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Abstract

Genomic data visualization is essential for interpretation and hypothesis generation as well as a 

valuable aid in communicating discoveries. Visual tools bridge the gap between algorithmic 

approaches and the cognitive skills of investigators. Addressing this need has become crucial in 

genomics, as biomedical research is increasingly data-driven and many studies lack well-defined 

hypotheses. A key challenge in data-driven research is to discover unexpected patterns and to 

formulate hypotheses in an unbiased manner in vast amounts of genomic and other associated 

data. Over the past two decades, this has driven the development of numerous data visualization 

techniques and tools for visualizing genomic data. Based on a comprehensive literature survey, we 

propose taxonomies for data, visualization, and tasks involved in genomic data visualization. 

Furthermore, we provide a comprehensive review of published genomic visualization tools in the 

context of the proposed taxonomies.

1. Introduction

A rapidly growing understanding of how the genome and epigenome of an organism control 

molecular function and cellular processes has revolutionized research in biology and 

medicine. Driven by affordable high-throughput technologies that allow scientists and 

clinicians to reliably obtain high quality sequence information from DNA and RNA 

molecules, generation and handling of genomic sequencing data are now routine aspects of 

many basic science and clinical research projects in biology and medicine.

While a large amount of genomic data is produced within individual small scale projects, 

there are also numerous national and international efforts to generate genomic data at large 

scale. These kinds of projects include efforts to catalog genomic features across cell types 

and tissues (e.g. ENCODE Consortium [ENC12]), studies aimed at understanding 

fundamental principles of DNA architecture (e.g. 4D Nucleome Project [DBG*17]), as well 

as disease specific studies that aim to elucidate the molecular changes that cause diseases 

such as cancer (e.g. The Cancer Genome Atlas [CWC*13], International Cancer Genome 

Consortium [The10]). Yet other projects aim to develop new approaches for early 

identification of genetic risk factors (e.g. Baby-Seq [HACB*18]). Many of these projects do 
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not only generate genomic data for many samples, but also produce dozens of different types 

of genomic data.

Visualization of genomic data is frequently employed in biomedical research to access 

knowledge within a genomic context, to communicate, and to explore datasets for 

hypothesis generation. As biomedical research is increasingly data-driven and many studies 

lack well-defined hypotheses [Wei10, Gol10], it is a key challenge to discover unexpected 

patterns and to formulate questions in an unbiased manner in vast amounts of genomic and 

other associated data.

Over the last two decades, hundreds of visualization tools for genomic data have been 

published. The large number of tools are an indicator for the broad application of genomic 

data and a sign that visualization of genomic data is a complex problem and active research 

domain.

Several challenges in visualizing genomic data are directly connected to how genomes are 

organized. Genomes are collections of one or more chromosomes, which are individual 

molecules that encode information as a sequence of nucleotides. Although genomic 

information is stored in the form of a sequence, the function of the genome is influenced by 

and requires various types of long-and short-range interactions between non-adjacent 

regions of the sequence. This includes interactions within and between chromosomes. 

Patterns in genomic data can be found across many scales, ranging from the size of whole 

chromosomes, which can span hundreds of millions of nucleotides, down to individual 

nucleotides. Another important aspect of many genomes is the sparse distribution of many 

types of patterns along the genome sequence.

Furthermore, the questions that are addressed with genomic data are aimed at the 

understanding of complex biological systems where all components are highly 

interconnected and influence each other. For example, the regulation of gene activity is 

controlled by the presence or absence of particular regulatory proteins, chemical 

modification of parts of the DNA, and the 3D structure of chromosomes, all of which are 

changing depending on environmental and other factors. An abundance of proteins, chemical 

modifications, and 3D structures can be measured comprehensively and mapped to the 

genome. While this is a greatly simplified view, it shows the diversity and number of data 

types from multiple sources that often need to be integrated into visualization in order to 

interpret genomic information.

The combination of long sequences, sparse distribution of patterns across multiple scales, 

interactions between distant parts of the sequence, and large numbers of diverse data types 

pose numerous visualization challenges. These require the design and development of 

specialized tools. Additionally, the number of features, the size of the datasets, and the 

diversity of data types all make tight integration of genomic data visualization tools with 

algorithmic tools a requirement for efficient analysis workflows. This further complicates 

the design of effective visualization tools for genomic data.

As the sequential organization is a key characteristic of genomic data, we limit the scope of 

this survey to visualizations that incorporate one or more genomic coordinate systems and 
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present data in the order defined by the sequence of that coordinate system. This explicitly 

excludes many techniques that are based on reorderable matrices and node-link diagram 

approaches such as visualization of gene expression levels as matrix-based, clustered 

heatmaps or visualization of gene regulatory networks as node-link diagrams with 

expression data mapped overlaid onto the nodes. Since the presence of a genome sequence is 

required for inclusion in this survey, we also excluded tools for genome assembly, which is 

the process of defining the sequence of a reference genome for a given species.

Our survey makes two major contributions: In Section 4, we propose taxonomies for data, 

visualization, and tasks involved in genomic data visualization. In Sections 5 and 6, we 

provide a comprehensive review of published genomic visualization tools in the context of 

the proposed taxonomies. In addition, we discuss current challenges and research 

opportunities in genomic data visualization.

2. Biological Background

2.1. DNA Structure

Deoxyribonucleic acid (DNA) is a molecule contained in living cells carrying the genetic 

instructions to build every biological function and molecule of an organism. DNA is studied 

for numerous reasons, including analyzing cancerous DNA to find treatments, finding 

possible risk factors for certain diseases, and comparing DNA of different species to study 

them in the context of evolution.

DNA consists of two complementary strands coiled up in a double helix. Each strand is 

composed of smaller units called nucleotides, each consisting of a base (either Adenine (A), 
Cytosine (C), Guanine (G), or Thymine (T)), a sugar, and a phosphate group. Biological 

information is stored in the order of the different nucleotides. The two strands, called 

forward and reverse strands, are connected at the bases. They are called complementary 

because an A in the forward strand corresponds to a T in the reverse strand as well as G 

corresponds to C and vice versa. Therefore, often only one of the strands is considered when 

analyzing or visualizing genomic data. In prokaryotes (bacteria and archaea) DNA is 

organized in one single circular sequence, which is called a chromosome, while eukaryotic 

DNA is usually organized in multiple chromosomes (multiple sequences).

A gene is a sequence of nucleotides encoding for a protein, a molecule which has a 

biological function in the organism such as catalyzing reactions (as an enzyme) or being a 

building block of a tissue. In order to build a protein using the information of a gene, the 

DNA has to be transcribed to mRNA and translated into a protein (see Figure 2). The 

process of transcribing genes into mRNA is called gene expression. The rate at which a gene 

is expressed (and translated into a protein) is not the same at all times but depends on many 

different regulatory factors, such as molecules called transcription factors. Certain sequences 

of the RNA molecule can initiate the transcription of a gene, called promotors, which are 

located upstream of the gene sequence. Transcription factors can bind to sequences in the 

promotor region to regulate gene expression (see Figure 4).
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In eukaryotic organisms, not the entire DNA sequence encodes for genes. Instead, the 

sequence consists of protein-coding parts called exons and non-protein-coding parts called 

introns (see Figure 2, top). During transcription, introns are cut out and neighboring exons 

are combined to form genes. In a process called alternative splicing, one gene can encode for 

multiple different protein products, called protein isoforms by combining different exons 

(see Figure 2, middle). The exons not needed for the formation of the protein product are 

spliced out. Knowledge about the abundance of isoforms is important for biologists to 

understand both normal processes and diseases in order to eventually improve treatment 

through targeted therapies.

Every triplet of nucleotides of the mRNA molecule encodes for one amino acid, the basic 

building block of a protein. Each triplet is called a codon. There are 64 different codons 

encoding for 20 amino acids and three codons signaling a stop of translation.

2.2. Mutations

When a cell divides, each daughter cell receives a copy of the cell’s DNA. This process 

requires copying the DNA, which can lead to errors. Moreover, DNA can be damaged by 

external factors such as radiation or carcinogens. Errors can be divided into small-scale and 

large-scale mutations. Small scale mutations include the insertion or deletion of one or 

multiple nucleotides and substitutions of single nucleotides. Substitution mutations can alter 

an amino acid in the resulting protein or a premature termination of transcription. Insertions 

and deletions can change all the triplets succeeding the mutation, which often leads to a 

completely altered protein product.

Large-scale mutations include amplifications and deletions of entire regions on a 

chromosome, which can lead to an increased dosage of genes in these regions or the loss of 

genes called copy number variation. Furthermore, parts of separate genes can be fused 

together to form a fusion gene. Another type of large-scale mutations is chromosomal 

rearrangement. For example, parts of DNA can be exchanged between non-homologous 

chromosomes or the orientation of chromosomal segments can be inverted.

2.3. Sequencing

Sequencing is the process of determining the sequence of nucleotides of a DNA or RNA 

molecule. With most of the current techniques it is not possible to sequence an entire 

genome at once, but the sequence has to be broken down into little pieces which are 

sequenced separately called sequencing reads. To reconstruct the entire genome, DNA 

sequencing reads have to be puzzled together by using overlaps at the end of the reads and 

often an already sequenced genome (called a reference genome). The process of 

reconstructing the sequence from sequencing reads is called assembly.

DNA sequencing data is then further analyzed to find mutations or structural rearrangements 

or for the comparisons to other species or individuals. RNA sequencing data is usually not 

assembled but used to determine expression levels or patterns of alternative splicing by 

mapping the RNA sequencing reads to the DNA sequence.
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2.4. Alignment

Sequence alignment is one of the most important operations performed in the analysis of 

genetic information. It is often used to find functional or evolutionary relationships between 

sequences stemming from different individuals/species.

In order to align multiple sequences, they have to be arranged in a way that makes it possible 

to identify similar regions. A good alignment maximizes the number of shared symbols in 

one column while minimizing gaps and non-matching symbols (mismatches) and retaining 

the sequence order. Figure 3 shows a simple example of a multiple sequence alignment 
(MSA).

2.5. Epigenetics

Monozygotic twins are genetically identical. However, especially older twins often show 

significant differences in their appearance and they sometimes even have acquired individual 

diseases. While not all factors for this phenomenon are understood, epigenetic differences 

have been identified as correlating with different phenotypes in twins [HGW09, FBP*05]. 

Through epigenetic processes, genes can be turned on and off without altering the genetic 

sequence, often influenced by environmental factors or stochastic processes.

In order to compact and organize chromosomes, eukaryotic DNA is wound up around 

proteins called histones. Compacted DNA cannot be transcribed since it is not accessible for 

transcription factors (See Figure 4). Epigenetic processes such as DNA methylation or 

histone modification can control the extent to which DNA is wound up and unwind parts of 

it to make it accessible to transcription factors. Therefore, expression and protein synthesis 

can be controlled without changing the underlying DNA sequence. These changes can be 

inherited by daughter cells, as well as by the descendants of the organism. Since the 

described changes do not affect the DNA sequence, they are called epigenetic modifications 

(from Greek epi meaning “over, outside of, around”).

2.6. Chromosome Conformation Capture

Another aspect to consider when studying different phenotypes is the 3D structure of DNA. 

Nucleotides separated by many positions in the sequence can be in very close proximity in 

3D space, as indicated by Figure 4. Nucleotides can be close in 3D space when they are 

wound up around the same histone, or when they are part of a loop that controls 

transcription.

With chromosome confirmation capture techniques, the interactions of genomic loci in 3D 

space can be quantified. One way of doing this is measuring the interactions between 

fragments of the genome. With the Hi-C technique the interactions between all possible non-

overlapping fragments of a genome can be determined resulting in a matrix of interaction 

frequencies (also called contact frequencies). The higher the interaction frequency of two 

fragments, the smaller the distance between them in 3D space.
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2.7. Genome Evolution

Environmental pressures during the evolution of species lead to changes in sequence and 

composition of the species’ genomes. Not every region of the genome changes at the same 

rate. Sequences that have a function in fundamental processes (genes, exons) are more 

similar or more conserved across different species. Moreover, the order, orientation and 

location of subsequences can change over time. A gene shared between two species can be 

at different chromosomes in a different genomic neighborhood. Genomic synteny refers to 

the order of conserved blocks within two sets of chromosomes that are being compared. Two 

sequences are called syntenic if they contain similar blocks of genes in the same relative 

positions in the compared genomes.

2.8. Previous Literature Surveys

The following literature surveys focusing on genomic data visualization are all aimed at 

audiences in the bioinformatics and biology research communities. Therefore, their review 

of visualization tools is often more focused on features available to the users than on 

formalizing the description of common tasks and techniques.

Nielsen et al. [NCD*10] reviews the techniques and challenges in visualizing genomes with 

a focus on three core user tasks: (i) analyzing sequence data, both in the context of de novo 

assembly and of re-sequencing experiments, (ii) browsing annotations and experimental data 

mapped to a reference genome and, finally, (iii) comparing sequences from different 

organisms or individuals. They review several stand-alone and web-based tools and compare 

their cost, operating systems, and compatibility. Despite technical advancement, several 

challenges for analysis and visualization of genomics data remain due to the volume and 

heterogeneity of these data. The authors also recommend ways of improving the design of 

these visualization tools. For example, a high-level overview of data, or providing 

recommendations for where to look at, can improve user efficiency. In addition, Nielsen et 

al. suggest that new genome browsers should build on the successes of earlier tools, allowing 

easy cross-platform access, customization of data and display, and the ability to perform on-

the-fly computation within the visualization. The authors point out that although several 

successful visualization tools are used for specialized analysis demands of the users, there is 

a great need to improve the integration among tools and ease the transition from one analysis 

to another.

Schroeder et al. [SGPLB13] review common visualization techniques for exploring 

oncogenomics data and compare several existing tools. They describe genomic coordinates 

that help researchers find answers to questions about alterations tied to genomic loci, or to 

inspect some particular genomic locus. Heatmaps are frequently used to describe 

transcriptomics and genomics data stored in the form of matrices. Node-link diagrams are 

used to visualize functional relationships between different entities, such as genes. Qu et al. 

[QLN*19] also review visualization methods for oncogenomic data, such as scatterplots, 

networks, heatmaps, clusters and the combination of machine learning and visualization. 

Moreover, they discuss future trends in this field. Pavlopoulos et al. [PMP*15] conducted a 

comprehensive review of general genome visualization tools and summarize them into four 

categories: genome alignment visualization tools, genome assembly visualization tools, 

Nusrat et al. Page 6

Comput Graph Forum. Author manuscript; available in PMC 2019 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genome browsers, and tools to directly compare different genomes with each other for 

efficient detection of genomic variants.

Yardimci et al. [YN17] reviewed five visualization tools for genomic interaction data 

generated using chromosome conformation capture approaches. They characterized the 

visualization functionality of those tools based on available visualization types and also 

discussed integration of supplementary views and data handling capabilities. They 

categorized visualization techniques based on whether they are more suitable for short-range 

interactions or long-range interactions. Goodstadt et al. [GMR17] reviewed visualization 

challenges for 3D genome architecture and provide a taxonomy of tasks outlining essential 

features of 3D genome visualization. These tasks and challenges including data 

representation, data refining, and data interaction.

O’Donoghue et al. [OBC*18] surveyed how visualization is being used in a broad range of 

data-driven biomedical research areas. The authors reported on current visualization 

techniques and challenges in genomics and epigenetics, RNA biology, protein structures, 

systems biology, cellular and tissue imaging, and populations and ecosystems. They also 

pointed out the limitations in popular tools such as the widespread use of rainbow color 

maps and recommended that tailored visualization methods and tools are necessary for 

advancements in biomedical insights.

Unlike the surveys mentioned in the previous section, this survey is aimed at the 

visualization community and bioinformatics researchers who develop visualization tools and 

focuses on visualization tasks, techniques, and tools. A secondary goal of this survey is to 

take a step toward bridging the gap between research in the visualization and bioinformatics 

communities and to highlight the promising research areas in this emerging cross-

disciplinary field.

3. Process

We searched both the PubMed database (https://pubmed.gov) and Google Scholar (https://

scholar.google.com) for tools related to genomic visualization using the following keywords: 

“visualization of genomic data”, “genome data visualization”, “genomic sequence 

visualization”, and “transcriptome data visualization”. These searches resulted in a seed 

collection that we considered relevant for this survey based on their titles and abstracts. To 

this seed collection, we also added paper describing tools and methods that we were familiar 

with but had not been returned by the search.

Using this seed collection, we identified several tool categories such as genome browsers, 

multiple sequence alignment tools, and others, that we used for more focused searches to 

expand our collection. In the next step, we removed manuscripts that did not fit our scope of 

sequence-based visualization, resulting in a total of 111 papers. We further removed papers 

that only marginally mentioned visualization or did not present a tool or technique. We also 

removed papers that described re-implementations of a particular technique, such as Circos 

or multiple sequence alignments, if there was no novel aspect to the visualization. In such 

cases, we focused on those papers with a higher citation count.

Nusrat et al. Page 7

Comput Graph Forum. Author manuscript; available in PMC 2019 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubmed.gov
https://scholar.google.com
https://scholar.google.com


Ultimately, the collection surveyed for this review contains 83 papers describing genomic 

visualization techniques or tools. Of the 83 surveyed papers, 7 papers (8%) were published 

in visualization venues (all IEEE TVCG) and 76 manuscripts (92%) were published in 

bioinformatics and biology venues.

4. Taxonomy

In this section, we will provide an abstract understanding of genomic data and the basic 

parameters and techniques for its visualization. We introduce three taxonomies: A data 

taxonomy characterizing genomic features, a task taxonomy categorizing the most important 

tasks for genomic visualizations and a visualization taxonomy which we use to categorize 

tools.

4.1. Genomic Features

4.1.1. Types of Features—A genomic feature is a data point of measured or 

knowledge-based data that can be mapped to genomic coordinates and has an extent of one 

or more nucleotides. Knowledge-based data represents the knowledge we have about a 

genome without conducting new experiments, which includes a reference genome with a 

known sequence and annotations. For example, gene annotations and functional annotations. 

The reference genome represents the known sequence of a genome of a species. It is not the 

genomic sequence of one individual, but it is derived from a group of individuals. An 

analogy for knowledge-based data can be found in the visualization of geological maps. 

Usually, geological structures such as mountains and rivers are named or elevations are 

indicated by numbers, which can be understood similarly to the annotation of a reference 

genome. In the context of maps, measured data can be for example, traffic data, the size of 

cities, population data or election results. For genomic data, measured data is anything that 

can be measured about a genomic sequence or is derived from that measurement. Examples 

of data that can be measured include the sequence of DNA in a sample, epigenetic signals, 

and contact frequencies. Derived data is often created by setting measured data in context 

with the knowledge based data. For example, by comparing sequencing data of a cancerous 

sample to a reference genome, mutations and genomic rearrangements can be deducted.

Depending on properties of the underlying data, features can be of different types. Features 

that only cover one nucleotide are defined as point features, while features covering more 

than one nucleotide are segment features. Features can be associated with zero, one or 

multiple attributes which can be quantitative, ordinal or categorical. A feature with zero 

attributes only shows position and extent, such as the position and extent of a gene. If the 

gene is associated with other data, such as names, functions and expression levels, the 

feature is associated with multiple attributes.

4.1.2. Feature Sets—A set of features belonging to the same biological entity, such as 

the set of all genes, the set of all expression levels belonging to the same sample or the set of 

all mutations are called a feature set. Inspired by a publication by Gundersen et al. 

[GKA*11], we discriminate two types of genomic features sets: sparse feature sets ( , ) 

and contiguous features sets ( , , see Figure 1, feature sets). While there can be gaps 

between features in sparse sets, contiguous features sets cover the entire genome. Features in 
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feature sets usually are of the same type, which means they are either point or segment 

features and are associated with the same attributes. Contiguous feature sets can, for 

example, encode for the partitioning of a sequence into “coding” and “non-coding” regions. 

Also features with ordinal or quantitative attributes can be encoded, such as copy number 

levels by contiguous sets of features of different extents associated with an ordinal value, or 

epigenomic data by contiguous sets of non-overlapping features of equal size. The reference 

sequence itself corresponds to a contiguous set of valued point features since each point is 

associated with a nucleotide.

Feature sets can be combined by intersecting or uniting them. For example, consider the 

combination of a set of sparse features, such as coding region, with a set of contiguous 

features encoding for an epigenetic signal across the sequence. Features in the resulting set 

are associated with two attributes: the epigenetic signal and a Boolean attribute that encodes 

whether they are in a coding region.

Pairs of features can be connected via interconnection features. In a map, an interconnection 

feature can be understood as a link between regions. For example, a link showing the 

number of daily transatlantic flights between Europe and the US. In a genomic sequence 

context, interconnection features can for example encode for chromosome rearrangements: 

If two segments of two chromosomes are swapped (translocation) it can be encoded with an 

interconnection feature which links the two subsequences. Like the other features, an 

interconnection feature can also be associated with attributes, such as the type of the 

interconnection (“translocation”) or a quantitative value. Interconnection features can 

connect features within a sequence  or between sequences  (  refers to no 

interconnections).

4.1.3. Meta data—Feature sets are usually associated with meta data. For example, a 

feature set containing expression data of a patient sample can be associated with data about 

the sample itself and the sample donor, such as the date when the sample was taken, the type 

of tissue, if the donor has cancer or if he is a smoker. Similarly, in our map example, it could 

be the date when the map was created or the type of the map. Meta data helps put the data 

into context. For example, it can help identify possible correlations between different 

phenotypes and measured data.

4.2. Visualization

4.2.1. Sequence Coordinate Systems—Theoretically, a sequence can be visualized 

in any layout preserving the sequential nature. In practice, most genomic visualizations 

display sequential data either in a linear or a circular fashion (see Figure 5a). The genomic 

coordinates of a sequence correspond to a sequence axis, which is visualized in a layout. A 

sequence axis is a coordinate system for genomic features. (see Figure 5d).

Layout: Linear layouts ( ) are intuitive since they are easy to read (usually from left to 

right). However, since genomic sequences can be extremely long, zooming and panning is 

often required. Circular layouts ( ) are mainly used for three reasons: (i) the displayed 

sequence itself is circular, (ii) a non-circular sequence is displayed in a space-saving way, or 

(iii) interactions between different parts of the sequence(s) are shown using a chord diagram. 

Nusrat et al. Page 9

Comput Graph Forum. Author manuscript; available in PMC 2019 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A type of layout even more space efficient than a circular layout is a space-filling curve ( ), 

such as Hilbert curves, which are often used to display a global overview of the genome 

while maintaining the spatial distribution of features. However, space-filling curves can only 

show one feature set and it is hard to visually estimate the distances between two positions 

of the sequence. A sequence can also be displayed in a spatial layout ( ), where the 3-

dimensional structure can be shown. A spatial visualization requires three spatial axes, yet 

there is only one sequence axis.

Abstraction: A way of reducing the space of a sequence in order to concentrate on specific 

regions is abstraction (see Figure 5b), which means replacing parts of the sequence ( ) or 

the entire sequence by abstraction elements ( ), such as symbols, while maintaining the 

order of the elements. For example, when we are only interested in the exons, not the entire 

genome, the introns can be abstracted to a gap or a symbol or completely filtered out. 

Therefore, non-adjacent parts of the sequence are next to each other in the visualization. We 

could not identify a tool applying a complete abstraction in our literature research, which 

could correspond to replacing both exons and introns with symbols.

Partition: Eukaryotic genomes often consist of multiple chromosomes, which are distinct 

sequences. However, they are often visualized as one contiguous sequence by placing them 

end-to-end of each other (see Figure 5c, top ). Some visualizations, especially when 

comparing genomes, treat chromosomes as separate elements (see Figure 5c, bottom, ). 

While different chromosomes are the most common reason to display a sequence in separate 

parts, one could imagine partitioning a sequence based on other factors too, such as 

partitioning it in equally sized subsequences to show the entire sequence in multiple rows 

(similar to space-filling layouts).

Arrangement: Axes of the same layout can be arranged in different ways, as shown in 

Figure 5d, which is derived from Meyer et al. [MMP09]. Axes in a linear and circular layout 

can be displayed in a parallel ( ) or serial ( ) arrangement. A serial circular 

arrangement corresponds to two sequence axes in a “half-circle” layout. Additionally, axes 

in linear layout can be visualized in a orthogonal arrangement ( ). The different 

arrangements can be used to (i) visualize interconnection features or (ii) compare two 

different sequence in the context of comparative genomics.

4.2.2. Genomic Tracks and Matrices—For genomic data it is important to put 

multiple different data types into context in order to draw conclusions. For example, when 

analyzing mutations in a genome it is useful to visualize them together with gene 

annotations to estimate their functional impact. In order to analyze multiple data types at the 

same time, a genomic visualization often contains multiple tracks. A track is a visual 

representation of genomic data with one or multiple parallel sequence axes showing one 

feature set. Typically, tracks are oriented horizontally, but in some tools they can also be 

oriented vertically. The annotations and mutations in the stated example are two features sets 

that are represented by two separate tracks.

Track Types: For each type of feature sets a separate track type can be defined as proposed 

by Gundersen et al. [GKA*11]. According to the authors seven different basic track types 
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can be defined (excluding interconnections). For sparse feature sets they developed four 

track types. A track for a sparse feature set with only features of length 1 with zero attributes 

is called a point track. For example, the positions of all substitution mutations could be 

displayed with this track type. When the features in a point track are associated with an 

attribute, such as the substituted nucleotide, the track corresponds to a valued point track. 

Respectively, segment tracks can encode for the position and extent of genes, while valued 
segment tracks can additionally show an attribute, such as the gene expression or gene name. 

For contiguous feature sets the track types correspond to ungapped versions of the 

previously described types. Contiguous feature sets containing features with a length 

produce a genome partition track. If the features are associated with an attribute, the track 

corresponds to a step function. A valued point track without gaps corresponds to a function.

Gundersen et al. [GKA*11] also propose eight extended track types which can additionally 

encode for interconnection features. Seven correspond to the previously described types, but 

pairs of features are associated with interconnections which can be directed and/or have a 

weight. In scope of this review paper we allow the association of multiple attributes or 

complex attributes to track elements and interconnections. For example, a track should be 

able to encode for the distribution of different nucleotides at point mutations, which 

corresponds to a valued point with a complex attribute.

Theoretically, all of the described feature set types can be encoded with these track types. 

However, especially Hi-C data is usually visualized in arrangements using more than one 

sequence axis. In Hi-C data all pairs of contiguous segments of a specific size in the genome 

(bins) are associated with an interaction frequency, which represents an undirected weighted 

interconnection. Since this kind of data is usually easier to display using two axes we 

distinguish tracks showing features on a single axis (one-axis tracks) and tracks showing 

data on two axes (two-axes tracks). A matrix is a special form of a two-axis track showing 

data on two sequence axes that are arranged orthogonally.

Visual Encoding and Track Alignment: Some common visual encodings of tracks and 

matrices can be seen in Figure 6. One of the most commonly used encodings is color. For 

example, valued point tracks showing variants can be encoded by coloring corresponding to 

the variant type, valued segments showing genes can be colored by functional category or 

gene expression (continuous color scale).

A sparse set of segment features can contain segments that can overlap. Read data is an 

example of this type of feature. Sequencing reads can be mapped to long sequences and 

usually overlap, yet they do not always cover the entire genome. Overlapping segment 

features can be stacked in a way that avoids visual overlaps without introducing unnecessary 

white space.

Categorical attributes are often also represented with symbols, such as the encoding of 

substitution mutations with the letter of the altered nucleotide or symbols for deletions and 

insertions (see Figure 6a, top). Often, nucleotides are encoded using both color and symbol. 

Features with continuous attributes can also be encoded using heights. Segments can be 

displayed as blocks with varying heights depending on the attribute value (see Figure 6b). 
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The function track type is usually encoded by using a line chart which spans the entire 

sequence.

As previously described, matrices can be used to display interconnection features. Figure 6c 

shows a continuous attribute of an interconnection feature encoded using a heatmap. The 

colors encode the attribute value, i.e. the weight of the interconnection. In contrast, the 

matrix in Figure 6e only shows which features are interconnected.

Undirected interconnection features (such as Hi-C data) can also be encoded on a one-axis 

track. For sets of undirected interconnection features, a matrix representation is symmetrical. 

Therefore, the matrix can be cut in half along the diagonal, rotated, and mapped to sequence 

coordinates forming a track. The value of an interconnection can be retrieved by following 

imaginary lines originating at two features in 45-degree angles. Like matrices, this type of 

track encoding can show interconnection without a continuous attribute as seen in Figure 6d.

Often, multiple tracks are displayed in one visualization in order to correlate multiple feature 

sets. Tracks using the same sequence axis can be stacked ( ) or overlaid ( ) and aligned by 

sequence coordinates. Figure 6e shows an arrangement of an orthogonal two-axes track 

aligned with multiple tracks in a linear layout. Since orthogonal arrangements contain two 

axes, they can be arranged with multiple other tracks and matrices vertically and 

horizontally. Figure 6f shows a parallel two-axes track, where each axis is aligned with 

multiple one-axis tracks. Note that the two coordinate systems of the axes in the two-axes 

track do not have to be aligned, but can show different regions of the sequence to show 

interconnection features.

Aligning multiple space-filling tracks is rather uncommon and limited. Since space-filling 

layouts use space most effectively, it is hard to arrange tracks in parallel. Moreover, a 

parallel arrangement complicates the identification of the same coordinate across tracks. For 

this reason overlaid track alignments are more common. In order to avoid hiding features 

transparent colors can be used. Another possibility is combining feature sets instead of 

overlaying two tracks.

4.2.3. Multiple Sequences—In the previous sections, we described how features on a 

single sequence can be visualized using one or multiple sequence axes. Yet in the field of 

comparative genomics, multiple sequences or reference genomes are analyzed to study 

genome evolution. Two or more sequences are compared to find blocks of high similarity on 

the sequence level (conservation) and to analyze if the location, order, proximity, and 

orientation of these blocks is similar in the compared genomes (synteny). The goal of the 

visual encoding of sequence comparisons is connecting sequence coordinate systems to 

show regions of high similarity of the sequences. Similar regions can be visualized using 

different techniques and visual encodings. The size of sequences to be compared can vary 

greatly from small regions, such as genes to entire chromosomes or entire genomes.

There are three basic techniques for visualizing sequence comparisons usually applied for 

genomic visualization: (i) comparison by alignment, (ii) comparison by connecting 

conserved blocks, and (iii) comparison by using dot plots. Especially for the visualization of 
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many small sequences, alignment-based techniques are used, with which shared nucleotides 

are algorithmically aligned as described in Section 2.4. This represents a construction of a 

shared coordinate system and sequence axis. Each sequence corresponds to a valued 

segment or point track that is aligned to the coordinate system.

Another way of visualizing comparisons is to keep the different coordinates for each 

sequence separate and visualize the comparison in one or multiple two-axes tracks. 

Interconnection features between segments in two sequences can encode for the positions 

and extents of syntenic regions, which can be encoded by connecting them with lines or 

bands or by applying the same color. Meyer et al. [MMP09] describe which combination of 

encoding, layout and arrangement is most effective depending on the length of the displayed 

sequence. They recommend using bands and parallel linear or serial circular arrangements 

for shorter sequences (up to chromosomes) to avoid too many crossing lines and color 

encoding for whole genome comparisons in parallel arrangements.

Orthogonal arrangements of sequence axes can show the similarity between every position 

or bin of positions of one sequence to every position or bin of positions in the other 

sequence. The two sequences are arranged in a 90 degree angle spanning a comparison 

matrix. If nucleotides or bins match between positions of the two genomes, a dot is drawn in 

the corresponding cell. Similar regions form diagonal lines of dots. With this technique 

insertions, deletions and inversions can be identified.

4.2.4. View Configurations for Genomic Visualizations—In order to categorize 

tools and techniques, we define three parameters of a genomic visualization (see Figure 8): 

(i) the number of views that show data mapped to genomic coordinates, (ii) the number of 

scales used to analyze the data at the same time and (iii) the number of foci, i.e. non-

adjacent genomic segments that can be viewed independently.

We restrict a view to a set of one or multiple aligned tracks, which contains at most one two-

axis-track. A visualization can consist of one or multiple views displaying features mapped 

to genomic coordinates, which can be linked or independent.

A genome can be very large and analyzing it on different scales, such as the whole genome 

or single genes, can be of great value. Similar to a map: A view of the entire world provides 

a useful overview, but we cannot analyze the street structure of New York. While some 

genome visualizations only allow visualizing sequences on one scale at a time, others 

provide multiple views to visualize the data on different scales. In our taxonomy, a multi-

scale visualization visualizes the data on multiple scales at the same time in multiple 

different views. However, also single-scale visualizations can provide a zooming interaction.

A focus can be understood as a sliding window across the genome. Only the region in this 

window can be analyzed. Multiple foci enable users to look at distinct segments of a genome 

in parallel and compare features which are dispersed across the genome. In the map analogy 

this would be, for example, comparing the street structure of New York to that of London 

with Google Maps. If we zoom out of the map, we can only see the names of the two cities; 

if we zoom in, we can only see one city at a time. We need to open a second browser 
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window to view them in detail at the same time. Note that foci can be defined in a flexible 

way and are visualized in separate views, while sequence abstraction is usually done in a 

previous step, where in the case of filtering non-adjacent sequences are “glued” together.

Sometimes, arrangements of two sequence axes corresponding to the same sequence are 

used to facilitate the visualization of interconnection features. For arrangements of multiple 

axes, we have to add another dimension for scale and focus. Figure 7 shows an example of 

foci in an arrangement with two axes. Two different foci are shown in the tracks aligned to 

the linear axes. However, the matrix spanned by the orthogonal arrangement can only 

visualize one focus of two-dimensional data. Similarly, two orthogonal axes can be on 

different scales, leading to two one-axis scales and one two-axes scale.

Combining these parameters in all possible ways results in five basic view configurations of 

genomic visualizations as seen in Figure 8. Note that if a visualization contains two axes, 

foci and scale refer to two-axes foci and two-axes scales.

As we restrict a view to a set of one or multiple aligned tracks, with at most one two-axis 

track, it is not possible to visualize multiple scales and foci (of the highest dimension) in one 

view with our taxonomy. Therefore, the left branch only consists of one path. The other view 

configurations are combinations of multiple views with one or more scales and foci. We 

categorize our tools in Sections 5 and 6 using these five basic view configurations. For 

visualizations with multiple axes we additionally show the number of one-axis foci and one-

axes scales.

4.2.5. Linking Views—Genomic visualizations often incorporate multiple views that 

can be (i) independent, (ii) weakly linked, (iii) medium linked or (iv) strongly linked. While 

independent views are not connected in any way, weakly linked views are linked by brushing 

and linking. Medium linked views share navigation, for example two views are at different 

scales, but zooming always affects both. Strongly linked views share genomic coordinates at 

one axis and can also share tracks that are aligned to the axis.

Utility views provide information about (i) tracks, (ii) features, or (iii) genomic coordinates. 

The property that distinguishes these views from e.g. detail views is that they never show 

genomic coordinates directly but only meta data or derived data. These types of 

visualizations can be either aligned with the genomic visualization, or weakly linked. As an 

aligned visualization, consider a view showing meta data about tracks which is situated on 

the left side of each track. In case of sequencing data or expression data of individuals, this 

could be, for example, phenotypic information about the sample donor. Since this kind of 

visualization is in direct association with the genomic data we call it a strongly connected 
utility visualization. On the other hand, consider a visualization that is connected with a 

table through brushing and linking. Only by clicking on an element in the visualization is the 

corresponding element in the table highlighted and vice versa. Since the views are not 

aligned we call this type of visualization a weakly connected utility visualization.
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4.3. Tasks

Visualization tasks represent actions that users may perform on their data [BM13]. These 

can be both low-level operations or high-level user intents while interacting with a system. 

Visualization tasks have been defined and classified, often depending on the context and 

scope of the tasks. A common feature of most genomic coordinate visualizations is that they 

visualize one or multiple types of features at their corresponding positions, therefore the 

tasks that different tools and techniques help to solve are often similar. In this section we 

describe the most common tasks performed using genomic visualizations.

A typology of abstract visualization tasks proposed by Brehmer and Munzner [BM13] 

focuses on three questions: why is a task performed, what are the inputs and outputs, and 

how is the task performed. What is particularly useful in this typology is that it distinguishes 

between user intents (that answer why) and interactions (that answer how) and provides a 

link between the two questions. In this section, we summarize and categorize the “Why” 

task for genomic visualizations. Moreover, we give an overview of common interactions 

(“How”) and inputs and outputs (“What”).

4.3.1. Why?—We adapt the task topology described by Brehmer et al. [BM13] to 

genomic visualizations, starting with slight adjustments to the described search tasks 

LOOKUP,  LOCATE,  BROWSE and  EXPLORE. In our task taxonomy  LOOKUP refers to 

viewing features at one position, for example by navigating to a known gene and a specific 

feature set, such as gene expression.  LOCATE refers to finding one or multiple features with 

desired properties, such as locating peaks of an epigenetic signal or highly expressed genes 

in a single feature set.  BROWSE is similar to  LOOKUP, yet while the position is known, the 

feature set is unknown. For example, different feature sets, such as expression and mutations 

can be browsed at the position of a known gene.  EXPLORE refers to a very broad task. 

Neither the position nor the feature set are known, therefore multiple feature sets at different 

position in multiple loci are explored. Exploring corresponds to a combination of other 

tasks. In order to explore, we repeatedly browse features at positions or locate features in a 

feature set. However, the characteristics that we look for or the positions that are browsed 

are not predefined and can change during the process of exploration.

We categorize the described tasks plus the query tasks  IDENTIFY,  COMPARE and 

SUMMARIZE proposed by Brehmer et al. [BM13] in single feature set, multi feature set, single 

locus and multi locus tasks (see Table 1). The task taxonomy illustration in Figure 1 shows 

how these tasks operate on genomic visualizations.  LOOKUP and  IDENTIFY correspond to 

single feature set, single locus tasks. While  LOOKUP aims to find the desired feature set at a 

locus,  IDENTIFY characterizes the feature attributes. These tasks are often paired, for 

example after looking up an epigenetic signal at the position of a gene, we can identify the 

actual value of the signal.

 LOCATE and  COMPARE are single feature set, multi locus task.  LOCATE refers to finding 

positions, while  COMPARE finds a relationship between features at the located positions. For 

example, the expression levels of two genes can be compared. This involves two of the 

previously described tasks: The expression feature set of each gene has to be looked up and 

the expression value has to be identified before it can be compared. If feature sets are of the 
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same type, for example expression data for two different samples,  COMPARE can also be 

applied across feature sets at the same locus.

Exploring and summarizing both can refer to multiple loci and multiple feature sets. While 

 EXPLORE is a search task, the goal of  SUMMARIZE is to find data patterns and trends. This 

task provides an overview or a “big picture” of the data, such as “expression levels of genes 

in this pathway are high”. Therefore, summarizing can also be done for a single feature set 

or a single locus. After exploring the data or after browsing a specific locus and identifying 

the feature attributes, the patterns in a single locus can be summarized, for example 

summarizing that a highly expressed gene has mutations in its promoter region. As an 

example for summarizing a single feature set, consider locating features with interesting 

attributes in a feature set while exploring the data. By summarizing attributes of features in 

one set, the distribution of attributes can be characterized.

4.3.2. How?—“How” refers to the methods with which the “why” tasks can be solved 

using interaction. Independently of the described view configurations, tools for the 

visualization of genomic data often differ in their level of interactivity. Many tools can only 

plot data as a static image. Different datasets, different visual representations, regions and 

zoom levels can often be chosen as parameters for the plot, yet there is no interaction with 

the visualization itself.

Interactive tools often offer navigation interactions to NAVIGATE along the sequence axis via 

zooming panning or jumping to regions. Navigation is essential for most genomic tools due 

to the immense size of genomes, especially for the search tasks  LOOKUP and  LOCATE. 

Moreover SELECTION interactions are often implemented for highlighting features or selecting 

them in order to DERIVE a new visualization or feature. Some tools allow REARRANGING views 

and tracks and CHANGING THE VISUAL ENCODINGS of features. In general, flexible interactions 

enable a more in-depth exploration of the data, and provide the users with details on demand 

[Shn03].

As described in section 4.2 a sequence can be ABSTRACTED. Many tools offer sequence 

abstraction as an interaction, most commonly by filtering introns or abstracting them using 

gaps. Additionally, it is often possible to filter out other regions that are not of interest. 

Abstraction, especially by filtering introns helps users to  EXPLORE the parts of the sequence 

that are the most informative for their problems.

AGGREGATION is often implemented together with zooming. Features are encoded differently 

depending on the amount of space that is available. For example a multiple sequence 

alignment can be displayed by showing every nucleotide individually when zoomed in and 

as blocks showing conserved parts when zoomed out. By applying aggregation while 

zooming, the visualization remains informative on different scales and features can be 

EXPLORE-d and  SUMMARIZE-d on multiple levels.

4.3.3. What?—The question “What” refers to the input and output of a task. Naturally, 

the input and output depend heavily on the tool itself, yet a few general statements can be 

made. Depending on the type of the task, the input can consist of one or multiple feature 
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sets. While the tasks  LOOKUP,  IDENTIFY,  LOCATE and  COMPARE have a single feature set 

as input,  BROWSE works with multiple feature sets.  SUMMARIZE and  EXPLORE can have 

one or multiple sets as input.

Similarly, the outputs can be described. For single feature set tasks the outputs are a 

combination of features positions or feature attributes. The output of the search tasks 

LOOKUP and  BROWSE is a feature at a position, while the output of  LOCATE is one or 

multiple positions of features of interest.  IDENTIFY returns the attributes of a feature, 

COMPARE a relationship between two (or more) attributes.

The outputs of  EXPLORE and  SUMMARIZE are not as easily defined. Exploring can return 

everything starting from one feature at a position to multiple positions, patterns of different 

types of features or correlations.  SUMMARIZE returns a statement about the data, such as the 

distribution of the attributes in a set of features, or the relation between multiple sets of 

features.

4.3.4. High-level vs. Low-level Tasks—For characterizing genomic visualization 

tools it is important to differentiate between low-level and high-level tasks. Low-level tasks 

help us model how a tool works, while high-level tasks correspond more to biological 

questions. The tasks described are low-level tasks and most of the tools in Sections 5 and 6 

support these tasks for exploring the data. Yet, the tools differ in the biological questions that 

users want to solve with a tool. Questions can range from a very broad question, for 

example, “How does sequencing data from a cancer sample compare to the reference 

genome?” to a very specific question, such as “Is TP53 mutated in this sample?” The 

biological question determines the low-level tasks. In order to answer the first question, the 

users have to  EXPLORE the data by  BROWSE-ing positions of interest and  LOCATE-ing 

peaks in tracks. While exploring, users  SUMMARIZE their insights. This is done by 

NAVIGATING along coordinates, ARRANGING tracks, CHANGING ENCODINGS, FILTERING introns and 

other user interactions depending on the tool. The biological questions depend heavily on the 

input data as well as the user intent.

5. Single Genomic Coordinate System

5.1. Genome-Scale Visualizations

Genome-scale visualizations display one or multiple regions of a genome on absolute 

coordinates. We further categorize genome-scale visualizations based on the type of the 

features that they are specialized on. They can be focused on displaying (i) non-

interconnected feature sets, (ii) sparsely interconnected feature sets and (iii) densely 

interconnected feature sets.

5.1.1. Non-Interconnected Feature Sets—Often non-interconnected feature sets are 

visualized using tools that consist of one or multiple parallel tracks and visualize many kinds 

of different features. They display features using linear, circular and space-filling layouts 

(see Table 2). While certain data types are very common, some tools are more specialized on 

the visualization of a specific type of genomic data, such as the Savant Genome Browser 2 

[FSB*12], which is specialized on showing structural variation or HilbertVis [And09] and 
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HilbertCurve [GES16], which are especially useful to display epigenetic data. Tools in this 

section are specialized on visualizing many sets of non-interconnected features, yet they can 

sometimes visualize local interconnections.

Linear Layout: A tool group known as “genome browsers” usually displays multiple 

parallel tracks in a linear layout. A genome browser commonly consists of three 

components: A reference genome, annotations, and one or multiple tracks; see Figure 9 from 

the Integrative Genomics Viewer (IGV) [TRM13]. Genome browsers are used for exploring 

a reference genome together with other knowledge-based data or for comparing 

experimental results, such as sequencing data, to the reference genome.

Genome browsers usually enable the visualization of a small window of the genome and 

allow navigation such as zooming and panning. Most of them are not suited for meaningful 

overview visualizations of whole genomes, since the data must be extremely aggregated to 

fit on the screen. Most genome browsers are limited to the visualization of single 

chromosomes [KSF*02,NCB17]. Some browsers apply a predefined minimum zoom level 

[DPH11], others show empty tracks for certain feature sets if the visualization is zoomed out 

too much [TRM13]. In terms of the defined visualization parameters, genome browsers 

often consist of a single view and can therefore only visualize the data at one scale and focus 

at a time (1-1-1 view configuration, see Table 2). Consequently, features can only be 

explored, compared, and summarized in a relatively small window which complicates, for 

example, analyzing gene co-expression in non-adjacent regions. To counter this, some tools 

provide methods of data abstraction, with which introns can be filtered out or specific 

regions of interest can be placed next to each other [KSF*02, ZMX*11]. However, the 

regions are still visualized in the same view and to change the borders of the regions they 

have to be redefined.

The Savant Genome Browser [FSB*12] is the only feature viewer that was grouped into the 

multiple views, single scale, and single focus (n-1–1 view configuration, see Table 2). It 

consists of two visualizations both showing features on genomic coordinates: a classic 

genome browser view and an additional view which can display population data with 

different visualizations. For example, it can display a heatmap which shows the patterns of 

alterations of single bases in multiple samples. Columns correspond to the positions of the 

alterations and rows correspond to samples and cells show the type of alteration. Although 

the heatmap shows the data on a different scale, we associated it with a single scale 

configuration, since it does not display the same data (the same tracks) on a different scale 

but constitutes an entirely different visualization.

Another category of genome browsers are “overview-detail” browsers 

[Don09,HBB*02,FNL16] (n-n-1 view configuration, see Table 2). Like single view browsers 

they show one region of the genome (which means that they have one focus) but also have 

an additional detailed view for a part of this region. Navigation is usually linked in these 

browsers to ensure that the detailed view is always part of the chosen region. An advantage 

of this genome browser layout is that features can be analyzed in a small window as well as 

in their global neighborhood simultaneously.
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Few genome browsers provide a very high level of flexibility by enabling the visualization 

of multiple focus regions on different scales [NCB17, KWZ*12, TRM13, CZ13] (n-n-n view 

configuration, see Table 2). Initially, they visualize single regions, but multiple regions can 

be selected or added through different mechanisms. IGV allows selecting a region with a 

user dialog [TRM13], while the NCBI Sequence Viewer enables the creation of new views 

by highlighting a region and selecting “create new panel” in a context menu [NCB17]. 

Regions can be selected with different extents, yet they receive the same amount of screen 

space. Therefore, the two region views can show features on different scales. Region views 

can be either arranged horizontally (IGV) [TRM13] or vertically (NCBI Sequence Viewer) 

[NCB17]. While a horizontal arrangement facilitates comparing tracks, the available 

horizontal space for each region is smaller. The increased flexibility of genome browsers in 

an n-n-n view configuration often goes along with a more complicated user interface and 

more possible interactions. For problems that do not require viewing different scales and 

regions at the same time, a genome browser in a less flexible configuration can facilitate the 

exploration process.

Often genome browsers contain utility views that are strongly connected to the tracks and 

show different kinds of meta data. When the different tracks correspond to data obtained by 

analyzing different samples, for example with IGV [TRM13], they can display data about 

the sample donor, such as gender, race, ethnicity and many more.

Xena [GCB*18] is another type of visualization for non-interconnected feature sets, which 

can be seen as a “population browser.” Unlike a genome browser, it enables the exploration 

of entire patient cohorts. Xena displays population data in a column-based layout, where 

each column corresponds to a view showing a different type of feature. Sample data is 

displayed as parallel tracks in each column. Tracks are sorted by columns, while the order is 

preserved across columns. Columns can either show meta data about the samples or genomic 

data, such as gene expression, copy number alterations, or somatic mutations for small 

regions such as genes. Columns can be added, sorted, and rearranged interactively. In 

contrast to genome browsers, the focus of Xena is not on visualizing data on genomic 

coordinates, but on stratifying and characterizing populations. Therefore, what is considered 

meta data and utility views in our taxonomy, can be seen as main data types and main views 

in Xena.

Circular Layout: Circular layouts are often used for the visualization of non-interconnected 

feature sets. These visualizations are commonly known as “genome maps” [PSESVD10, 

KvEB*04, CTB*09, SW05, OvHSF15, BKS*16, GS08]. In contrast to linear visualizations, 

circular genome maps provide an overview of the entire genome and therefore allow 

summarizing genomic features on a global scale. Usually they visualize prokaryotic 

genomes, which are circular and much smaller than eukaryotic genomes. Figure 10 shows an 

example of a genome map created with CiVi [OvHSF15]. Despite smaller genomes, data 

still has to be aggregated to be visualized. Even the smallest known prokaryotic genome is 

larger than 500 kilo bases [FGW*95]. Contiguous feature sets with quantitative attributes are 

averaged for windows of equal size, and only segments bigger than a minimum size are 

displayed. For a more detailed visualization, many tools provide the possibility to visualize 

the entire genome [CTB*09] or a small region [KvEB*04, PSESVD10] in a linear layout. 
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Most Genome Maps are static plotting tools and do not provide direct interactivity 

[CTB*09]. Others allow zooming and navigating the genome map [SW05,PSESVD10].

An example of a more interactive prokaryotic genome visualization is Island Viewer 3 

[DLS*15]. It can visualize one or two prokaryotic genomes in parallel in an overview-detail 

configuration (n-n-1). It uses a circular layout for the genome overview and a linear layout 

for the details. In contrast to the other described circular visualizations, Island Viewer is 

specialized. It focuses on a specific data type (called genomic islands) and compares 

different prediction methods for this data.

Space-Filling Layout: A visualization technique for chromosomeor genome-wide 

overviews of features, especially epigenomic marks [KAS*11] is based on a genome layout 

that uses a space-filling curve rather than a linear or circular genome layout. A desirable 

property of space-filling curves, such as the Hilbert curve [Hil35], is that they arrange 1D 

sequence information on a 2D grid so that features close to each other in 1D, are close to 

each other in 2D. Such plots can be created with HilbertVis [And09] and the HilbertCurve 

[GES16] R package (see Figure 11). Unlike linear and circular genome layouts, parallel 

arrangements of tracks are not feasible for space-filling curve layouts, limiting the approach 

to single or a limited number of overlaid tracks.

5.1.2. Sparsely Interconnected Feature Sets—Sparsely interconnected feature sets 

correspond to a set of segment features with interconnections that are sparsely distributed 

across the genome. Researchers often deal with this kind of data when studying structural 

variation or alternative splicing. Both fields of research are based on mapping reads to the 

genome and deducting patterns from this mapping. Patterns of alternative splicing can be 

found by mapping reads obtained with RNA sequencing to a DNA sequence. Based on the 

number of reads per exon and reads that contain sequences of multiple exons (junction 

reads), splicing patterns can be deducted. Genomic rearrangements are obtained by mapping 

DNA sequencing reads to the genome. Rearrangements can be found by analyzing read 

depth, paired-end reads, and reads containing sequences of distant regions (split reads). For a 

more exhaustive description of the biological background see section 2. Sparsely 

interconnected feature sets are commonly visualized in a linear or circular layout (see Table 

3). The main goals for visualizing these data types are exploring the data as well as 

comparing patterns across different samples and conditions. Especially for genomic 

rearrangement, both the global distribution of the arrangements, as well as patterns on the 

sequence level are of interest for the exploration.

Linear Layout: Alternative splicing is usually visualized in a linear layout and is sometimes 

displayed as a track in a genome browser [TRM13]. In principle, alternative splicing data 

corresponds to a set of segment features, where each segment encodes for an exon. Exons 

are connected with interconnection features, which show which exons are contained in the 

final protein product. More specifically, an interconnection shows that there exists at least 

one read that contains parts of both exons. Often, exon segments are associated with the 

number of reads mapped to the exon as well as interconnection features are associated with a 

quantitative attribute that represents the number junction reads.
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This type of feature is commonly visualized in a “splice graph”, where exon segments are 

displayed as nodes and interconnection features as segments, as first proposed in 2004 

[XRL04]. This technique is applied by many tools including SpliceSeq [RCK*12] and the R 

package SpliceGrapher [RTRBH12]. A disadvantage of splice graphs is that they do not 

visually encode for the number of reads mapped to the exons and splice junctions but only 

use labels. Therefore, SpliceGrapher provides additional tracks for supported junctions and a 

view visualizing read coverage with an area chart.

A commonly used technique uniting splice graphs and quantitative data in one visualization 

are “Sashimi plots” [KWS*15]. Figure 12 shows the splicing patterns of three samples with 

Sashimi plots created with IGV [Bro]. A Sashimi plot is displayed using an interconnected 

valued point track. Each nucleotide in an exon is associated with a quantitative attribute, the 

read depth, which is encoded using an area chart. Nucleotides that form junction sites are 

connected by interconnection features with quantitative attributes, encoded as weighted arcs. 

The view on the bottom of Figure 12 shows known isoforms using a segment track by 

encoding sequences contained in the isoform as blocks and spliced-out sequences as lines. In 

IGV, multiple Sashimi plots can be visualized in separate tracks, which allows the 

comparison of splicing patterns across samples or conditions. In order to summarize splicing 

patterns at a population level, the command line utility SplicePlot [WNM14] produces 

averaged Sashimi plots to find splicing patterns that manifest as phenotypic differences 

between population groups.

Sashimi plots often show numerous interconnections, which complicates the identification 

of isoforms and comparisons of multiple plots. Vials [SAB*16] was designed to address the 

shortcomings of Sashimi plots and to visualize and compare data from multiple samples at 

once, by distributing the data across multiple tracks showing junctions, abundances, and 

expression levels. Elements in the tracks corresponding to the same population are linked by 

brushing and linking. As Vials allows visualizing one gene at a time, it is a one view, one 

scale, one focus visualization. Yet, it applies a method of abstraction. Introns can be 

displayed in their full length or abstracted to equally sized gaps. In comparison to Sashimi 

plots, Vials provides a more abstract form of alternative splicing visualization which can 

make it harder for novices to interpret.

Similar to alternative splicing patterns, genomic rearrangements can be displayed as arcs on 

a sequence axis in a linear layout. Gremlin [ORRL10] is an overview-detail visualization 

that can show rearrangement events at three separate scales, informing users about the 

context of where the breakpoints of a rearrangement occur (see Figure 13). It allows 

navigation across the genome by selecting regions of interest with a sliding window. Within 

these regions, single arcs corresponding to structural rearrangements can be selected and 

viewed in even more detail. In the complete genome view, as well as in the region of 

interest, tracks display the location and extent of deletions, inversions and translocations and 

copy number data. With multiple linked views, it supports both global trend analysis and 

local feature detection. As a result, this visualization enables users explore the high-level, 

complete genome perspective as well as low-level, structural rearrangement view.
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Circular Layout: One of the most common ways to represent structural rearrangements 

spanning large genomic distances is by displaying the chromosomes in a circular layout and 

drawing arcs between connected regions with tools like Circos [KSB*09]. Like Gremlin, 

Circos can encode translocations, inversions, and deletions using a combination of 

interconnections and segment tracks. Tracks showing other genomic features can be stacked 

and can apply visual encodings such as scatterplots and heatmaps. Depending on the size of 

the depicted region, Circos-style plots can show smaller or larger relationships between 

distant genomic regions. Though widely used, such depictions are limited in their ability to 

show data at varying scales. Zooming on a circular genomic representation is unintuitive and 

seldom implemented. ClicO Free Service [CTYN15] is an online web-service which 

provides a user-friendly, interactive, web-based interface with configurable features to 

generate Circos circular plots.

5.1.3. Densely Interconnected Feature Sets—Densely interconnected feature sets 

correspond to a set of segment features with interconnections that are densely distributed 

across the sequence. This type of feature set can encode interaction frequencies, which are a 

measure for the spatial distance between two segments. It is possible to measure the 

interaction frequencies of all possible segment pairs of a genome (Hi-C) or only interaction 

frequencies between one segment and all the other segments (4C). In terms of the previously 

defined feature types, it corresponds to a contiguous set of segment features of equal size 

that are interconnected with undirected interconnection features with a quantitative attribute. 

Exploring this kind of data can lead to valuable insights concerning the 3D structure of 

genomes under different conditions. Patterns of interest include compartmentalization for 

identifying active/inactive regions of the genome and topologically associating domains 

(TADs). We found visualizations of this type of feature in all kinds of layouts and parallel 

and orthogonal arrangements (see Table 4).

Linear Layout, Orthogonal Arrangement: From the beginning, orthogonal arrangements 

have been the standard in displaying genome-wide interaction frequencies. Each axis 

represents the same sequence and the spanned heatmap matrix encodes the interaction 

frequencies with color. By varying the bin size, heatmaps can represent the data and relevant 

features at different scales and different resolutions.

An interconnectivity visualization in an orthogonal arrangement can be understood as a 

genome browser-like tool with two axes instead of one to display interconnection features 

more effectively (see Figure 14). Similar to genome browsers, these tools can arrange 

multiple tracks in parallel, such as tracks showing gene annotations, epigenetic signals, or 

gene expression. As orthogonal layouts contain two axes, there can be one-axis foci, which 

correspond to the focus on each axis, and two-axis foci, which correspond to the foci in the 

matrix spanned by the axes. Table 4 shows both kinds of foci and scales, yet the main view 

configuration corresponds to the two-axes scales and two-axes foci.

Tools such as Juicebox and HiCExplorer are single view, single focus, single scale 

visualizations [DRS*16, WBN*18] (see Table 4). While HiCExplorer is a plotting tool 

which offers multiple different visualizations, Juicebox is more interactive and allows 
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unlimited zooming. The web application Juicebox.js [RTD*18] allows the visualization of 

multiple matrices using linked panning and zoom (n-1–1 view configuration).

The tool HiGlass is very flexible in terms of creating different views and offers unlimited 

zooming [KAL*18] (n-n-n view configuration). Multiple matrices can be placed next to each 

other and navigation can be linked to compare features at different conditions. Moreover, it 

is possible to create overview-detail visualizations, where users can move and change the 

size of a sliding window placed in the main matrix to view the contents of the window in a 

detailed view. Multiple sliding windows can be created to visualize multiple foci.

HiPiler is a tool building on HiGlass for the analysis of regions of interest (ROIs) in genome 

interaction matrices [LBK*18]. It displays ROIs as snippets, which are small, detailed 

regions of the matrix. Similar snippets are overlaid with a visualization of the average 

snippet on top of the pile. The arrangement of views and tracks of HiPiler is unique in our 

visualization taxonomy. Every pile of snippets represents a separate view, whereas each pile 

contains overlaid tracks, with a special track showing the aggregation on top. The snippet 

views are arranged by a clustering algorithm or a scatterplot. Snippets and the main matrix 

visualization are connected via brushing and linking. In contrast to the other presented 

matrix visualization, HiPiler combines pattern extraction with visual analysis in order to 

assess the quality of the extracted patterns.

Linear Layout, Parallel Arrangement: In our taxonomy the tool GIVE [CYW*18] 

represents a unique arrangement of axes. Two axes are displayed in parallel and the same set 

of tracks is stacked on each axis. Interconnections are displayed as bands between the two 

axes in the two-axes track. Each axis can be navigated independently, therefore the 

visualization can display a different focus and scale on the single axes (see Table 4). Since 

interconnections can only be visualized between the two one-axis foci, there is only one 

focus and scale in the two-axes track. A possible reason why this arrangement of axes is 

rarely implemented for the analysis of Hi-C data is that when viewing the arrangements on a 

global scale, many bands overlap and it is hard to identify regions of interest to investigate 

further.

Linear Layout, Single Axis: Interconnectivity can be visualized in a linear layout with a 

single axis and is implemented in some genome browsers such as the WashU Epigenome 

Browser [ZMX*11] and the 3d Genome Browser [WSZ*18]. As described in section 4.2.2, 

symmetrical matrices can be cut in half and rotated in order to display them as a track. 

Usually not the entire matrix is shown, but only interactions close to the diagonal to reduce 

the size of the track. Additional to its matrix visualization HiGlass also provides this kind of 

track [KAL*18]. While this is useful to analyze short-range interactions in a genome 

browser like setting, usually long-range interactions cannot be analyzed with this type of 

visualization.

The 3d Genome Browser additionally implements another way of displaying Hi-C data in a 

linear layout [WSZ*18], which is similarly implemented by HUGIn [MXR*17]. Instead of 

showing interaction frequencies between all segments, they only show interaction between 

one segment and all other segments which corresponds to a virtual 4C plot. This is 
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especially useful to visualize interactions between a biological relevant region, such as a 

gene, and all the other segments. However, selecting the biological relevant region requires 

previous knowledge of the users and only a part of the feature set can be explored at a time. 

Both tools encode Hi-C data as a line chart, where the y-axis corresponds to the interaction 

frequency. Moreover, other tracks showing additional data can be added and arranged in 

parallel.

Circular Layout: A circular layout for the visualization of Hi-C data is implemented by 

Rondo [TAKL*16], which uses a chord diagram to display interactions. As there are 

interactions between all segments, Rondo clusters individual interactions into larger groups. 

Every chromosome is encoded with a different color (see Figure 15). Rondo corresponds to 

a one view, one scale, one focus configuration and does therefore not allow viewing multiple 

circular plots of different datasets next to each other. However, it can encode for the 

comparison of two datasets that use the same coordinate system (both of the same species) 

by encoding the arcs corresponding to the different datasets with color and introducing a 

color for arcs in which the datasets overlap. In contrast to visualizations with an orthogonal 

axis arrangement it is not possible to compare more than two conditions. Rondo offers 

navigation and selection interactions. When zooming in, interaction clusters are 

progressively separated to show the interactions in more detail.

Spatial Layout: A 3D representation of genome structure displays reconstructions of the 2D 

profiles obtained using interaction-based methods such as Hi-C. They are deceptively 

reminiscent of protein structure visualization, depicting a single conformation of nuclear 

DNA. Tools such as HiC-3DViewer and 3DGB let users pan and zoom around a 

reconstruction and observe the proximity of likely neighbors [DWZG17, BMB*15]. They 

allow for the overlay of a gene annotation track and the extraction of data associated with 

genomic locations. Despite their capacity for displaying seemingly faithful representations 

of DNA structure in the nucleus, 3D visualization tools are severely limited by their reliance 

on algorithmic reconstructions of that structure. This hides information about heterogeneity 

and ambiguity in the underlying data and presents one of potentially many solutions to the 

constraints provided by contact mapping experiments.

5.2. Feature-Scale Visualizations

Features of the same type at regions within or across sequences can be summarized in order 

to find and visualize patterns. Three types of features are commonly summarized: (i) 

contiguous numerical features for the visualization of epigenetic signals at regions of 

interest, (ii) point features across samples for the visualization of genetic variants, and (iii) 

subsequences of the same length within a sample for the visualization of motifs, which are 

short, reoccurring subsequences that have a biological significance, such as a transcription 

factor binding site.

Summarizing features can decrease the amount and length of tracks that are displayed. 

Instead of locating, comparing, and browsing features within or across multiple tracks, the 

regions of interest are found by computational methods and displayed in one visualization. 

All summary visualizations displayed in Table 5 apply a linear layout, presumably since they 
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usually show short sequences (single genes or only few bases) and do not display 

interconnection features, which often require the use of circular layout or an orthogonal 

arrangement of axes.

5.2.1. Non-Aggregated Feature Summaries—A common task when analyzing 

regions of biological importance, such as binding sites or genes, is exploring and 

summarizing the epigenetic signals around all instances of a particular type of a genomic 

feature, such as transcription start sites, protein-binding sites, or across the coding sequence 

of genes.

Feature-by-position heatmaps are a commonly used visualization technique that supports 

this task. They are constructed by assigning sequence windows around feature instances to 

tracks and arranging the tracks in parallel. The windows can be stretched to normalize across 

sequences of unequal length, such as coding regions for genes. Sequence positions are 

relative to the genomic position of each feature instance. The strength of the quantitative 

attribute is mapped to a sequential or diverging color map. Tracks can be ordered by mean or 

median signal across the columns of positions and can be clustered as well. A line chart, 

called a gene body plot often summarizes the heatmap, by showing an average value for 

each column of the heatmap. The stretching of sequence coordinates represents an exception 

to the track stacking described in section 4.2.2, since the tracks are not aligned by sequence 

coordinates but stretched to align starts and ends of segment features of unequal size.

As each heatmap can only represent one epigenomic mark, multiple juxtaposed heatmaps 

are needed if more than one mark of interest should be visualized. Visualization tools that 

can generate these types of plots are deepTools [RRG*16], which is both available through a 

Galaxy-based user instance and as a stand-alone command line tool, as well as the 

EnrichedHeatmap [GESI18] R package (n-1–1 view configuration, see Table 5).

5.2.2. Aggregated Feature Summaries

Summarizing Point Features: A genetic variant is a base alteration that can be evident for a 

specific phenotype of cancer. The basic goals of variant visualizations are exploring variant 

patterns together with protein domains, comparing the variants at different regions of the 

gene and correlating them with different disease phenotypes.

A commonly used visualization are lollipop plots which aggregate variants of a gene for an 

entire cohort (see Figure 16 [CGD*12]). A lollipop plot consists of a valued point track and 

a valued segment track that are overlaid. The valued point track shows the number of 

variants (y-axis) at each position (sequence axis) for the entire cohort. For each mutation a 

dot is drawn at the corresponding position and abundance and the dot is connected to 

sequence axis with a line. Often the dots are annotated with the resulting protein change of 

the variant. The valued segment track shows different annotated protein domains.

A stand-alone tool for visualizing variants is Variant View [FNM13]. In principle, it is 

similar to lollipop plots, but it shows additional tracks, such as further protein annotations. 

Moreover, it does not show the frequency of the variants. Each variantis shown separately 

with a detailed annotation, such as the mutation type and the change in the amino acid. In 
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addition to the main visualization, it contains a weakly linked utility view in form of a table 

that contains further information about the displayed variants.

The tool MAGI is a multi view, single scale, single focus visualization (n-1–1, see Table 5) 

for population data, which shows mutation data and copy number data on sequence 

coordinates, as well as numerous other views for the visualization of non-sequence related 

data, such as meta data like age and gender [LGH*15]. For the visualization of mutations, 

MAGI implements a visualization similar to a lollipop plot. Mutations are encoded by 

symbols and stacked at the corresponding positions. For each mutation, the shape of the 

symbol and its color, as well as its placement above or below the axis, encodes for 

information about the mutation type.

Summarizing Sequences: In contrast to variant visualizations, motif visualizations do not 

show base alterations that are evident of a disease or a phenotype. They show the 

composition of bases at a reoccurring sequence element, such as transcription factor binding 

sites. Motifs can be found by analyzing sequence patterns within a genome or across 

species. Motif visualizations are used to explore and summarize the base composition of 

short reoccurring biological relevant subsequences, or to compare the base composition at 

different positions within a motif.

Sequence logos, which are the basis of most motif visualizations, were introduced in 1990 

[SS90]. In order to construct a motif, the authors of the paper created an ungapped multiple 

sequence alignment of all possible sequence motifs and a table containing each base and its 

frequency at each position. For the visualization of the results they stacked the characters at 

each position on top of each other with the height of each letter corresponding to its entropy. 

In terms of our visualization taxonomy, this corresponds to a visualization of a single valued 

point track with features with complex attributes: each point is associated with the 

distribution of bases.

One of the first web applications to visualize sequence logos was implemented by Crooks et 

al. called WebLogo [CHCB04] (see Figure 17a). The tool pLogo uses the same basic visual 

encoding [OCQ*13], but it displays values of statistical significance for each base at each 

position. Moreover, in addition to the motif, it shows underrepresented bases in a parallel 

track. Two Sample Logo has been developed for the comparison of motifs [VIR06]. It 

visualizes statistically significant differences between motifs in three tracks: one for each 

track showing overrepresented symbols and one track showing consensus symbols.

Sequence bundles represent an alternative to sequence logos [KNS*14]. According to the 

authors describing sequence bundles, sequence logo visualization suffers from several 

limitations. Most importantly, these visualizations do not show relationships between 

residues at different positions. Sequence bundles display the features in an unconventional 

way, by encoding different bases with different positions on the y-axis. For each motif 

sequence of the multiple sequence alignment, a line is drawn (see Figure 17b). At conserved 

positions, the lines will bundle together, while at variable positions, the lines will be more 

scattered. The tool Alvis is a Java implementation for the creation of sequence bundles 

[STK*16]. Although sequence bundles enable visualizing longer sequences and 
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relationships of residues at different positions, sequence logos remain the standard in 

visualizing motifs. A possible reason for this could be that the visual encoding is easier to 

interpret and the visualization is less cluttered.

MEME is a tool for the discovery of motifs and motif visualization [BWML06]. It shows the 

location of found motifs in multiple input sequences as segment tracks and additional 

detailed views showing sequence logos for each motif (see n-n-1 view configuration in Table 

5). The logos are associated with strongly connected utility views showing meta data about 

the motifs. Each motif is encoded with a colored rectangle in the segment tracks. When 

hovering over a segment the detailed views of the motif is displayed at the position of the 

cursor.

6. Multiple Genomic Coordinate Systems

6.1. Genome-Scale Visualizations

Sequences are often compared in order to find differences between two species in a field of 

research called comparative genomics. The evolutionary forces that shape genomes work on 

the scale of individual nucleotides in the form of mutations, insertions, and deletions, as well 

as on the scale of chromosomes in the form of duplications, translocations, and inversions. 

Sequences can be compared on different scales from nucleotide level to whole genomes, 

most commonly in linear and circular layouts and parallel, orthogonal and serial 

arrangements. The goal is to visually encode the differences between the sequences of the 

different genomes.

Tools for comparisons are mostly categorized in single view (1-1-1) or multi view, single 

scale, single focus (n-1-1) view configurations (see Table 6), as they show comparisons of 

one set of species in a single view or multiple comparisons in separate views. The only 

exceptions we found are GBrowse_syn [MVS10] and Persephone [Per] as well as MizBee, 

which is an overview-detail visualization (n-n-1) in a circular layout [MMP09].

Linear Layouts—In order to display long alignments, the online server VISTA offers tools 

to display alignments using line charts [MBS*00]. In general, an alignment is used to 

identify conserved genomic regions in order to estimate the evolutionary relationship of 

organisms or finding shared genes. In VISTA each track corresponds to a sequence. The y-

axis represents the percent identity with the reference genome computed with a window-

averaged identity score. Regions with a high identity with the reference genome (conserved 

regions) which are part of an exon are indicated by highlighting the area under the curve 

dark blue, regions which are part of a non-coding part are colored red, and untranslated 

regions (UTRs) are colored light-blue. VISTA can display alignments of various lengths by 

adapting parameters, such as the zoom level, the resolution, and the minimum length of an 

aligned sequence in order to be displayed. A disadvantage of VISTA and other long 

alignments is that they cannot display segments that are conserved but have changed 

position during genome evolution (synteny blocks).

To highlight syntenic regions, other types of visualizations display similarities with 

connections via lines and bands or color. Cinteny [SM07] applies both approaches but on 
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different scales. On a chromosome scale, Cinteny connects syntenic regions with lines. 

When the entire genome is compared, chromosomes are displayed in a separate segregated 

layout (see Figure 19). One genome acts as a reference, where each chromosome is colored 

differently. Regions in the chromosomes of the other genome are colored corresponding to 

their syntenic region in the reference. This visualization demonstrates two of the 

shortcomings of color encodings for synteny. First, each of the human chromosomes is 

encoded using a different color. This is problematic since especially in the green spectrum 

the colors are hard to distinguish. Second, the visualization shows to which chromosome a 

synteny block of the mouse genome belongs, but not the exact position in that chromosome. 

The tool Syntenty Explorer implements this technique and two other possibilities of synteny 

visualization (described in the following paragraphs) [BGM*17]. To conquer the problem of 

identifying the exact positions of synteny blocks in both genomes, Synteny Explorer allows 

adding lines to connect syntenic regions for one chromosome or an entire genome. However, 

when lines are added for an entire genome, the visualization becomes cluttered and hard to 

interpret.

In addition, Synteny Explorer implements a unique way of visualizing synteny [BGM*17] 

by using animation to reorder syntenic regions to match the reference. We could not find this 

technique in any other sequence comparison tool, presumably because it is impossible to 

follow the movement of all syntenic regions in a genome or chromosome at once. However, 

Synteny Explorer represents an educational tool and animation can illustrate the actual 

process of rearrangements and inversions.

A straight forward solution for visualizing and comparing multiple long genomes is to 

provide more screen space as done by the tool BactoGenie [ARJ*15]. BactoGenie visualizes 

genomic neighborhoods of bacterial strains on large displays to address scalability issues. 

Coding sequences are displayed as arrows, while the length and position of the sequence is 

preserved. Similarity is encoded using color, where similar coding sequence receive the 

same color.

Circular Layouts—Synteny can be visualized using Circos plots, where the two sequences 

are arranged in a circular combined layout. Synteny Explorer provides a visualization in this 

layout where synteny is shown by drawing bands between syntenic regions [BGM*17].

In MizBee [MMP09], Meyer et al. explores synteny relationships with a visualization using 

linked views at the genome, chromosome, and block levels (see Figure 20). MizBee 

represents the only comparison tool we found that applies multiple scales and multiple 

layouts. For the visualization of synteny on the genome level, MizBee uses a circular 

parallel arrangement, where one set of chromosomes is displayed in the outer ring (source 

chromosomes), the other set in the inner ring (destination chromosomes). A chromosome in 

the outer ring can be selected and inserted into the inner ring. Bands connecting the inserted 

source chromosome with destination chromosomes are drawn to show syntenic regions. 

Additionally, synteny is encoded using color. Regions and bands in the source chromosomes 

are colored according to their destination chromosomes. Two additional views in linear 

layouts show the selected source chromosome in detail, as well as a comparison of the 
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source chromosome and a destination chromosome in a linear separated layout encoding 

synteny using bands.

Orthogonal Layouts—In dot based approaches, similarities of sequences are indicated by 

diagonal rows of dots. They are used by tools like Gepard [KAR07], EDGAR [BKS*16] and 

Syn-Map2 [HBSD*17]. These tools distribute the data along two dimensions to show a 

larger quantity of relationships than possible using a single axis (see Figure 21). All tools in 

an orthogonal layout are in a single view configuration, as most of them only show a single 

comparison between two genomes. Edgar Synteny Matrix [BKS*16] shows multiple 

comparisons. However, all of them are aligned by sequence coordinates, or single view.

6.2. Feature-Scale Visualizations

Comparing shorter sequences diverging by mutations, insertions and deletions is readily 

accomplished using alignment based visualizations. Tools such as Jalview, AliView and 

MSAViewer provide convenient implementations of this concept [WPM*09,Lar14, 

YWR*16]. This form of visualization provides a detailed view of every sequence and 

general patterns of similarity can be identified by applying a categorical color scale to the 

four nucleotides. Since computationally aligning sequences creates a shared coordinate 

system, most of these tools are grouped into linear layout, no axis arrangement (see Table 6).

Not only the sequence itself but also other features can be compared across genomes at 

conserved regions. With the 3d Genome browser Hi-C data and epigenetic signals for 

biological relevant regions (such as genes) can be compared across species [WSZ*18]. Since 

the regions are conserved, tracks for the different species can simply be stacked on the same 

sequence axis.

7. Discussion

The proposed taxonomies for data types, visualizations, and tasks span a very wide range of 

applications for genomic data. The most important takeaway is that despite the multi-scale 

nature of genomic data, not many tools take advantage of multiple linked view 

configurations that would support efficient navigation and pattern discovery of the space. A 

limitation of our taxonomy is that we do not distinguish between constant number of views, 

scales, and foci greater than 1 and a flexible number of views, scales, and foci. Both are 

currently represented as n in our taxonomy and tool review. Additionally, a more detailed 

evaluation and assessment of visual encodings that are used in tracks could be helpful in 

understanding where further visualization research is warranted. The same is true for utility 

views that are commonly integrated into visualization tools for genomic data. Utility views 

can apply visualization techniques, such as node-link diagrams and reorderable matrices for 

genomic data that do not visualize data in sequence context. However, as discussed in the 

Introduction, we did not include such techniques in our taxonomy given the limited spaces 

in this survey.

Our work shows that there are a lot of tools, not because there are many different 

visualization needs, but because the quantity of tools is driven primarily by the need to 

access a wide range of incompatible data formats and sources, as well as the need to 
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integrate into common analysis workflows. These are also typically defined by the data 

formats that they operate on.

Our proposed taxonomies can be used to guide the development of a unified approach for 

visualizing genomic data, such as a grammar driven approach. However, the concerns about 

dependency on particular input formats, connections to analysis tools, and other external 

dependencies, certainly raises the question whether much would be gained by defining a 

generic visualization approach for genomic data. For such an effort to be successful, it 

would likely need to support an enormous number of data formats and sources, adding 

engineering overhead to the visualization challenge.

8. Opportunities and Challenges

The rapid progress in the development of new experimental assays to generate genomic data 

frequently leads to new visualization challenges and opportunities. Many challenges are 

related to complex genomic data such as 3D genome interactions, temporality, or scale of 

genomic data, in particular when the number of data sets or feature sets grows into 

thousands or more.

In particular, 3D genome interaction data present several unsolved challenges. In a recent 

review, Goodstadt et al. [GMR17] report on challenges for visualizing 3D data in genome 

browsers. These data are multiscale (from the few microns of the nucleus to the few 

nanometers of nucleosomes), and multistate (hetero, euchromatin and several other states). 

They can also be time-dependent and need to capture the order of events describing how the 

genome structure changes over time due to biological processes. These introduce uncertainty 

in 3D genome interaction data. Subsequently, the challenges in visualizing these data 

include abstractions or reductions in data dimensions, variations to show changing events, 

finding meaningful patterns in the data or having proper interactions. For finding patterns or 

classification, side-by-side comparisons are common for 2D data, although this increases the 

cognitive load of the viewer. For 3D data, this is even more challenging as these contain 

large point-sets that are spatially distributed and may change over time. In certain cases, 

animation can be useful, although this also provides little insight when there are a large 

number of changes happening concurrently.

In addition to temporally resolved 3D genome structure data, it is now also possible to 

measure not only pairwise but also n-way interactions of regions across the whole genome. 

This will require novel visualization techniques that enable analysts to navigate this highly 

complex space and select lower-dimensional slices for visualization. A related challenge is 

the visualization and integration of imaging data (ranging from standard lightfield 

microscopy to super-resolution microscopy) with genomics data from chromosome 

conformation capture assays such as Hi-C. The mapping between image-based and genome-

based coordinates and corresponding navigation will be particularly challenging in this 

context.

The number of genomes and patients in many studies will increase rapidly to thousands and 

in some cases, millions. This will require novel visualization techniques, as well as 
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infrastructure (APIs, data formats, etc.) that allow visualization tools to access this data in an 

efficient and secure fashion. In the era of precision medicine, electronic health records and 

various types of sensor data will also need to be integrated with genomic data and this will 

be particularly important when viewing data from patient cohorts. These data are noisy, 

highly heterogeneous, and often have highly variable temporal resolution. Furthermore, 

driven by new insights into disease mechanisms, discovery of novel drug targets and 

therapeutics is an area which will benefit from the integration of visualization approaches 

for molecular data (e.g. MutationAssessor [RAS11]) with variant and other genomic data 

viewers, as well as tools that aid in the prioritization of drugs and compounds.

There are also several technological challenges, that if addressed, would allow visualization 

tools to have a more profound impact in the analysis process. For example, tight integration 

of algorithmic and visual approaches and linking a diverse set of such tools into a coherent 

interface that reduces the cognitive burden of the investigator and enables seamless data flow 

across these tools. In particular in this context, more research is needed on evaluating 

genome visualization tools to guide future efforts and to develop user-centric approaches for 

building new visualization tools. Crisan et al. [CMMG18] showed that a human-centered 

design approach integrating quantitative and qualitative feedback from users is important in 

creating successful clinical genomics reports, and suggested that this approach can also be 

useful in building complex bioinformatics data visualization software.

9. Conclusion

As our survey demonstrates, the direct impact of the data visualization field on genomic data 

visualization techniques has been limited to date. There are three possible explanations for 

the small number of publications on genomic data visualization that originated in the 

visualization community. First, this might be due to the size and complexity of the data that 

often require complex client-server architectures, resulting in engineering work that is not 

rewarded by the visualization community. This issue will become even more pressing in the 

context of visualizations for patient genomes which require special considerations of privacy 

and secure data access and storage. Second, genomics is a complex and rapidly evolving 

field which presents a steep learning curve for researchers who are not actively working in 

this domain. Third, as we demonstrate, the number of techniques and tasks is much smaller 

than the large number of published tools implies. Therefore, genomics might not be seen as 

a fruitful domain for visualization research projects.

However, the fact that the majority of genomic visualization tools is developed in an ad hoc 
fashion and published without formal task analyses or evaluations, is a clear sign that more 

visualization research is needed. On one hand, the bioinformatics community needs to 

become more aware of appropriate design and evaluation approaches for visualization tool 

development. On the other hand, the visualization community needs to be incentivized and 

enabled to study genomics visualization problems. This could be achieved by developing an 

infrastructure to provide convenient access to genomic data and to enable effective 

integration of new visualization tools into existing analysis frameworks or tool ecosystems. 

This will also allow researchers in the bioinformatics community to shift focus away from 

reimplementing basic functionality over and over and instead focus on visualization 
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problems, rather than data access problems. Finally, as the first survey to comprehensively 

assess the landscape of genomic visualization tools, techniques, and tasks from a 

visualization point of view, our work should be considered a starting point for future efforts 

that aim at organizing the biological data visualization literature.
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Figure 1: 
Data taxonomy, visualization taxonomy, and task taxonomy for genomic visualizations. The 

data taxonomy describes how different genomic data types can be encoded as feature sets. 

A genomic visualization contains one or multiple coordinate systems applying a specific 

layout, partition, abstraction and arrangement (in case of multiple axes) of sequence 

coordinates. Feature sets are encoded as tracks and placed on the coordinate systems. 

Multiple tracks can either be aligned by stacking or overlaying. A visualization can consist 

of one or multiple views, each containing a set of aligned tracks. Multiple views can show 

data on one or multiple scales and foci. The task taxonomy explains how different search 
and query tasks operate on genomic visualizations.

Nusrat et al. Page 38

Comput Graph Forum. Author manuscript; available in PMC 2019 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Genes on a DNA molecule are transcribed onto a mRNA molecule and translated into amino 

acids to form the final protein product. A gene consists of coding parts (exons) and non-

coding parts (introns). In a process called alternative splicing exons can be combined in 

various ways to form different protein products.
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Figure 3: 
A multiple sequence alignment (MSA) of the sequences ‘ACGTCATCA’, ‘TAGTGTCA’ 

and ‘CGTCATA’.
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Figure 4: 
DNA is organized in histones. When the DNA is wound up around the histones transcription 

cannot occur. When it is unwound transcription factors can bind and initiate gene 

expression. Epigenetic factors control to which extent the DNA is wound up.
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Figure 5: 
Layout, abstraction, partition and arrangement of sequence axes. (a) A sequence axis can be 

displayed in a linear, circular, space-filling or spatial layout. (b) A sequence axis can be 

visualized completely or some parts or the entire sequence can be abstracted. (c) Distinct 

sequence parts can be visualized in as a whole (contiguous) or segregated. (d) Two sequence 

axes can be arranged in different ways.
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Figure 6: 
Examples of visual encodings of feature sets and arrangement of tracks. Features can be 

encoded through color, height of blocks and positions (a,b,c,d). A two-axes track can be 

arranged with multiple one-axes tracks (e,f).
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Figure 7: 
A visualization with multiple axes can have foci in multiple dimensions. This orthogonal 

arrangement of axes contains two one-axis foci and one two-axes focus.
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Figure 8: 
The number of views, scales and foci are important parameters of a genomic visualization. 

The combination of these parameters results in five different view configurations.
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Figure 9: 
The Integrative Genomics Viewer (IGV) is an example of a genome browser that can show 

multiple scales and foci in separate views. Moreover, the visualization includes a strongly 

linked utility view in form of a column next to the tracks showing meta data. Figure from 

[TRM13].

Data: D = ; Coordinate System: C = ; Tracks: T = ; Views: V = 
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Figure 10: 
Circular visualization of Escherichia coli with CiVi [OvHSF15]. The tracks show genes and 

GC content.

D = ; T = ; C = ; V = 
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Figure 11: 
Hilbert curve visualization for an epigenetic marker created with the R package 

HilbertCurve described in [GES16].

D = ; C = ; V = 
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Figure 12: 
Sashimi plots from IGV [Bro] enable users to analyze splicing patterns of different samples. 

The bottom view shows known isoforms, the top view shows splicing patterns of three 

samples. At exons read density is displayed with area charts, junction reads are displayed as 

arcs labeled with the number of reads.

D = ; C = ; T = ; V = 
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Figure 13: 
Gremlin [ORRL10] enables users explore the high-level, complete genome perspective as 

well as low-level, structural rearrangement view.

D = ; C = ; T = ; V = 
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Figure 14: 
Orthogonal arrangement in HiGlass [KAL*18]. Interactions are encoded using a heatmap 

encoding. Additional tracks are aligned on both sequence axes.

D = ; C = ; T = ; V = 
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Figure 15: 
Circular layout in Rondo [TAKL*16]. Chromosomes are encoded using color, bands 

represent interactions.

D = ; C = ; T = ; V = 
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Figure 16: 
Lollipop plot created using the cBio Portal [CGD*12]. A lollipop plot is an example for the 

aggregation of sets of point features. Each dot represents a mutation at a given position in 

the amino acid sequence of the translated gene sequence (x-Axis) and with a corresponding 

abundance (y-Axis). The colored boxes correspond to protein domains.

D = ; C = ; T = ; V = 
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Figure 17: 
Representations of the same sequence motif for a small sample of human intron-exon splice 

boundaries by (a) a sequence logo created with WebLogo [CHCB04] and (b) a sequence 

bundle created with Alvis [STK*16].

D = ; C = ; V = 
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Figure 18: 
Multiple sequence alignment displayed with area charts using VISTA [MBS*00]. Colors 

indicate if the conserved region belongs to an exon (dark blue), an untranslated region (light 

blue) or to a non-coding region (red).

D = ; C = ; T = ; V = 
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Figure 19: 
Comparison of the human and mouse genome using Cinteny [SM07]. Chromosomes are 

segregated and arranged in a linear separate layout, color encodes for syntenic regions.

D = ; C = ; T = ; V = 
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Figure 20: 
MizBee visualizes synteny on different scales, applying circular and linear layouts and 

encodings using bands and color [MMP09].

D = ; C = ; T = ; V = 
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Figure 21: 
Dotplot created using SynMap2 [HBSD*17] showing a comparison of the human and the 

mouse genome. The sequences are aligned in an orthogonal layout. Diagonal lines of dots 

imply syntenic regions.

D = ; C = ; V = 
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Table 1:

Categorization of “Why” Tasks

Task type Single Feature Set Multi Feature Sets

Single Locus Search  LOOKUP  BROWSE

Query  IDENTIFY  COMPARE *,  SUMMARIZE

Multi Locus Search  LOCATE,  EXPLORE  EXPLORE

Query  COMPARE,  SUMMARIZE  SUMMARIZE
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