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Abstract

As systems biology expands its multi-omic spectrum to increasing resolutions, distinguishing cells 

based on single-cell profiles becomes feasible. Unlike traditional bulk assays that average cellular 

responses and blur the distinct identities of responsive cells, single-cell technologies enable 

sensitive detection of small cellular changes and precise identification of those cells perturbed by 

toxicants. Among the suite of omic technologies that continue to expand and become affordable, 

single-cell RNA sequencing (scRNA-seq) is at the cutting edge and leading the way to transform 

systems toxicology. Single-cell systems toxicology can provide a wealth of information to 

elucidate cell-specific alterations and response trajectories, detect points-of-departure, map and 

develop dynamical models of toxicity pathways.
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Introduction:heterogeneity of single-cell responses and limitations of bulk 

assays

When the abundance of liver cytochrome P450 enzymes such as CYP1A1 and 1A2 was first 

examined some thirty years ago – through immunohistochemistry – in rats exposed to 

dioxin, phenobarbital or some other compounds, dose-dependent zonal induction of the 

enzymes dominated the observed patterns within the liver lobules [1,2]. In individual 

hepatocytes, these enzymes appeared to be induced in an all-or-none fashion; and as the dose 

of the test compounds increased, the zones of induced hepatocytes expanded either from the 

centrilobular to periportal regions or vice versa, depending on the specific enzymes and 

compounds examined. It was first thought that the location and thus the microenvironment 

of these hepatocytes may contribute to the heterogeneous responses between cells. However, 

cultured primary rat hepatocytes also responded in a heterogeneous fashion [3,4]. Of course, 

the use of primary cells did not rule out the possibility that these cells might have inherited 

their in vivo characteristics that underpin the heterogeneous responses observed in whole 

animals. Later studies using cell lines of hepatocytes, which eliminated any position-related 

variabilities, still showed binary yet asynchronous gene induction among cells, 

demonstrating that at least part of the heterogeneity resides inherently within an otherwise 

isogenic cell population [5,6]. Beyond liver enzyme induction, it is now widely recognized 

that cell-to-cell variability in basal states and in dynamical processes, such as proliferation, 

differentiation, apoptosis, and stress response, is a ubiquitous phenomenon even within a 

clonal population of cells and can be attributed to both extrinsic and intrinsic factors [7–12].

The ability to measure molecular changes in cells with high sensitivity and precision is 

essential for reliable determination of points-of-departure (PoDs) in biological responses. Its 

importance becomes even greater as toxicology and related fields in environmental health, in 
vitro toxicity testing and epidemiology move increasingly toward a multi-omic, systems 

biology approach, examining molecular alterations at the widest coverage achievable. Most 

bioassays, including microarray, RNA sequencing, and proteomic assays, were traditionally 

carried out in ensemble, at cell-population levels, despite the fact that the responses of 

individual cells are always heterogeneous and that the fraction of responsive cells often 

depends on the concentration of the perturbing agent. Cellular heterogeneity is masked in 

these bulk assays, in which cells, either as in a pure cell line or of mixed types from a tissue, 

are lysed in a single pool and the biomolecules released by all cells are quantified together to 

derive some mean values. This cell population-averaging approach is inherently insensitive 

to detect effects involving only a small fraction of the cell population. As illustrated in Fig. 

1A, when assayed in aggregate where most cells are nonresponsive, large fold changes in 

gene expression in single, responsive cells are lost in the background, and the consequence 

of averaging is even worse for downregulated genes. For instance, changes in the levels of 

transcription factors (TFs), Pax5 and Blimp-1, which are down- and up-regulated 
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respectively during antigen-stimulated B cell terminal differentiation, are much harder to 

detect in bulk lysis assays such as Western blot than in single-cell assays such as flow 

cytometry [13]. When tens of thousands of genes are measured in bulk assays such as in 

microarrays, low nominal fold changes can result in many false negatives given all the 

biological and technical variations and background noise. In contrast, measurements made at 

single-cell levels focused only on the responsive cells can be highly sensitive and specific, 

providing more reliable characterization of the responses at low doses and identification of 

PoDs.

Another problem with bulk assays is related to the so-called Simpson’s paradox, where 

correlations between biomolecular species observed within individual groups of cells may 

disappear or even reverse direction when the correlations are assessed across cell groups 

using the mean molecular abundance in each group [14]. These cell groups can either 

represent different cell types or they can be the same type of cells but are exposed to 

different doses of a chemical. As shown in Fig. 1B, if two genes mutually repress each other, 

within a population of cells under the same exposure condition, the expression of the two 

genes is inversely correlated because as one gene is transiently perturbed by noise, the 

expression of the other gene will likely move in the opposite direction. If a chemical dose-

dependently upregulates both genes, the aforementioned inverse correlation still remains 

within each dose group. However, when using bulk assays to measure the average gene 

expression within each dose group and examining the correlation between the means across 

the dose groups, a completely opposite conclusion would be drawn: the two genes are co-

expressed and thus positively correlated. As gene-gene relationships are often inferred 

through bulk assays conducted at different conditions such as different chemical doses, the 

resulting gene network can be wrong and misleading [15,16].

The sources and biological significance of cell-to-cell heterogeneity

As alluded to by the studies of enzyme induction in hepatocytes, cell-to-cell variability can 

result from both extrinsic and intrinsic factors. Cells of the same type residing in different 

locations within a tissue could be exposed to a different microscopic milieu, leading to 

different characteristics and functional variations. For instance, along the central-to-

periportal axis of the liver lobule, there are concentration gradients for a number of 

extracellular factors, including oxygen, nutrients, hormones and morphogens, which may be 

partially responsible for the differential zonal behavior [17]. Within a tissue, extracellular 

factors may be necessary for initiating and maintaining distinct cell subtypes, but the 

molecular identities of cells may also be self-sustained through attractor states underpinned 

by feedback loops among TFs and/or epigenetic memory [18,19].

Cell-to-cell variations also exist in a clonal population of cells, as a result of stochastic gene 

expression [20]. This so-called gene expression noise can arise intrinsically from the 

randomness of biochemical reactions in the promotor, transcriptional, translational, and 

degradation events involving molecular entities present at low abundance. While 

stochasticity may be deleterious, it has also been shown to play important roles in 

determining cellular fates in development, pattern formation, dose response, and information 

transmission [11,21]. As a result of gene expression noise, two identical daughter cells may 
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diverge in their gene expression levels over time and differ significantly after several rounds 

of cell division [22]. In this way, the cellular phenotype and response profile at the single-

cell level can be transient as the gene expression states in cells fluctuate. This transient 

nature of the cellular phenotype is best demonstrated by cytotoxicity studies. When a clonal 

population of cells are exposed to an anti-tumor drug at a particular concentration, a fraction 

of cells are killed. After the drug is removed and the surviving cells are allowed to recover 

for several cell generations, a new population emerges. However, when the new population 

is exposed to the same drug at the same concentration as before, a similar fraction of cells 

are killed, as observed in the original population [23]. These experiments demonstrated that 

cellular response to chemical perturbation is not necessarily a fixed property for single cells, 

and stochastic gene expression can reconstitute surviving cells into a population whose 

distribution of heterogeneity resembles that of the original population.

Single-cell technologies

Traditional experimental approaches at single-cell resolutions include immunocytochemistry 

and in situ hybridization for within-tissue studies, flow cytometry for dissociated cells, and 

live cell imaging for real-time observations. While providing valuable information of single-

cell behaviors, these techniques are limited in coverage and throughput and can be 

multiplexed to simultaneously monitor only a small number of proteins or mRNAs. Recent 

improvements in real-time quantitative reverse transcription PCR and mass cytometry allow 

measuring up to tens of genes and proteins, but still a far cry from a full omic-wide coverage 

[24,25]. In the past few years, rapid technological advancements have been made in nearly 

all omic-level single-cell assays. While affordable single-cell proteomic [26], metabolomic 

[27], and epigenomic [28] assays are still on the horizon, single-cell RNA sequencing 

(scRNA-seq) has evolved and matured to a state where this technology is economically 

accessible. Since its introduction in 2009 [29], this technology has quickly undergone 

multiple iterations of improvement, in areas including cell capturing, barcoding, reverse 

transcription, amplification, and sequencing, which lead to enhanced data quality, reduced 

batch effect, increased throughput and reduced cost. single-cell RNA sequencing (scRNA-

seq) has been applied to study a number of organs and tissues including embryo, brain, bone 

marrow, liver, kidney, and blood. Embracing the promise of scRNA-seq, initiatives such as 

the Human Cell Atlas have been launched aiming to map every cell in the human body [30]. 

At the same time, an expanding suite of bioinformatic and machine-learning tools have 

flourished to handle and analyze the unique, high-dimensional datasets generated with 

scRNA-seq and help to extract biologically meaningful information as much as possible.

The rest of the article focuses on the potential applications of scRNA-seq in toxicology, a 

discipline yet to reap benefits from this new technology. Besides technical maturity and 

affordability, a transcriptomic focus is also justified by the general conclusion drawn from a 

number of functional toxicogenomic studies in recent years [31–33]. Most of these studies 

demonstrated that the benchmark chemical dose and time at which transcriptional alterations 

begin to appear in the most sensitive intracellular molecular pathways may also demarcate 

the PoD for an adverse apical-endpoint outcome. Recently the National Center for 

Computational Toxicology at the United States Environmental Protection Agency (USEPA) 

has prioritized high-throughput transcriptomics as one of the top-tier screening assays in 
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their next-generation blueprint for chemical testing [34]. Embracing the potentials brought 

by single-cell technologies, the US National Academies’ Standing Committee on Use of 

Emerging Science for Environmental Health Decisions convened, in March, 2019, a 

workshop on the Promise of Single Cell and Single Molecule Analysis Tools to Advance 

Environmental Health Research. It is recognized that the molecular signatures of individual 

cells accessible through scRNA-seq and other single-cell omic technologies will bring 

unprecedented resolution and innovation to examining biological systems and their 

perturbations by chemicals.

Cell type identification and cell type-specific responses

One of the most common and useful applications of scRNA-seq is clustering cells in a 

biological sample, using a variety of unsupervised machine-learning algorithms, into distinct 

groups based on select features of the high-dimensional mRNA data [35,36]. Clustering is 

often conducted on reduced dimensions, achieved through dimension reduction algorithms, 

such as principle component analysis (PCA), a traditional linear approach that captures the 

global relationship between distinct clusters, and t-distributed stochastic neighbor-

embedding (t-SNE), a more recent nonlinear approach that aims to preserve the local 

relationship between similar cells (Fig. 2A) [37]. While PCA and t-SNE can be applied in 

tandem to produce better spatially-resolved clusters, a novel nonlinear algorithm published 

in 2018, uniform manifold approximation and projection (UMAP), claimed to preserve the 

global structure and the local structure at nearly ten times the computational speed as t-SNE 

can deliver and has been quickly adopted by the scRNA-seq community [38]. Cell types and 

subtypes of the clusters, visualized on these low-dimension maps, can be identified based on 

domain knowledge of specific marker genes; however, novel cell types or subtypes, existing 

as rare physiological populations or emerging because of chemical perturbations, can also be 

discovered with this approach. A number of recent scRNA-seq studies of the liver, pancreas, 

brain, kidney, and so on confirmed that cell types, traditionally defined based on 

morphology, function, and biomarkers, are only crude classifications of a continuous 

spectrum of otherwise distinct subtypes, many of which were not previously known or 

appreciated [39–42]. In addition, by following up with single-molecule RNA fluorescence in 
situ hybridization or intersectional genetic approaches to microscopically locate the 

expression of landmark genes, identified cell types or subtypes can be mapped back to their 

anatomical positions in intact organs [41,43].

A recent single-cell study by Halpern et al. revealed characteristic division of labor among 

hepatocytes by showing that mouse hepatocytes can be clustered into 9 zonal layers within a 

liver lobule, each with a distinct transcriptomic profile [41]. While some genes were 

expressed monotonically across the zonal layers, many others were found to be 

nonmonotonic. Conceivably, toxicological studies of chemical perturbation followed by 

scRNA-seq can characterize differential activation of hepatocytes in different lobular zones 

by different chemicals, doses, and exposure durations. Such studies would help to better 

understand hepatic metabolism of chemicals and their potential hepatotoxicity, and provide 

new insights into organ-level responses. A recent scRNA-seq study of the kidney showed the 

traditionally defined glomerular and tubular cells and their subtypes, but also identified a 

novel cell type in the collecting duct that occupies a developmentally transitional state 
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between principal and intercalated cells [40]. Future scRNA-seq studies of chemically 

induced perturbation can help to pinpoint the cellular targets of renal toxic chemicals under 

complex exposure conditions. One such scenario is cadmium accumulation in diabetic 

individuals, where cadmium selectively damages proximal tubular epithelia whereas high 

blood glucose damages glomerular endothelia and podocytes. Recent scRNA-seq studies of 

developing midbrains in mice and humans have revealed multiple dopaminergic (DA) 

lineage cells: radial glial-like cells, neuroprogenitors, medial neuroblasts, DA neuroblasts, 

and various immature and mature DA subtypes [39]. In the adult brain, as many as 5 DA 

neuron subtypes were identified with distinct but overlapping axonal projections and 

anatomical locations in the midbrain. Given the developmental neural toxicity of many 

insecticides in this brain region, it will be intriguing to investigate whether these compounds 

alter the DA neuron subtypes and their developmental trajectories to cause adverse 

neurobehavioral outcomes. A recent scRNA-seq study of asbestos-induced lung fibrosis in 

mice was able to identify, among tissue-resident interstitial macrophages, alveolar 

macrophages, and monocyte-derived alveolar macrophages present in the fibrotic niche, that 

only the latter subpopulation is causally associated with fibrosis, a result that is consistent 

with human pulmonary fibrosis studies [44]. In a study on the effects of tobacco-smoking, 

scRNA-seq of human peripheral blood mononuclear cells (PBMCs) revealed that natural 

killer-like CD8+ T lymphocytes, which are a rare subtype of T cells in nonsmokers, increase 

about 4 times, constituting nearly 9% of PBMCs in smokers [45].

Pseudotime, developmental trajectories, and cell state transition

One type of information that can be extracted from scRNA-seq data is “pseudotime”, which 

provides a timestamp to each cell in a heterogeneous population to specify where the cell 

resides along the biological trajectory following a physiological stimulation or perturbation. 

The most straightforward application of pseudotime is to order cells during development. 

Progression of individual cells differentiating along a lineage path is asynchronous, and 

pseudotime analysis takes advantage of this phenomenon to assign developmental 

timestamps to cells based on their transcriptomic similarity [46]. While pseudotime allows 

ordering of identified cell types according to their maturity in the lineage, pseudotime-based 

trajectory inference, using algorithms such as Monocle and Wishbone, takes it one step 

further to also delineate the bifurcation point where two sub-lineages branch out from 

common precursor cells (Fig. 2B) [47,48]. scRNA-seq studies have now revealed 

developmental trajectories in a variety of tissues, such as the brain, kidney, and immune 

system [39,48,49]. A potential application in toxicology is to identify possible alterations in 

developmental trajectories of cells perturbed by chemicals capable of producing 

developmental toxicity. Pseudotime analysis can also be applied to order cells according to 

their phase in the cell cycle or other biological rhythms, eliminating the need to 

experimentally synchronize these cells to maximize the ability to detect molecular changes 

obscured otherwise [50].

A related application of scRNA-seq is to predict critical cellular state transitions that may 

underpin the PoD to an adverse health outcome such as cancer. Such critical state 

transitions, often irreversible, can be driven by environmental toxicants accumulating in the 

human body. Stable cell types normally correspond to stable cellular steady states 
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(attractors) regulated by relevant TF networks [18]. When sufficiently perturbed, the TF 

network, operating as a nonlinear dynamical system, may switch to an alternative attractor 

state corresponding to an adverse phenotype, i.e., disease or toxicity. To predict how close 

the biological system is to the tipping point, it is possible to exploit the critical-slowing-

down phenomenon commonly observed in nonlinear dynamical systems operating near 

bifurcation (tipping) points [51]. In an scRNA-seq study, this phenomenon is embodied in 

changes in three statistical metrics of the TF network genes as the system approaches a 

tipping point: (i) an increase in the average of variations of the expression levels of each TF 

across cells (<SDTF>, Fig. 3A and 3B, left panels); (ii) an increase in the average of pair-

wise, TF-TF Pearson correlations across cells (<PCCTF>, Fig. 3A and 3B, left panels); and 

(iii) a decrease in the average of pair-wise, cell-cell Pearson correlations across TFs 

(<PCCC>, Fig. 3A and 3B, right panels). A composite index derived from these three 

statistics, CI = <SDTF><PCCTF>/<PCCC>, is expected to rise and peak when the network is 

approaching the tipping point and decrease past the tipping point (Fig. 3C) [52,53]. Such 

composite indices may be used as novel biomarkers to predict the PoD to adverse outcomes 

[54].

Dynamical network modeling

The ability to simulate and predict the dynamical response of a biological system composed 

of diverse cells to chemical perturbations is one of the goals of systems toxicology. This 

bottom-up systems biology endeavor can be greatly aided by the top-down, single-cell omic 

approach, especially scRNA-seq, in several ways. First, scRNA-seq data can help identify 

and map the gene regulatory network (GRN) underlying the dynamic cellular response to 

chemicals. A variety of in silico network inference methods have been developed in the past 

based on bulk microarray or RNA-seq data, ranging from simple Pearson correlations to 

more complex Bayesian networks, ordinary differential equation frameworks, and mutual 

information correlations [55]. As discussed previously, approaches using bulk assay data 

suffer from Simpson’s paradox to various extents. In contrast, single-cell data provide much 

richer and reliable information regarding the relationship between genes within the same 

cells. With many recently developed algorithms such as SCODE and SCENIC, more reliable 

GRN structures can be reverse engineered and reconstructed based on single-cell data to 

feed dynamical modeling [56,57]. Second, although the counts of unique molecular 

identifiers (UMI) for each cell can be noisy, depending on the cDNA labeling efficiency, 

sequencing depth and many other technical variations in the scRNA-seq workflow, they 

nevertheless provide extremely valuable information on the abundance (copy numbers) of 

each mRNA species for modeling single-cell GRNs. In particular, stochastic models of 

GRNs that simulate the abundance of mRNAs and proteins as discrete, integral numbers and 

explicitly consider noise in gene expression, will become more feasible. Finally, the 

temporal order of transcriptional events, based on pseudotime trajectories, provides essential 

information on the dynamics of the underlying GRN and can be used to guide the calibration 

of the dynamical models.
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Challenges in single-cell systems toxicology

Despite a variety of application potentials, single-cell technologies, as they are applied to 

toxicology, face a number of technical and computational challenges. Toxicological studies 

often involve comparing biological samples across different chemical exposure conditions 

such as doses and durations. The accuracy of comparison is subject to not only traditional 

technical variations associated with animal treatment, sample collection and handling, but 

also single-cell technology-specific variations including tissue and cell dissociation, library 

preparation and downstream processing. So far in nearly all scRNA-seq studies, tissue 

samples collected under different conditions are processed separately through the scRNA-

seq workflow. The associated batch effects can affect the quantifications of cell numbers of 

identified cell types and pseudotime trajectories perturbed by chemical exposures. To reduce 

batch effects, efforts to multiplex through sample-specific cell tagging are underway so that 

samples obtained from different conditions can be pooled and processed together and 

subsequently identified bioinformatically [58].

Another challenge lies in the computational analysis tasks including cell clustering across 

conditions. For a single normal condition, cells can be grouped into physiological cell types 

based on differentially expressed marker genes. But when cells are exposed to chemicals, 

they also tend to cluster based on the differential transcriptional responses to different 

exposure conditions, which will interfere with clustering cells into physiological cell types. 

Therefore, clustering cells appropriately and comparing them under complex conditions can 

be challenging. To facilitate comparison, the most recent iteration of the single-cell 

computational tool Seurat uses canonical correlation analysis to first identify physiological 

cell type clusters across conditions and then examine cell type-specific responses [59]. 

While such approach mitigates the issue of cross-condition comparison, it does not 

completely eliminate it, and better algorithms need to be developed. Furthermore, with 

single-cell studies, we are comparing not only means and variances between samples, but 

also distributions of cells, cell types/subtypes, and genome-wide RNA levels. Establishing 

the ground truth of these metrics for normal tissues and being able to tell the adverse from 

the normality can pose challenges.

Concluding remarks

Systems toxicology is at a great time of rapid biotechnological innovation. Single-cell 

technologies are providing an expanding, high-resolution view of the cellular perturbations 

of biological organisms by the internal and external environment. As single-cell omic 

technologies improve and costs decline, the coming deluge of high-dimensional datasets will 

challenge not only our computational resources, but also our intellectual abilities to make 

best use of them. As the field simultaneously develops novel computational analysis tools, 

the information content that can be extracted from single-cell datasets will expand and 

improve our understanding of the physiological and toxicological processes constantly 

playing out in the cells of our body. Challenges aside, as with any nascent technology, 

single-cell omics opens new avenues for toxicological research and brings higher precision 

to the risk assessment of adverse outcomes from chemical exposures [60,61].
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Figure 1. Illustration of the biasing effects of bulk assays.
(A) Left panel: In a single-cell study, the small population of responsive cells and the 

magnitudes of gene expression changes in these cells can be easily distinguished from the 

nonresponsive population (each dot represents a cell). Right panel: Bulk assays averaging 

the responses of the total population disguise the magnitude of changes. For instance, if a 

perturbation renders 1% of the cell population responsive, in which the expression of gene X 

increases by 10-fold and that of gene Y decreases by 10-fold at single-cell level, then if 

measured with bulk assays, the expression of gene X will only increase by 9% ((10×1%

+1×99%)/(1×100%) − 1 = 9%), and the expression of gene Y will only decrease by a 

meager 0.9% ((0.1×1%+1×99%)/(1×100%) − 1 = − 0.9%). When the responsive cells are 

10% of the total population, gene X is upregulated by 90% ((10×10%+1×90%)/(1×100%) 

− 1 = 90%), but gene Y is downregulated by only 9% ((0.1×10%+1×90%)/(1×100%) − 1 = 

−9%) in bulk assays. (B) Right panel: Genes X and Y mutually repress each other but are 
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commonly induced by chemical Z. Left panel: illustration of reversal of gene-gene 

correlation due to Simpson’s paradox. The true inverse correlation between the expression of 

genes X and Y can be revealed in single-cell studies (each color dot represents a cell) and 

clusters are obtained at different concentrations of chemical Z. However, with bulk assays 

which can only measure the averaged expression levels of genes X and Y (black dot in each 

cluster), the correlation between X and Y will appear positive when using the averages 

(dashed line).
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Figure 2. Illustration of dimension reduction, clustering and pseudotime trajectory of scRNA-seq 
data.
(A) Visualization and clustering of cells in a 2-D t-SNE map. Cluster X represents a 

precursor cell type, and clusters Y and Z represent the two cell types of sub-lineages of X. 

(B) Pseudotime trajectories showing ordering of cells based on their developmental 

pseudotime and bifurcation of precursor X into sub-lineages Y and Z. #1 in circle denotes 

the first bifurcation point (and the only one in this illustration). Each color dot represents a 

cell.
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Figure 3. Illustration of changes in gene expression statistics in single cells when an underlying 
TF network is perturbed (e.g. by a chemical) to move closer to a bifurcation (tipping) point that 
demarcates the separation of a healthy attractor state from an adverse attractor state.
(A) Cells are at a state far away from the bifurcation point and (B) at a state near the 

bifurcation point. Left panels: the expression variations (<SDTF>) of a pair of TFs (X and Y) 

in the network and their correlations (<PCCTF>) increase from (A) to (B); each dot 

represents a cell. Right panel: the similarity between a pair of cells, as defined by the 

correlation (<PCCC>) of expression levels of all TFs in the network, decreases from (A) to 

(B); each dot represents a TF in the network. (C) As chemical dose increases to push the TF 

network closer to the bifurcation (tipping) point (vertical dashed line), the composite index 

(<SDTF><PCCTF>/<PCCC>) increases, peaks, and then declines. Black dots on curve 

correspond to states A and B.
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