensorimotor integration in the use of visual feedback to 

increase motor complexity by measuring the effect of visual feedback on the complexity of 

the EEG signal during a precision motor task. Importantly, we replicated previous findings 

that motor complexity increases and motor error decreases when visual feedback is provided 

during precision movement tasks [7–10,45,46]. We did not find evidence of learning effects 

in motor performance or motor complexity. Consistent with our hypotheses, we found that 

the complexity of the neural signal was elevated when visual feedback was available 

compared to when it was not. Additionally, the increased neural complexity when visual 

feedback was available paralleled the increase in motor complexity and decrease in motor 

error. Our results support that visual feedback influences motor complexity by increasing the 

information available to the brain, which uses the information to produce a more complex, 

adaptive motor output.

We observed significantly greater motor error and significantly lower motor complexity in 

the axis of movement parallel to the motion of the cursor compared to the perpendicular 

axis. The perpendicular axis had less variability of movement than the parallel axis, which 

could contribute to the differences in error and complexity.
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4.1 Localized Effects of Visual Feedback on Neural Complexity

Based on our hypotheses of how the availability of sensory information influences the motor 

output, we expected both the visual-related (occipital) and the motor-related (central and 

parietal) neural signal to be higher in complexity when visual feedback was available 

compared to when it was not. Given that all participants were right-handed and used their 

right hand to perform the task, we expected a motor-related signal located centrally and 

parietally in the contralateral (left) hemisphere to the movement, as has been observed in 

previous studies of motor and visuomotor related cortical potentials and frequency-based 

analyses of motor processing [47–50].

For both the alpha and beta frequencies, we observed feedback related increases in neural 

complexity in the occipital scalp regions indicating, as hypothesized, that access to visual 

feedback increases the information available to and processed by visual cortex. Our results 

for both the alpha and beta frequency bands also revealed significantly greater complexity in 

left parietal regions compared to right parietal regions – consistent with a motor signal [47–

50]. Left parietal regions also showed an effect of feedback, expressing significantly greater 

complexity when visual feedback was available compared to when it was not. These findings 

are in line with extant literature implicating parietal cortex in visuomotor processing. 

Parietal cortex is involved in visuospatial transformations [13,14,51], error monitoring [52], 

and online error correction [53] during visuomotor behavior.

We also observed increased neural complexity in the central scalp regions for both the alpha 

and beta analyses; however, neither of these analyses indicated an effect of laterality, so it is 

not clear whether these signals correspond to motor activity. The neural findings in occipital 

and left parietal scalp regions, combined with the motor performance and complexity 

findings support that when visual feedback is available, the visual system has access to more 

information, which is integrated into the motor system to produce a complex, adaptive motor 

output consistent with our conceptual model [24].

Of note, the alpha frequency band analyses revealed Feedback related increases in neural 

complexity in all scalp regions and increased neural complexity in the left occipital region in 

addition to the left parietal region. Similarly, the beta band analyses revealed feedback 

related increases in temporal scalp regions in addition to the motor and visually relevant 

regions. The distributed task related activity in the alpha frequency band is not surprising, as 

alpha has been associated with visual processing and attention in addition to sensorimotor 

processing [54,55]. Another possibility is that the temporal activity is associated with spatial 

memory; however, EEG studies of visual spatial memory generally observe task-relevant 

activity at frontal and parietal scalp regions rather than temporal regions [56,57]. The effects 

of laterality in the left occipital region for the alpha analyses and the effect of feedback on 

temporal regions could also be related to the poor spatial resolution inherent in EEG. It is 

possible the spread of the motor-related signal is being captured in the analyses of these 

neighboring regions.

In the alpha frequency analyses, we also observed increased neural complexity in the frontal 

scalp regions when visual feedback was available. This could be related to differences in 

error monitoring – when visual feedback is available, participants are able to assess errors in 

Shafer et al. Page 10

Behav Brain Res. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their movements online (i.e., they can see when the cursor deviates from the target); 

however, when visual feedback is not available, participants are not able to monitor the 

accuracy of their movement to know when they are making errors. Frontal alpha has been 

found to be associated with error monitoring for errors that were not self-generated [58]. 

Frontal scalp localization of error processing has been repeatedly found in event related 

potential (ERP) studies that assess the error related negativity in various paradigms [59]. 

Additionally, Arrighi and colleagues [60] observed modulation of frontal (Fz) theta band 

activity that was time-locked to motor errors and event related spectral perturbations that 

were time locked to corrective movements when participants had visual feedback of their 

hand position during a reach-to-target task. These findings suggest that the differences in the 

effect of visual feedback on neural complexity at frontal electrode sites may be related to the 

processing of, and response to, errors that occur during the Feedback condition. Future 

studies should assess the effects of error processing on neural complexity.

4.2 Dynamical Complexity in the Brain

A truly complex biologic system, like the brain, needs to be adaptable across multiple time 

scales; therefore, complexity in the system should be high across multiple time scales [3,4]. 

To analyze our EEG data, we used multiscale sample entropy to assess the complexity of the 

neural system across multiple time scales. We found that for both sensory feedback 

conditions, the neural signal demonstrated high complexity across multiple time scales. We 

also observed that in the presence of visual feedback, neural complexity was higher across 

several time scales, in particular in scalp regions and frequency ranges associated with visual 

and motor processing, indicating that access to visual feedback enhances information 

processing in the sensorimotor system, permitting the system to produce more complex, 

adaptive behavior.

4.3 Implications for Typical Development and Clinical Disorders

The long-term goal of our research is to examine the role of sensorimotor integration deficits 

in neurodevelopmental disorders. Specifically, we are interested in how such deficits impact 

the development of the motor system and the clinical presentation of these disorders. It is 

first necessary, however, to understand the sensorimotor mechanisms that support the 

development of complex motor behavior in typically developing individuals. Stereotyped – 

rhythmic, repetitive – behavior occurs early in healthy infant development and is believed to 

serve as a foundation on which complex, adaptive motor behavior is built [61,62].

Motor complexity increases over the course of development; however, its expression is 

dependent on access to sensory input. Infant stereotypy decreases with greater amounts of 

sensory input (e.g., rocking, swinging, bouncing, and exploring) [63]. Additionally, a 

developmental increase in motor complexity is evident when visual feedback is provided 

during precision motor tasks; however, when visual feedback is withheld, all age groups 

display low complexity [8–10], implying that sensorimotor integration plays a role in the 

generation of complex and adaptive motor output.

Several neurodevelopmental, neuropsychiatric and neurodegenerative disorders present with 

sensorimotor disturbances including Parkinson’s Disease [64,65], schizophrenia [66,67], and 

Shafer et al. Page 11

Behav Brain Res. Author manuscript; available in PMC 2020 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



autism spectrum disorders (ASD) [68–70]. Studies have also found evidence of low motor 

complexity in these disorders [33–35,71]. Repetitive behavior including including punding 

in Parkinson’s disease [72] and stereotyped behavior in schizophrenia [73], and ASD [74,75] 

is also common. Together these findings suggest that sensorimotor integration deficits may 

be contributing to the low motor complexity that has been observed in these clinical 

conditions.

We recently proposed that low complexity, repetitive behavior manifests as a result of poor 

sensorimotor integration [24]. In our healthy adult sample, we found that we could induce 

both high and low motor complexity by manipulating the availability of visual feedback 

during the motor task. This is consistent with findings that motor complexity is task 

dependent (i.e., there are tasks for which low motor complexity is optimal and tasks for 

which high motor complexity is optimal) [76]. What may distinguish the low motor 

complexity that we observed in healthy, mature individuals from that in healthy infants and 

clinical populations is the fact that healthy, mature individuals have malleable motor 

complexity – they are able to reliably integrate sensory information when it is available and 

use it to access more biomechanical degrees of freedom to generate more complex, adaptive 

movements. Whereas, infants, who have had limited sensory and motor experience and 

whose brains are immature may be limited to simple, stereotyped motor behavior [28,61,63], 

and low complexity, repetitive behavior in clinical populations could result from deficits in 

the sensorimotor neural circuitry that limits the adaptability of the motor output. This is 

supported by a recent study that found that although typically developing children showed 

increased motor complexity when visual feedback was available during a postural sway task, 

children with ASD demonstrated low motor complexity both in the presence and absence of 

visual feedback, indicating that the children with ASD were not integrating the visual 

information to support their motor control [68].

Understanding the role that sensorimotor integration plays in the expression of low motor 

complexity in clinical populations could aid in the development of treatments for improving 

adaptive behavior by targeting sensorimotor integration.

4.4 Limitations

Our study used EEG to assess neural activity associated with sensorimotor integration. EEG 

has notoriously poor spatial resolution; therefore, we cannot be certain that the task related 

activity we attributed to sensorimotor integration is originating from brain regions known to 

be involved in sensorimotor integration. Future research could use functional magnetic 

resonance imaging during the stimulus-tracking task to identify the involvement of specific 

brain regions during the task.

We did not observe a correlation between the motor complexity and neural complexity 

measures. This could be attributed to the fact that neural complexity was assessed using 

multiscale sample entropy, whereas, motor complexity was assessed using a single scale of 

sample entropy. The neural complexity values used for the correlations were the average 

sample entropy across time scales; therefore, they do not correspond to the timescale of the 

motor complexity data. We were not able to assess sample entropy at multiple time scales 

for the motor data due to the limited sampling rate of our equipment. Future studies will use 
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equipment with a high sampling rate to collect motor data. Additionally, other analytic 

approaches, including coherence, or within trial analyses such as wavelet coherence, may be 

more sensitive to the coupling between the neural and behavioral signals. These approaches 

should be considered for future studies.

Our results support previous findings that visual feedback increases motor complexity. It is 

important to note, however, that optimal physiologic complexity is task and condition 

dependent [76]. For motor behavior, there are task and environmental conditions for which 

reducing motor complexity is beneficial. For example, if the pattern of the target motion 

were sinusoidal as opposed to linear, the optimal motor pattern would likely be lower in 

complexity, limiting the effect of visual feedback on motor complexity. Neural complexity 

has been shown both to increase [77] and decrease [78] with increasing task difficulty 

indicating that the neural requirements involved in different tasks may differentially effect 

neural complexity.

5 Conclusions

Our study aimed to determine the role that sensorimotor integration plays in the expression 

of, complex motor patterns in typical adults through manipulating access to visual feedback 

during a motor task. Withholding visual feedback from participants resulted in poorer motor 

performance, lower motor complexity, and lower neural complexity, specifically in signals 

associated with sensorimotor integration. Our results suggest that sensorimotor integration 

permits the nervous system to use visual feedback to inform the motor system allowing it to 

generate adaptive motor output through online monitoring and correction of movements. 

When visual feedback is withheld, there is limited information for the brain to use to 

monitor the accuracy of the movement and generate adaptive motor corrections. This results 

in less complex and less accurate motor behavior. Our findings have implications for 

understanding and treating disorders such as ASD that present with low motor complexity 

and sensorimotor integration deficits.
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Glossary

EEG Electroencephalography

RMSE Root mean squared error

SampEn Sample entropy

MSE Multiscale sample entropy

rmANOVA Repeated measures analysis of variance

ASD Autism spectrum disorder

FB Feedback
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Highlights

• Accuracy of precision movements improves with visual feedback

• Complexity of precision movements increases in the presence of visual 

feedback

• Visual feedback increases the complexity of sensorimotor neural signals

• Increased visual-motor integration corresponds with more adaptive motor 

output
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Figure 1. Task Design.
A) Depiction of a Feedback trial with the target in grey and the cursor in green. The target 

and cursor are visible for the entire duration of the trial. B) Depiction of a No Feedback trial. 

The target and cursor disappear 1.7s after the target starts moving. They are invisible for 3.5s 

before reappearing at the end of the trial. C) Trials can start at any one of four locations and 

move in any of four directions. D) Structure of a block of trials. All trials within a block are 

the same sensory feedback condition. E) Structure of the task. Blocks alternate between 

Feedback and No Feedback. The condition of the starting block is randomly decided for 

each participant.
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Figure 2. Motor Performance.
Performance was measured using the root mean square error (RMSE) of the cursor position 

relative to the target. Higher values represent poorer performance. Error is indicated for the 

perpendicular axis of motion (left) and parallel axis of motion (right) for the Feedback 

condition (white) and the No Feedback condition (black). Significant differences between 

feedback conditions are indicated by *. Error bars represent standard error of the mean.
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Figure 3. Motor Complexity.
Motor complexity on the task was calculated using sample entropy (SampEn) of the time 

series of the cursor position relative to the target. Motor complexity is indicated for the 

perpendicular axis of motion (left) and parallel axis of motion (right) for the Feedback 

condition (white) and the No Feedback condition (black). Significant differences between 

feedback conditions are indicated by *. Error bars represent standard error of the mean.
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Figure 4. Overall Neural Complexity.
A) Sample entropy (SampEn) averaged across all electrodes for each time scale for each 

sensory feedback condition (Feedback: grey circles, No Feedback: black squares). Time 

scales for which the Feedback and No Feedback conditions significantly differed are 

indicated by *. B) Multi-scale Sample Entropy (MSE) values calculated by averaging across 

all electrodes and all time scales for each sensory feedback condition (Feedback: white, No 

Feedback: black). The significant difference between sensory feedback conditions is 

indicated by *. Error bars represent standard error of the mean.
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Figure 5. Alpha Band Neural Complexity by Scalp Region.
Alpha band neural complexity during the task was calculated using multi-scale sample 

entropy (MSE). Rows (numbered) indicate different scalp regions: 1) Frontal, 2) Central, 3) 
Occipital, 4) Temporal. Columns A and B depict the neural complexity (SampEn) at each 

time scale for the left and right hemispheres, respectively. Time scales for which the neural 

complexity differed significantly between the Feedback condition (colored circles) and the 

No Feedback condition (black squares) are indicated by *. Column C represents the across-

scales average for each scalp region and sensory feedback condition. Significant differences 

between the Feedback condition (colored bars) and No Feedback condition (black bars) are 
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indicated by *. Significant differences between activity in Left and Right hemisphere are 

indicated by † Error bars represent standard error of the mean.
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Figure 6. Beta Band Neural Complexity by Scalp Region.
Beta band neural complexity during the task was calculated using multi-scale sample 

entropy (MSE). Rows (numbered) indicate different scalp regions: 1) Frontal, 2) Central, 3) 
Occipital, 4) Temporal. Columns A and B depict the neural complexity (SampEn) at each 

time scale for the left and right hemispheres, respectively. Time scales for which the neural 

complexity differed significantly between the Feedback condition (colored circles) and the 

No Feedback condition (black squares) are indicated by *. Column C represents the across-

scales average for each scalp region and sensory feedback condition. Significant differences 

between the Feedback condition (colored bars) and No Feedback condition (black bars) are 
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indicated by *. Significant differences between activity in Left and Right hemisphere are 

indicated by † Error bars represent standard error of the mean.
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Figure 7. Relation between Motor (SampEn) and Neural (MSE) Complexity.
A) Individual participant (thin dotted lines) and average slope (thick dashed line) in the 

Feedback condition (grey), B) Individual participant (thin dotted lines) and average slope 

(thick solid line) in the No Feedback condition (black).
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