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Abstract

Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) has

revolutionized our understanding of chromatin-related biological processes. The method,

however, requires thousands of cells and has therefore limited applications in situations

where cell numbers are limited. Here we describe a novel method called Restriction Assis-

ted Tagmentation Chromatin Immunoprecipitation (RAT-ChIP) that enables global histone

modification profiling from as few as 100 cells. The method is simple, cost-effective and

takes a single day to complete. We demonstrate the sensitivity of the method by deriving the

first genome-wide maps of histone H3K4me3 and H3K27me3 modifications of inner cell

mass and trophectoderm of bovine blastocyst stage embryos.

Introduction

The development and functioning of a multicellular organism are determined by how the

genetic information, encoded in its genomic DNA sequence, is utilized by individual cells. In

eukaryotic cells, DNA is packed into chromatin using proteins of which histones are the most

abundant. Each cell type has its specific chromatin structure, which is dynamic and can be

remodeled to regulate gene expression, DNA repair and cell division. Our understanding of

these chromatin-related processes has improved vastly over the past years thanks to the

advances in DNA sequencing technologies. Chromatin immunoprecipitation (ChIP) has been

the method of choice to study the location of DNA bound proteins for years [1]. Coupling

ChIP with deep sequencing (ChIP-seq) has enabled to determine the localization of chroma-

tin-bound proteins at a genome-wide level [2]. For example, it has helped to identify that dif-

ferent histone post-translational modifications are associated with different genomic features
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and transcriptional states, helping to explain how cell type specific gene regulation is achieved

[3,4].

One of the limitations of ChIP-seq method is that it usually requires a large number of cells.

In a typical experiment, several million cells are used, which can be a limiting factor when

working with samples where cell numbers are restricted, such as highly purified rare cell popu-

lations or early developmental stages. Recent advances in technologies have made it possible to

develop more sensitive ChIP-seq methods (S1 Table) [5–19], however, many of these methods

are complex, laborious, require specific apparatus or reagents, or are not sensitive enough.

With these limitations in mind, we aimed to develop a novel ChIP-method for a limited num-

ber of cells that would be sensitive but also robust so it could be used without the need for spe-

cial equipment and readily available reagents.

A typical ChIP-seq experiment consists of several experimental steps to produce a library

that can be sequenced using massively parallel sequencing. These steps include fixing, cell

lysis, chromatin fragmentation, immunoprecipitation, decrosslinking, DNA purification, and

sequencing library preparation followed by sequencing. There are many issues that arise when

working with a low number of cells of which the loss of material is the most prominent. In the

published protocols the reduction of material loss has been achieved through the use of differ-

ent carriers that mimic more material [7,12][19] or with indexing first and then pool the sam-

ples technique to obtain more material for subsequent steps [9,14,15]. Another option is to

minimize the number of experimental steps, such as centrifugations and material transfer

from one tube to another, where a material loss is expected. In addition, it is desirable to down-

scale the sample volumes to account for the reduction in the amount of input material. This

can be relatively easily achieved when the sonication step is replaced with enzymatic DNA

digestion, as using standard equipment, sonication cannot be done effectively in a small

volume.

There are many instances where more sensitive ChIP-seq methods could be useful but the

most obvious is studying early development, like mammalian embryo preimplantation devel-

opment, as the number of available cells in these study samples is especially low. The cellular

changes that take place during development are remarkable both at the molecular and pheno-

typic level. Understanding the molecular basis for differentiation it is not only fascinating but

it also holds great promise to advance reproductive medicine and the generation of desired cell

types for regenerative medicine. Recently, the first histone modification landscapes of early

mouse development were reported [16,17,20]. In addition to using more sensitive ChIP assays,

a pool from large number of embryos was still needed in order to obtain a sufficient amount of

cells. Therefore, although substantial advancements have been made both in sensitivity and

simplicity of the ChIP-seq methods, there is still room for improvement. This is in particular

important in the context of studying human embryonic development as many legal, ethical

and technical issues come to play. To overcome some of these issues, bovine can be used as a

model as its embryogenesis is more similar to the human compared to other common model

organisms. Previously, we have used bovine to study chromosomal instability in early embryos

and shown it to be a good model [21]. Here, by using a novel RAT-ChIP method we derive the

first genome-wide histone H3K4me3 and H3K27me3 profiles of inner cell mass (ICM) and

trophectoderm (TE) of blastocyst stage bovine embryos, being the two major cell lineages that

develop into embryonic and extraembryonic tissues, respectively. Combining this epigenetics

data with published expression profiling data serves as a resource to provide insights into the

gene expression regulation of early bovine development and paves a way to new studies, for

example with a somatic cell nuclear transfer (SCNT), e.g. cloned embryos where epigenetics

has thought to act as a major roadblock of nuclear reprogramming.
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Materials and methods

Cell lines

Human K562 and H1299 cells were grown in IMDM and DMEM (both from Naxo) respec-

tively, supplemented with 10% of FBS and penicillin/streptomycin (Naxo) in the presence of

5% CO2 at 37˚C.

Oocyte collection and in vitro maturation

All chemicals used for in vitro embryo production were purchased from IVF Limited T/A IVF

Bioscience. Slaughterhouse derived ovaries were transported to the laboratory in a 0.9% sterile

NaCl solution within 4 h after slaughter at approximately 32–37˚C and washed twice in a 0.9%

NaCl solution. Using a vacuum pump (Minitüb GmbH), cumulus oocyte complexes (COC)

from follicles with a diameter of 2-8mm were aspirated. Grade 1 COCs were washed and

matured in groups of 50 in 500μl of in vitromaturation medium in four-well plates (Nunc).

Oocytes were incubated at 38.5˚C with humidified 5% CO2 in air for 22–24 h.

In vitro fertilization

Frozen-thawed semen from a Holstein bull ZIARD (id EE 13993023) was used to fertilize the

matured oocytes. Oocytes and sperm were co-incubated in groups of 50 in 500μl of BO-IVM

media in four-well plates (Nunc) at 38.5˚C with humidified 5% CO2 in air for 22–24 h.

In vitro cultivation

Zygotes were individually cultured in 60μl droplets BO-IVC media for 8 days at 38.5˚C, 5%

CO2, 5% O2 and 90% N2 with maximum humidity. Embryos having reached blastocyst stage

by day 8 were collected and used for laser-assisted microdissection.

Laser-assisted microdissection to obtain ICM and TE fractions

Integra 3 micromanipulator (Research Instruments Limited) equipped with Saturn 5 Active™
laser system was used to manually separate bovine blastocysts into ICM and TE fractions (of

note–while manual dissection achieves to get pure populations of TE, small fraction of TE cells

remain associated with the separated ICM mass). Separated fractions from three blastocysts

were pooled and used for subsequent RAT-ChIP-seq experiments.

RAT-ChIP-(seq)

For a single immunoprecipitation 1μl ProtG Dynabeads (Thermo Fisher Scientific) were

bound with 0.25μg of corresponding antibody (H3K4me3 (07–473, Millipore), H3K27me3

(07–449, Millipore)) or H3 (C15200011, Diagenode) in 5μl of complete immunoprecipitation

(IP) buffer (20mM Tris HCl pH 7.4, 2mM EDTA, 150mM NaCl, 0.1% Triton X-100) at RT

using standard 0.2ml Eppendorf tubes with end-over end mixing (30 rpm) for 2 h followed by

two washes using 50μl of IP buffer. All washes were performed by gently pipetting the beads 10

times up and down. Magnetic beads were captured by 1-minute incubation on a magnetic

stand (Diagenode). Finally, beads were suspended in the original amount of IP buffer (1μl per

IP).

The density of cultured K562 or H1299 cells was determined using haemocytometer. Cells

were spun down and resuspended in PBS at a density 100 or 1,000 cells per 0.5μl. Subsequently

0.5μl of lysis-restriction mix (1μl FD (FastDigest) buffer combined with 3.75μl of 2x nuclear

lysis buffer (20mM Tris HCl, pH 7.4, 20mM NaCl, 6mM MgCl2, 0.2% NP-40)) and 0.25μl 4x
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restriction enzyme mix (AluI #FD0014, SaqAI#FD2174, HinfI#FD0804, MvaI#FD0554, all

FastDigest enzymes from Thermo Scientific in equal amounts) was added to the cells and incu-

bated 15 min on ice and thereafter 5 min at 37˚C. Next, 1μl of 0.2% NaDOC, 0.2% TritonX-

100 with protease inhibitors was added to the samples and incubated 15 min on ice, vortexed

for 30 sec, after which 8μl of IP buffer (20mM Tris HCl, pH 7.4, 150mM NaCl, 2mM EDTA

and 1% TritonX-100) and 1μl of ProtG Dynabeads (Thermo Fisher Scientific) prebound with

corresponding antibody was added to the samples. Chromatin immunoprecipitation was per-

formed at 4˚C for four hours with end-over end mixing (30 rpm). After IP, beads were washed

twice with 100μl of following buffers: low salt washing buffer (0.1% SDS, 1% Triton X-100,

2mM EDTA, 20mM Tris HCl (pH 8.0), 150mM NaCl), high salt washing buffer (0.1% SDS,

1% Triton X-100, 2mM EDTA, 20mM Tris HCl (pH 8.0), 500mM NaCl), IP buffer and 20mM

Tris HCl, pH 7.4, as described above. To reduce background the beads were carried over to a

new tube during the last wash. Multichannel pipet was used for processing multiple samples

simultaneously.

Tagging was performed by resuspending the beads in 2.5μl of transposase mix (prepared by

mixing 5μl of 2x DNA tagment buffer with 4μl mQ and 1μl Transposase) (Illumina Nextera

kit) and incubation of 1 min at 37˚C. Beads were washed once with 100μl of low salt washing

buffer, once with 20mM Tris HCl pH 7.4, as described above, and resuspended in 5μl of

20mM Tris HCl, pH 7.4. 16 cycles of PCR were performed using bead bound DNA as a tem-

plate by mixing 5μl of beads with 2,5μl of 5μM forward and reverse primers from the ATAC-

seq protocol [22] and 10μl of 2x NEBNext PCR master mix (New England Biolabs). The

following PCR program was used: (72˚C 5 min, 98˚C 2 min, 98˚C 10 sec, 63˚C 10 sec, 72˚C 1

min, repeat steps 3–5 15 times, hold at 4˚C). PCR products were purified with Agencourt RNA

XP magnetic beads (Beckman Coulter), eluted in 10μl of Tris HCl pH 7.4 followed by quality

control and DNA quantification using NanoDrop, Qubit (Thermo Fisher Scientific) and

TapeStation (Agilent). The resulting library was subjected to 50 or 75bp paired-end Illumina

sequencing using either HiSeq2500 or NextSeq platforms. Alternatively, the library was ana-

lyzed with q-RT-PCR using Applied Biosystems 7900HT real-time qPCR machine, HOT

FIREPol1 EvaGreen1 qPCR Mix Plus (Solis BioDyne) and following primers: GAPDH_F CC
CGTCCTTGACTCCCTAG, GAPDH_R CTGGTTCAACTGGGCACG; VPS29_F TCGCTACT
TCCTGTTCTGCA, VPS29_R GATAGGGGCACGGTCCTC; ZNF7_F TACTGTTTCCTCGCC
AGCTC, ZNF7_R GAGGCAAAGGAGACAAAGCA; Neg_cntrl_F CAAATGTGGTCACTAAGGC
AAC, Neg_cntrl_R GTGACTCTCCTGGACCAACA.

RAT-ChIP-seq with bovine blastocysts was performed as described above except that after

dissection the cells were collected in 3μl of embryo medium. Lysis/restriction buffer was pre-

pared by combining 4.75μl of 10x NL (100mM Tris HCl, pH 7.4, 100mM NaCl, 30mM MgCl2)

buffer, 4.75μl of 10x FastDigest buffer and 0.5μl of mix of 4x restriction endonucleases. 0.75μl

of lysis/restriction buffer was added to 3μl of cells and incubated 15 min on ice and 5 min at

37˚C. Next, 1μl of mix of 0.5% NaDOC, 0.5% TritonX100 with protease inhibitor cocktail was

added to the samples and incubated 15 min on after which 15μl of IP buffer (20mM Tris HCl

pH 7.4, 2mM EDTA, 150mM NaCl, 0.1% Triton X-100) was added and sample was divided

into 2 tubes, 10μl each for subsequent IP with Dynabeads bound with corresponding

antibodies.

Two types of input samples were prepared. First, the samples were treated according to the

RAT-ChIP protocol, but instead of immunoprecipitation, DNA was extracted using DNA

Clean & Concentrator kit from Zymo Research, followed by tagging with Tn5 transposase

according to manufacturer’s protocol (Illumina) and sequencing library construction using

PCR. Second, samples were initially treated according to the RAT-ChIP protocol and tagging

of chromatin was performed in cell nuclei right after treatment with restriction enzymes

Global histone modification profiling of bovine blastocysts by RAT-ChIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0225801 November 25, 2019 4 / 24

https://doi.org/10.1371/journal.pone.0225801


followed by DNA extraction and library generation using PCR as described above. Detailed

RAT-ChIP protocol is available in S1 File and at protocols.io website (dx.doi.org/10.17504/

protocols.io.69qhh5w).

In silico analysis of restriction enzyme cutting sites

Human genome hg19 version GRCh37.p13 from EnsEMBL website (http://grch37.ensembl.

org/) was used for the in silico analysis. The consensus sequence (‘AGCT’, ‘TTAA’,

‘CCWGG’—where ‘W� can be either ‘A’ or ‘T’, and ‘GANTC’—where ‘N’ can be any nucleo-

tide) for each restriction enzyme (AluI, SaqAI, HinfI, MvaI) respectively, was mapped onto

each chromosome sequence. The final list contained over 50 million restriction site positions.

The recorded coordinates were used to determine the average number of restriction enzyme

recognition sites per 1kb in chromHMM K562 chromatin state regions [23] (repeat containing

states 14 and 15 were excluded from the analysis) using custom written Perl scripts followed

by average fragment length calculation. Custom Perl scripts are available from https://github.

com/reidar-andreson/nucleosomes. Coordinates for gap, repeat and chromHMM K562 chro-

matin state regions were downloaded from UCSC Table browser [24]. Qualimap [25] was used

to get the quality metrics of different ChIP-seq datasets in S4 Table and for the calculation of

median read length in K562 cell input sample in different chromatin state regions.

Used publicly available data

Raw data from following K562 ChIP-seq datasets from GEO database were downloaded and

reprocessed as described below: GSM945165, GSM945228, GSM733680, GSM733658,

GSM1782695, GSM1782755, GSM1782693, GSM1782739, GSM1918612-GSM1918616,

GSM1918602-GSM1918606, GSM1918592-GSM1918596, GSM1918582-GSM1918586,

GSM1141671 and GSM1141672. bESC ChIP-seq data is form GSE110039 and K562 RNA-seq

data from GSM1940168. For S13C Fig, bigwig files were downloaded from the following data-

sets—GSM2082690, GSM2082693, GSM2082696, GSM2082698, GSM2082701, GSM2082703.

For ICM and TE gene expression comparisons gene lists from the following publications were

used [26–30].

RAT-ChIP-seq and expression data analysis

Sequencing reads were mapped to hg19 or bosTau8 genome using Bowtie2 (version 2.3.3.1)

[31] using following parameters -k 2 -N 1. Next, bam files were sorted and indexed using

SAMtools (version 1.6) [32] and bigwig files were created using deepTools 2.0 [33]. We used

blacklist regions for hg19 genome annotation created during ENCODE project to exclude

them from further analysis [34]. Bigwig files were visualized in UCSC genome browser as cus-

tom tracks [24]. Peak calling was done using SICER-rb.sh script (version 1.1) [35] with follow-

ing parameters: (100 200 200 0.74 600 50). For the final list of peaks regions that overlapped

with hg19 blacklisted regions were discarded. Differential peak calling was done using SICER-

df-rb.sh script (version 1.1) [35] with following parameters: (100 200 200 0.74 600 50). In addi-

tion to the FDR threshold, arbitrary 4-fold cut-off was used for H3K27me3 signal to restrict

the number regions for further analysis. Manipulation with genomic regions such as intersec-

tion or subtraction was done using bedtools (version 2.26.0) [36] or various operate on geno-

mic intervals tools in the Cistrome Galaxy server [37,38]. Global pairwise Pearson correlation

analysis, clustering and heatmap generation was performed in 5kb windows using multiple

wiggle files correlation tool in Cistrome Galaxy server [37,38]. Global H3K4me3 heatmaps in

10kb regions around TSS (in 100bp windows) were generated using heatmap tool in Cistrome

Galaxy server [37,38]. Average H3K4me3 enrichment profiles in 10kb regions around TSS (in
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10bp windows) were generated using Sitepro tool in Cistrome Galaxy server [37,38]. Locus

specific average metagene (3kb up and downstream of the gene and 6kb metagene body)

enrichments of H3K27me3 were calculated and visualized using bwtool [39]. GO enrichment

analysis of cell-type enriched histone modification regions (identified using SICER and sorted

based on fold change) was performed using GREAT (version 3.0.0) [40] with proximal: 5 kb

upstream, 1 kb downstream, plus distal: up to 100 kb, parameters. Venn diagrams were created

using InteractiVenn [41]. For data visualization and statistical analysis MS Excel and Graph-

Pad were used. Paired T-Test was used to calculate if average signals between pairs of corre-

sponding gene regions (TE or ICM upregulated genes) in TE and ICM were significantly

(p<0.05) different.

The datasets supporting the conclusions of this article are included within the article, its

supplementary materials and in the Gene Expression Omnibus (GEO) repository,

[GSE103734].

Results

Development of the RAT-ChIP method

The outline of the RAT-ChIP method is depicted in Fig 1A. The whole protocol is designed to

work as a single tube–one-day assay, reducing the number of necessary experimental steps,

thus minimizing the loss of material. When designing the assay we aimed to use Tn5 transpo-

sase for sequencing library preparation as is used in ATAC-seq [42] and ChIPmentation

method [43]. We therefore needed a method for chromatin fragmentation that would be com-

patible with both tagmentation and low cell numbers. Sonication is the most commonly used

method chromatin fragmentation but it was not a good option in our case, as it cannot be

done in small volumes using the standard equipment available in most labs. Larger volumes,

in turn, lead to dilution of the material, which is undesirable when working with a small num-

ber of cells. Moreover, we wanted to avoid crosslinking, which due to harsh treatment needs to

be done when using sonication, as it adds several additional steps to the protocol resulting in

loss of material. We therefore turned to enzymatic digestion methods, which can be performed

in considerably smaller volumes without the need for crosslinking (at least when working with

histones). Micrococcal nuclease (MNase) digestion that is used in native ChIP protocols for

chromatin fragmentation was in our case not optimal, as MNase digests the entire free DNA

between nucleosomes resulting in inefficient adapter insertion when these nucleosomes will be

used for tagging. Thus, we looked for alternative enzymatic means for chromatin digestion.

Restriction endonucleases have long been used for DNA footprinting to identify the loca-

tions of DNA bound proteins. They only cut at specific recognition sequences, preferably in

between nucleosomes, and do not have exonuclease activity. Theoretically, even a single 4bp

recognizing restriction enzyme should cut on average every 256bp but the actual cutting fre-

quency depends on the DNA sequence and position of the nucleosomes. Nevertheless, a com-

bination of frequently cutting restriction enzymes should allow achieving relatively even

fragmentation coverage across the genome and fine enough resolution needed for histone

modification profiling. We therefore tested an array of frequently cutting restriction endonu-

cleases (S2 Table) for their ability to cut DNA in the chromatin context. All used enzymes

were from Thermo Scientific FastDigest lineup, which allows for rapid 5-minute digestions.

We used buffer conditions containing a low amount of non-ionic detergents that can disrupt

cell and nuclear membranes but do not interfere with the enzymatic activity. Out of the 10

tested restriction endonucleases, 5 were able to cut chromatin with various efficiencies, as evi-

denced by the appearance of nucleosomal ladders on an agarose gel (S1A Fig). AluI and SaqAI

were the most efficient cutters followed by MvaI, HinfI and BsuRI. Surprisingly, the other
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enzymes were not able to visibly cut the chromatin even if they were able to cut naked DNA

under the same conditions (data not shown). Although the best cutting single enzymes rela-

tively efficiently fragmented chromatin, a majority of the DNA was still too large for ChIP. We

therefore cut chromatin using combinations of restriction enzymes and observed a decrease in

average DNA size when more restriction endonucleases were used simultaneously (S1B Fig).

Next, we tested if incubation time has an effect on fragmentation efficiency but did not see a

substantial variation in DNA size between 5-, 10- and 15-minute incubation times (S1C Fig),

indicating that 5 minutes is enough to digest majority of the DNA.

Since restriction enzymes recognize specific DNA sequences we used in silico analysis to

identify the genome-wide cutting sites of the used restriction endonucleases based on hg19

genome build. Using a combination of 4 restriction endonucleases (AluI, SaqAI, MvaI and

HinfI), 87% of the genome was predicted to be cut into smaller pieces than 1,000bp (S2A Fig).

In total there were 2,465 regions that based on the in silico analysis remained larger than 1,000

Fig 1. RAT-ChIP enables genome wide histone modification profiling from 100 cells. A Overview of RAT-ChIP method. B Agarose gel electrophoresis of

DNA after chromatin treatment with a combination of restriction enzymes (middle lane) and after tagmentation (left lane). C UCSC genome browser custom

histone H3K4me3 and H3K27me3 tracks of RAT-ChIP-seq with 100 and 1,000 K562 cells in comparison with ENCODE data in a genomic region centred

around IL17C gene. D Clustered global Pearson correlation heatmap (enrichments in 5kb windows) of RAT-ChIP-seq and different published histone

H3K4me3 and H3K27me3 datasets in K562 cells.

https://doi.org/10.1371/journal.pone.0225801.g001
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bp. Out of these 273 overlapped with gap regions (regions with no annotated sequence in the

hg19 genome build), 290 overlapped with blacklisted regions (regions that have abnormally

high read counts in next-generation sequencing based studies) identified by ENCODE project

and 2,065 overlapped with repeat regions downloaded from UCSC table browser RepeatMas-

ker track (S3A Table). This left with only 299 regions that did not overlap with any of the three

lists (S2B Fig and S3B Table), showing that at least in silico there are only a handful of unique

genomic regions that cannot be effectively fragmented using a combination of restriction

endonucleases.

We also compared in silico DNA fragment sizes that would be created by cutting with the 4

restriction enzymes with experimentally determined fragment sizes after cutting with the 4

restriction enzymes followed by tagmentation and sequencing. The analysis showed that

regardless of the studied genomic regions with different chromatin states defined by

chromHMM, the average/median size of DNA fragments was always smaller than 176bp–

indicative of even and sufficient fragmentation for ChIP (S2C Fig).

Having identified that restriction enzymes could be used for chromatin digestion we pro-

ceeded with testing the RAT-ChIP protocol. The use of enzymatic digestion enabled us to con-

siderably downscale the sample volume so that the digestion was performed in 1μl and

immunoprecipitation (IP) was performed in 11μl final volume using 1μl of magnetic beads

pre-bound with an antibody against the histone modification of interest. After IP, beads were

washed and tagging was performed directly on the beads. After another round of washes, the

beads were used directly in PCR reaction. Skipping the decrosslinking, proteinase K treatment

and DNA purification steps minimizes the loss of DNA and allows working with very low

amounts of material. Even when starting with only 100 cells, we easily obtained enough mate-

rial for sequencing after 16 rounds of PCR (S3A Fig). Moreover, tagging on beads further

decreases the fragment size, so that the bulk RAT-ChIP library was between 200 and 500bp in

size (Fig 1B, S3B Fig), which is ideal for sequencing. Initial RAT-ChIP tests using 100 and

1,000 erythroleukemic K562 cells and H3K4me3 antibody followed by qPCR showed enrich-

ment at the promoters of housekeeping genes GAPDH and VSP29 compared to negative con-

trol regions (4th exon of ZNF7 gene and an intergenic region on chr17 (neg ctrl)) (S3C Fig)

showing that using qPCR the method is capable of detecting histone modification enrichments

from only 100 cells.

RAT-ChIP enables high quality genome-wide histone modification

profiling from 100 cells

We next coupled our RAT-ChIP protocol with Illumina sequencing for genome-wide histone

modification profiling. We used human K562 cells derived from a chronic myelogenous leuke-

mia for which many publicly available datasets exist allowing us to compare our method with

others. We used 100 and 1,000 cells and antibodies that recognize H3K4me3 or H3K27me3 to

see if RAT-ChIP can be used to study both active and inactive histone marks. After paired-end

sequencing the reads were mapped to hg19 genome assembly, enrichment profiles were cre-

ated and visualized as custom tracks in the UCSC genome browser. Visual inspection and

comparison to the corresponding ENCODE data suggested that RAT-ChIP can produce high

quality profiles that look similar to ENCODE data for both histone H3K4me3 and H3K7me3

modifications (Fig 1C).

To further assess the quality of the RAT-ChIP data we compared it to several other pub-

lished ChIP-seq experiments that had data available with K562 cells. These included two data-

sets from ENCODE, a native ChIP-seq dataset (NCHIP), as well as three datasets from low

input methods (see S4 Table) [15,34,43–46]. We downloaded raw sequencing data and
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processed all the datasets in the same way. Comparing various parameters such as % of

mapped reads, GC% and fragment size for paired-end data showed that although there is vari-

ability between the compared datasets, RAT-ChIP performed comparably to other methods

(S4 Table). One parameter that, as expected, is clearly dependent on the number of cells used

is the percentage of duplicated reads. In here, the low input methods had more duplicated

reads ranging from 30–64% (S4 Table).

Visualization in the UCSC genome browser showed that RAT-ChIP produces similar

enrichment profiles with all the studied datasets (S4 Fig). To further assess how does

RAT-ChIP compare to other methods we conducted clustering based on global correlations in

5kb windows between all the datasets. Two main clusters formed according to the studied his-

tone H3 modification (Fig 1D). Overall, the following correlations were found between

H3K4me3 (r2 = 0.71–1.00) and H3K27me3 datasets (r2 = 0.43–0.93). Within the modifica-

tions, unsurprisingly, datasets from the same lab showed higher correlations and usually clus-

tered together. Global heatmaps of H3K4me3 signals around +- 5kb region of TSSs also

showed similar profiles between RAT-ChIP and published datasets (S5A Fig).

To identify how RAT-ChIP signal intensities correlate with gene expression we divided

genes into 3 groups based on RPKM values of published K562 cell-line RNA-seq data [47].

Average signal intensities around +- 5kb region of TSS correlated with gene expression status

in all profiled datasets, expectedly, genes with higher expression had more H3K4me3 around

their TSS. One striking difference that appeared with the average signal intensity profiles

around TSS was that while majority datasets displayed a lower signal around TSS, known to

harbour a nucleosome free-region, RAT-ChIP data, recently published CUT&Tag datasets

[46] and to a lower extent MINT-ChIP [15] showed a clear signal in this region. This difference

might be caused by both biological and technical reasons. The signal at the TSS in RAT-ChIP

data could be reduced if fragments in between 120–420 bp were analyzed or if input sample

signal was subtracted from the IP signal but not when subtracting H3 RAT-ChIP signal (S5B

Fig).

Average H3K27me3 levels in metagene plots, opposite to H3K4me3 data, negatively corre-

lated with gene expression—in all datasets, the promoter and whole gene body had higher lev-

els of H3K27me3 signal in genes with lower expression (S6 Fig). However, the shape of the

average profiles varied from dataset to dataset. With RAT-ChIP data, the average signal was

very little influenced by exclusion of small (<120) and large (>420) fragments but was

markedly influenced by subtracting H3 signal and clearly over compensated when subtracting

input signal (S6 Fig). These data collectively show that RAT-ChIP produces comparable

H3K4me3 and H3K27me3 profiles to published data, and manages to capture the known

properties of these two histone marks.

To assess the reproducibility of the method we created additional 3 replicates using 100 and

1000 K562 cells and H3K4me3 and H3K27me3 antibodies (S7 Fig). Pairwise comparison of

the replicates ChIP signal in 5kb windows showed that, expectedly, there is more variation

between samples with 100 cells (Pearson correlation coefficients 0.69–0.81 for H3K4me3 sam-

ples and 0.67–0.76 for H3K27me3 samples) compared to 1000 cells (Pearson correlation coeffi-

cients between 0.93–0.97 for H3K4me3 samples and 0.84–0.95 for H3K27me3 samples) (S8

Fig).

We next determined regions enriched for histone H3K4me3 using SICER and overlapped

the regions between different samples (S5 Table). When one of the ENCODE datasets (UW1)

was used as a reference RAT-ChIP H3K4me3 peaks overlapped with 72–73% of the reference

peaks which was in the same range with Mint-ChIP (68–73%), CUT&Tag (66–74%) and

NChIP (71%) but lower than with other methods with more cells (82–90%) and a replicate

from the same lab (93%) (S9A Fig). This analysis shows that despite of lower overlap, low
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input methods are still capable of identifying majority of the enriched regions. Moreover, the

regions not identified, have on average much lower signal in the original ENCODE data, sug-

gesting that RAT-ChIP misses regions with low H3K4me3 enrichment (S9B Fig).

RAT-ChIP can identify differences in histone modification profiles

between cell-lines

Having identified that RAT-ChIP-seq data from K562 cells are comparable to other published

datasets we next studied if it is capable of identifying cell type specific differences in histone

modification profiles. To this end we performed RAT-ChIP-seq with 100 and 1,000 cells in

human non-small cell lung carcinoma cell line H1299, for which no published ChIP-seq data

exist, using histone H3K4me3 and H3K27me3 antibodies. After alignment and filtering, big-

wig files were created and visualized in UCSC genome browser. Visual inspection and compar-

ison of the RAT-ChIP tracks from H1299 and K562 cells showed similar enrichment profiles

at the transcriptional start sites (TSS) of genes for H3K4me3 and broad H3K27me3 domains

(S10A Fig). Inspecting the loci of known hematopoietic transcription factors such as GFI1b
(Fig 2A), GATA1 (S10B Fig), LMO2 (S10C Fig), ETO2 (data not shown) and entire globin

locus (S11A Fig), revealed clear differences between the two cell lines. For example, in GFI1b
locus there was enrichment of H3K4me3 around the TSS in K562 cells but the modification

was completely absent in H1299 cells (Fig 2A). The opposite was seen with H3K27me3, where

a region around GFI1b gene had clearly higher signal of H3K27me3 in H1299 cells compared

to K562 cells (Fig 2A). Similar examples could be found for H1299 cell-line—several genes

involved in epithelial to mesenchymal transition (EMT) such as TWIST2 and SIX1, showed

elevated histone modification profile of active genes in H1299 cells (S11B and S11C Fig). Pair-

wise correlation and clustering analysis showed that samples clustered first according to the

profiled histone modifications and within the modifications according to cell-lines (Fig 2B).

To gain a more global view of the differences we identified differential H3K4me3 peaks

between the two cell lines. Fig 2C shows heatmap of the signal intensities around TSS of 300

genes, which were differentially modified in one of the cell lines in contrast with 300 random

genes that were not differentially modified. To see if the differentially modified regions are

near functionally relevant genes we performed a GO enrichment analysis using GREAT [40].

Analysis of 500 top H3K4me3 peaks that were more enriched in one of the cell lines compared

to the other revealed enrichment of hematopoiesis related terms for K562 cells and signalling

related terms for H1299 cells in biological processes category (Fig 2D). Similar analysis was

performed with H3K27me3 mark (S12A and S12B Fig). Regions with higher signal (2840

regions) in K562 cell line were enriched in genes associated with cellular movement associated

GO terms and regions with higher signal in H1299 cells (2350 regions) were enriched in hema-

topoiesis related GO terms. This analysis shows that RAT-ChIP-seq can identify hundreds of

tissue specific genes with different histone modification profiles between K562 and H1299

cells.

RAT-ChIP enables histone profiling of blastocyst stage bovine embryos

Recently, our group has used bovine as a model to study the molecular events that take place

during of early embryogenesis of large mammals–chromosomal instability in particular [21].

We therefore aimed to put RAT-ChIP-seq to test and profile histone H3K4me3 and

H3K27me3 modifications in blastocyst stage embryos. Thus far, mouse is the only mammal,

which embryos have been used for genome-wide histone profiling at such an early stage of

development [16,17,20]. Using in vitro fertilized embryos, we used micromanipulator in com-

bination with laser microdissection to separate blastocysts into inner cell mass (ICM) and

Global histone modification profiling of bovine blastocysts by RAT-ChIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0225801 November 25, 2019 10 / 24

https://doi.org/10.1371/journal.pone.0225801


trophectoderm (TE) fractions. Pooled material of three embryos was subsequently used for

RAT-ChIP-seq experiments. After alignment to bosTau8 genome, bigwig tracks with enrich-

ment profiles were created and visualized in UCSC genome browser next to recently published

histone modification data from bovine embryonic stem cells (bESCs) [48]. As expected, his-

tone H3K4me3 was enriched mostly around promoter regions while histone H3K27me3 had

broad domains of enrichment as exemplified by looking at the locus centred around house-

keeping gene GAPDH (S13A Fig), showing that RAT-ChIP can be used to obtain genome-

wide histone modification profiles from early developmental stage embryos.

To gain more global view of how these two histone marks act in regulation of gene expres-

sion we intersected our histone modification data with published gene expression data from

ICM and TE of bovine blastocysts. We found five studies where gene expression profiles of

Fig 2. RAT-ChIP can identify differences in histone modifications between cell-lines. A UCSC genome browser custom histone H3K4me3 and

H3K27me3 tracks of RAT-ChIP-seq with 100 and 1,000 cells in K562 and H1299 cells. B Clustered global Pearson correlation heatmap of histone

H3K4me3 and H3K27me3 datasets of K562 and H1299 cells. C Heatmap of histone H3K4me3 signal in K562 and H1299 cells in 4kb region centered

around the TSS of 300 genes with either cell type specific or common signal. D Enriched terms of GREAT GO analysis of top 500 peaks differentially

enriched between K562 and H1299 cells.

https://doi.org/10.1371/journal.pone.0225801.g002
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ICM and TE were compared [26–30]. Two of them used RNA–seq and two others Affymetrix

microarrays. In addition, one of the studies compared in vivo and in vitro derived blastocysts,

making it in total six datasets. We obtained the published lists of differentially expressed genes

between ICM and TE for all the studies and intersected them. Overall, the overlap was rela-

tively modest–there were only 6 and 0 gene(s) that were consistently upregulated in ICM and

TE, respectively, in all 6 datasets. The same numbers for at least 5 overlapping datasets were 28

and 5 and for at least 3 overlapping datasets 210 and 221 for ICM and TE, respectively (S13B

Fig, S6 Table). This analysis shows that there is a lot of variability and that the changes between

TE and ICM at the transcriptome level are not huge at this early stage. In order to link gene

expression to histone modification profiles we took the genes that were differentially expressed

between ICM and TE at least in 3 datasets and profiled the average histone H3K4me3 profiles

around 5kb regions around TSS and created metagene plots for H3K27me3 encompassing

gene body and 3kb up and downstream of TSS and TES, respectively (Fig 3A). In ICM, both

groups of genes had similar levels of H3K4me3 and H3K27me3. In trophectoderm, TE upre-

gulated genes had higher average levels of H3K4me3 around their promoters and lower levels

of H3K27me3 levels around the whole gene region compared to genes upregulated in ICM

(Fig 3A), suggesting for a more pronounced epigenetic regulation. The differences seen

between ICM and TE are not due to major differences in immunoprecipitation quality as both

H3K4me3 and H3K27me3 average signal was clearly associated with gene expression levels in

both datasets (S14A Fig).

The involvement of epigenetic regulation in ICM and TE specific gene expression is further

supported by the analysis of average signals between pairs of corresponding gene regions (TE

or ICM upregulated genes) in TE and ICM. In all cases there were statistically significant dif-

ferences—ICM upregulated genes had more H3K4me3 and less H3K27me3 signal in ICM

compared to TE and, vice versa, TE upregulated genes had more H3K4me3 and less

H3K27me3 signal in TE compared to ICM (S14B Fig).

Although between samples the changes in histone modifications are in the expected direc-

tion, the changes are relatively modest–on a single gene level SICER managed to identify

higher H3K4me3 on the TSS of 77 genes out of 210 (37%) ICM upregulated genes in ICM and

on the TSS of 82 genes out of 221 (37%) for TE upregulated genes in TE. The same numbers

for TSS where H3K4me3 levels were upregulated at least 2x were 17 (8%) and 12 (5.4%) for

ICM and TE upregulated genes respectively (S6C and S6D Table). To identify genes, which are

potentially polycomb regulated, we calculated average H3K27me3 levels for ICM and TE upre-

gulated genes for regions spanning the whole gene plus 2kb upstream and for a region +-2kb

of TSS. We identified 6 (gene+2kb upstream) and 17 (+-2kb of TSS) genes where the changes

in H3K27me 3 levels were at least 4 times higher in TE compared to ICM for ICM upregulated

genes and 23 (gene +2kb upstream) and 24 (+-2kb of TSS) genes where the changes in

H3K27me 3 levels were at least 4 times higher in ICM compared to TE for TE upregulated

genes (S6C and S6D Table).

To understand how the data can be used to learn about the epigenetic regulation of individ-

ual genes, we focused on genes known to be important in either ICM or TE specification and

function. The promoter region of NANOG, a well-known pluripotency gene in embryonic

stem (ES) cells was in our combined list of ICM upregulated genes and had a H3K4me3 peak

in ICM but not in TE (Fig 3B). This is different from a recently published data from mouse

where Nanog promoter region is enriched for H3K4me3 in both ICM and TE (S15A Fig) [20].

Another good example where we detected difference in H3K4me3 levels around the promoter

region is DPPA3, although it was differentially expressed between TE and ICM in only one of

the five published transcriptome studies (S15B Fig, S6B Table). In contrast, enrichment of

H3K4me3 seen in ICM sample was absent from the promoter of DPPA3 gene in a recently
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published data with bovine embryonic stem cells (S15B Fig) [48] and was present in both ICM

and TE of mouse blastocysts (S15C Fig).

Similar to DPPA3, the master regulator of TE development, CDX2 [49], was in the list of TE

upregulated genes in only one of the expression datasets (S6B Table) and was enriched for

H3K4me3 in both cell types. Interestingly, there was an enrichment of H3K27me3 upstream

of CDX2 gene specifically in ICM. The same region came up as the first hit when BLAT align-

ment was performed using a sequence of the recently characterized mouse trophectoderm spe-

cific enhancer upstream of CDX2 gene [50], suggesting that CDX2might be down regulated in

ICM through Polycomb-mediated enhancer repression. These examples show that

Fig 3. Histone H3K4me3 and H3K27me3 modification profiles of ICM and TE of blastocyst stage bovine

embryos. A Average histone H3K4me3 (upper panels) and H3K27me3 (lower panels) profiles around TSS of genes

that are upregulated in ICM (red line) or TE (black line) in ICM (panels on the left) and TE (panels on the right). B

UCSC genome browser custom histone H3K4me3 and H3K27me3 tracks of bovine blastocyst ICM and TE in NANOG
(upper) and CDX2 (lower) gene regions.

https://doi.org/10.1371/journal.pone.0225801.g003
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RAT-ChIP-seq data can be used for hypotheses generation to identify molecular mechanisms

driving gene regulation in early embryonic development.

Discussion

We have developed a novel low input ChIP method called RAT-ChIP that can be used to cre-

ate genome-wide histone modification profiles from only 100 cells. There are several impor-

tant modifications to the standard protocol that enabled us to achieve successful results with

such a low number of cells.

First, the use of restriction enzymes for chromatin fragmentation enabled us to keep the

sample volumes small, which is essential when working with low amount of starting material.

The volumes used in other published protocols, except for these that use dedicated equipment

[13] not readily available, use much higher volumes. In addition, due to small volumes the

reagent costs are reduced significantly. For example, in a typical ChIP experiment 30μl of mag-

netic beads are used compared to 1μl in RAT-ChIP. Similar to MNase, restriction enzymes

only cut in between nucleosomes but in contrast to MNase they leave DNA overhangs that can

be used for sequencing library generation by tagmentation using chromatin as a template.

Restriction endonucleases have been used in DNA fingerprinting studies for years. More

recently they have been successfully used in different chromosome conformation capture (3C)

based methods to assess the 3D chromatin architecture [51]. The drawback of using restriction

enzymes is that the cutting is not random. However, combining several frequently cutting

enzymes enables to optimize the coverage and desired fragment size. As restriction endonucle-

ases are sequence-specific and only cut in between nucleosomes there is no problem of over

digestion. Moreover, due to the sequence specificity it is possible to predict genome-wide cut-

ting sites. In combination of the four restriction endonucleases used in this study based on in
silico analysis most of the genome is fragmented to the size suitable for ChIP. The larger frag-

ments that remain often overlap with gaps, ENCODE project identified black regions (regions

that have abnormally high number of reads in next generation sequencing data) or repeats that

are difficult to analyze. Moreover, the larger regions that can cause false positive signals can be

identified in silico and removed from further analysis. A recently published method called

RELACS also used a similar approach to us showing that restriction endonucleases can be

used for chromatin fragmentation in ChIP assays [52].

Second–minimization of steps where material could be lost, such as centrifugations and

DNA extractions. This was achieved by omitting several steps in regular ChIP protocols such

as crosslinking and proteinase K treatment. All steps in a protocol are carried out in a single

tube so that the first DNA purification occurs only after PCR, when loss of material is not any-

more an issue.

Third—simple, one step library preparation. We adapted the first step of library generation

step from the ChIPmentation method. In addition, being extremely simple and cost effective,

due to the random nature of tagmentation it allows to further decrease DNA size, so that

majority of the fragments in the final library come from single nucleosomes. In contrast to

ChIPmentation, we performed PCR directly on magnetic beads using the bound chromatin as

a template, similar to recently published high-throughput ChIPmentation [53] and lobChIP

[54]. Skipping DNA purification avoids loss of material. The method is also very fast taking

less than a day to complete. Recently, several methods–CUT&RUN, CUT&Tag, ChIL–seq,

scChIC-seq and CoBATCH have been published that look really promising, as they have been

shown to be able to obtain data from single cells [46,55–59].

Using K562 cells, we showed that the histone H3K4me3 and H3K27me3 profiles created

using RAT-ChIP compare well to other published datasets, demonstrating that it can be used
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to profile chromatin marks associated with both active and inactive genes. One difference we

observed in RAT-ChIP H3K4me3 data compared to regular ChIP datasets was a prominent

signal exactly at TSS. Even higher signal in this region was also seen in CUT&Tag H3K4me3

data, but not in ChIPmentation data both of which use Tn5 transposase. To a lesser extent, the

signal was also present in H3K4me3 Mint-ChIP data. All the three methods that display the

peak do not use crosslinking and use mild conditions for chromatin fragmentation. In case of

expressed genes, the region surrounding TSS is more accessible and usually considered to be

depleted of nucleosomes [60]. Therefore, part of the signal definitely comes from higher acces-

sibility. We do see a signal in this region if we prepare input samples by tagging restriction

enzyme digested chromatin within cell nuclei. However, the input prepared this way resembles

ATAC-seq and is not ideal control as in case of RAT-ChIP the tagging takes place on beads

after chromatin precipitation. The fact that the signal is still present after exclusion of small

fragments (<120bp) suggests that this region might contain histone proteins that are not

detectable with regular ChIP assays. Indeed, several papers have reported for the presence of

MNase sensitive -1 nucleosome [61–64]. Our data agree with these reports and suggests that

this nucleosome is H3K4me3 methylated.

One issue that arises with ChIP methods that use on-bead tagmentation is what kind of

control samples to use, as input cannot be treated the same manner as immunoprecipitation

samples. In our case, tagging input samples in intact nuclei right after restriction enzyme treat-

ment creates a profile that resembles ATAC-seq data and tagging after DNA extraction misses

the accessibility created bias. Tagmentation method, has opted for the use of IgG controls,

however, IgG samples are not considered the best controls for sequencing based approaches

[65]. Because of the low amount of starting material we failed to obtain good quality libraries

with IgG samples. Another option is to use immunoprecipitation with H3 antibody as a con-

trol since these samples are treated identical to the samples of interest and give more even cov-

erage compared to IgG. It has been shown that using INPUT or H3 pull-down as a reference

has small differences with a negligible impact on the quality of a standard analysis [66]. More-

over, several reports have shown that using an input has a little if any advantage over not using

an input [67–70]. Some studies imply that they do even worse and should be used only for

peak prioritization [71]. The benefits or caveats of using input are probably case specific. For

example, for pairwise comparison of samples to find regions with differential enrichments,

input is not crucial, as biases present in both samples should cancel each other out. More care

should be taken when quantitative statements are being made about the amounts of modifica-

tions. In this case even proper input might not be sufficient and using spike-ins should be con-

sidered if global changes in histone modification patterns are excepted [72,73]. Considering

the above, we recommend using immunoprecipitation with H3 as the first choice for a control

sample. Moreover, analysis should be done with and without using a control and attention

should be paid when the regions of interest show differences depending on the analysis. In this

case, an alternative method should be used to verify the results.

Replication experiments showed that RAT-ChIP can constantly obtain data from as few as

100 cells, however there is more experimental variation with such a low number of cells and

thus replicates are especially important to make biologically valid conclusions.

By profiling histone H3K4me3 and H3K27me3 modifications in H1299 cells and compar-

ing it to the data from K562 cells we showed that RAT-ChIP can identify epigenetic differences

between cell lines.

We also showed that RAT-ChIP works on small numbers of primary cells by applying it to

blastocyst stage bovine embryos. In addition to the vast potential bovine has in farming and

biomedicine, it also serves as a good model system to study the molecular events that take

place during early embryogenesis as its development is more similar to human compared to
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other common model organisms such as mouse [74]. Majority of the epigenetics experiments,

genome-wide studies in particular, have been performed in mouse. Using RAT-ChIP we have

created the first genome wide histone H3K4me3 and H3K27me3 modification profiles of ICM

and TE of blastocyst stage bovine embryos. Considering that day 7–8 embryos consist on aver-

age about 125 cells (80 in TE and 45 in ICM) [45,46] and we used material from 3 pooled

embryos for 2 ChIPs, only 70–120 cells were used per one immunoprecipitation.

Combined analysis of our histone modification data with lists of ICM and TE upregulated

genes from published papers showed that gene expression changes are on average reflected by

expected changes in histone modifications. The average differences in H3K4me3 levels are

more pronounced in regions adjacent to TSS, especially downstream. This is in agreement

with several recent reports that have associated breadth of H3K4me3 domains with cell iden-

tity and transcriptional activity [20,75]. Due to several reasons, however, such as low levels of

enrichment in some regions, not completely pure cell populations, cellular heterogeneity and

biological similarity, the changes at epigenetic level are not huge between ICM and TE. Never-

theless, looking at the histone modification profiles of factors with known importance either in

ICM or TE function we could see evidence for the involvement of epigenetics in gene regula-

tion. For example, a well-known pluripotency factor NANOG TSS had H3K4me3 only in ICM

but not in TE. Similarly, it was shown recently that there is loss of H3K4me3 on NANOG gene

upon human embryonal carcinoma NT2/D1 cell differentiation towards neural progenitors

[76]. This is different from mouse blastocysts where the whole Nanog gene is covered with

H3K4me3 both in ICM and TE (S15A Fig) [20]. Similarly, there were no differences in

H3K4me3 signal at the promoter of DPP3A gene between ICM and TE in the mouse data,

while our bovine data showed a signal only in ICM. This is again different from a recently pub-

lished bES cell data where the promoter region of DPP3A was devoid of H3K4me3. DPP3A
has a known conserved function of protecting the female genome from TET3 activity, it has

role in pluripotency maintenance and reprogramming [77] and has been shown to be essential

for bovine embryonic development [78]. The observed differences might be explained by locus

specificity, timing, cell-type, cell purity used in ChIP experiments, or interspecies differences.

Indeed, it was shown recently that there are interspecies differences upon ablation of OCT4
gene between mouse and human, including the regulation of NANOG gene expression [79].

There are also several examples of differentially regulated genes between ICM and ES cells

[80]. These examples show that there are important cell type and interspecies differences that

need to be taken into account when drawing conclusions about the regulation of specific

genes.

At the moment we have tested RAT-ChIP only with histone modifications. It remains to be

studied if it could be also used to profile other chromatin bound proteins, including transcrip-

tion factors. As the interaction of transcription factors is in general more labile, crosslinking

step is usually used in ChIP. However, there is a recent protocol called ORGANIC ChIP,

which demonstrated that transcription factors can be also immunoprecipitated without the

need for crosslinking [81]. Moreover, recent CUT&RUN and CUT&Tag methods do not use

crosslinking and work with transcription factors [46,55,56].

With the publication of several novel ultra-low input ChIP methods it is important to note

that each method has its own characteristics, using small amount of material inevitably creates

more variability and thus direct comparison of results obtained with different methods can be

complicated. For example, Tn5 transposase based methods can be influenced by chromatin

accessibility and correction for this bias with input is not always straightforward. Therefore, to

confirm biological significance, replicate experiments are crucial and results obtained with one

method should be repeatable by a different method.
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In summary, we have developed a novel simple yet sensitive RAT-ChIP method that it can

be used to study genome-wide histone modifications from less than 100 cells. Using the new

method we have created the first genome wide histone H3K4me3 and H3K27me3 profiles in

blastocyst stage bovine embryos that serve as a resource for further studies.
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locus in K562 cells to compared RAT-ChIP with other publicly available datasets.

(PDF)
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around TSS of all NCBI RefSeq genes ranked by H3K4me3 signal intensity in RAT-ChIP 100

cell sample. B Average H3K4me3 signal intensities around 10kb region of NCBI RefSeq genes

divided into 3 equally sized groups (high, medium and low expression) based on their expres-

sion levels using published RNA-seq experiment [47] RPKM values. RAT-ChIP data was addi-

tionally processed by subtracting either H3 or INPUT signal from the H3K4me3 signal or

restricting analysis to reads with fragment sizes between 120 and 420 bp.

(PDF)
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H3K4me3 signal or restricting analysis to reads with fragment sizes between 120 and 420 bp.
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comparisons of 8 replicate experiments (4 with 100 cells and 4 with 1000 cells) of histone
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overlapping H3K4me3 SICER peaks of RAT-ChIP and published datasets using ENCODE

UW1 or Bern1 peaks as a reference. B Average H3K4me3 profiles in UW1 dataset around

peaks that overlap (red line) or do not overlap (black line) with RAT-ChIP data show that

RAT-ChIP missed ENCODE peaks are low in enrichment.
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S10 Fig. RAT-ChIP can identify cell type specific histone profile differences. Custom

UCSC tracks of histone H3K4me3 and H3K27me3 profiles in VPS29 (A), GATA1 (B) and

LMO2 (C) gene loci in K562 cells compared to H1299 cells.
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UCSC tracks of histone H3K4me3 and H3K27me3 profiles in hemoglobin (A), TWIST2 (B)

and SIX1 (C) gene loci in K562 cells compared to H1299 cells.

(PDF)

S12 Fig. RAT-ChIP can identify differences in histone modifications between cell-lines. A

Heatmap of histone H3K27me3 signal in K562 and H1299 cells in 10kb regions centered

around TSS of 300 genes with either cell type specific or common signal. B Enriched biological

processes GO terms of GREAT analysis of differentially enriched regions between K562 and

H1299 cells.

(PDF)

S13 Fig. RAT-ChIP can identify histone H3K4me3 and H3K27me3 modification profiles

from bovine blastocysts. A Custom UCSC tracks of histone H3K4me3 and H3K27me3

RAT-ChIP profiles in GAPDH gene locus in ICM and TE of blastocyst stage embryos com-

pared to published bESC data. B 6-way Venn diagram to show overlaps of genes from six pub-

lished datasets that are upregulated in bovine blastocyst stage ICM (left) or TE (right). Below

the Venn diagram is a summary of number of genes that overlap with a shown number of

experiments.
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S14 Fig. RAT-ChIP H3K4me3 and H3K27me3 enrichment profiles in bovine ICM and TE

correlate with gene expression. A Average H3K4me3 (10kb around TSS) and H3K27me3

(6kb metagene body and 3kb up and downstream of TSS and TES, respectively) signal in

NCBI RefSeq gene regions divided into 3 equally sized groups (high, medium and low expres-

sion) based on their expression levels using published RNA-seq experiment [47] RPKM values

in ICM or TE. Plots are shown for ICM, TE and published bESC data [48]. B Scatterplots of

H3K4me3 (4kb region surrounding TSS) and H3K27me3 (gene body and 2kb upstream of

Global histone modification profiling of bovine blastocysts by RAT-ChIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0225801 November 25, 2019 18 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225801.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225801.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225801.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225801.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225801.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225801.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225801.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225801.s014
https://doi.org/10.1371/journal.pone.0225801


TSS) average signal with mean and SD are shown for TE and ICM upregulated genes. Paired

T-Test was used to calculate if average signals between pairs of corresponding gene regions

(TE or ICM upregulated genes) in TE and ICM are significantly different. � p<0.05, ����
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cyst stage mouse embryos [20]. B Custom UCSC tracks of histone H3K4me3 and H3K27me3

RAT-ChIP profiles in DPPA3 gene locus in ICM and TE of blastocyst stage embryos compared

to published bESC data [48]. C Custom UCSC tracks of histone H3K4me3 and H3K27me3

profiles in Dppa3 gene locus in ICM and TE and morula of blastocyst stage mouse embryos

[20].
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33. Ramı́rez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation

web server for deep-sequencing data analysis. Nucleic Acids Res. 2016; 44:W160–5. https://doi.org/

10.1093/nar/gkw257 PMID: 27079975

34. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of

DNA elements in the human genome. Nature. 2012; 489:57–74. https://doi.org/10.1038/nature11247

PMID: 22955616

35. Xu S, Grullon S, Ge K, Peng W. Spatial clustering for identification of ChIP-enriched regions (SICER) to

map regions of histone methylation patterns in embryonic stem cells. Methods Mol. Biol. 2014;

1150:97–111. https://doi.org/10.1007/978-1-4939-0512-6_5 PMID: 24743992

36. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformat-

ics. Narnia; 2010; 26:841–2. https://doi.org/10.1093/bioinformatics/btq033 PMID: 20110278

37. Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, et al. Cistrome: an integrative platform for transcrip-

tional regulation studies. Genome Biol. 2011; 12:R83. https://doi.org/10.1186/gb-2011-12-8-r83 PMID:

21859476

38. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, et al. Galaxy: a web-based

genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. 2010;Chapter 19:Unit 19.10.1–21.

39. Pohl A, Beato M. bwtool: a tool for bigWig files. Bioinformatics. Oxford University Press; 2014;

30:1618–9. https://doi.org/10.1093/bioinformatics/btu056 PMID: 24489365

40. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional

interpretation of cis-regulatory regions. Nat. Biotechnol. 2010; 28:495–501. https://doi.org/10.1038/nbt.

1630 PMID: 20436461

41. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the

analysis of sets through Venn diagrams. BMC Bioinformatics. BioMed Central; 2015; 16:169. https://

doi.org/10.1186/s12859-015-0611-3 PMID: 25994840

42. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for

fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome posi-

tion. Nat. Methods. 2013; 10:1213–8. https://doi.org/10.1038/nmeth.2688 PMID: 24097267

43. Schmidl C, Rendeiro AF, Sheffield NC, Bock C. ChIPmentation: fast, robust, low-input ChIP-seq for his-

tones and transcription factors. Nat. Methods. 2015;

44. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin

landscape of the human genome. Nature. 2012; 489:75–82. https://doi.org/10.1038/nature11232

PMID: 22955617

45. Mercer TR, Edwards SL, Clark MB, Neph SJ, Wang H, Stergachis AB, et al. DNase I-hypersensitive

exons colocalize with promoters and distal regulatory elements. Nat. Genet. 2013; 45:852–9. https://

doi.org/10.1038/ng.2677 PMID: 23793028

46. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. CUT&Tag for efficient

epigenomic profiling of small samples and single cells. Nat. Commun. Nature Publishing Group; 2019;

10:1930. https://doi.org/10.1038/s41467-019-09982-5 PMID: 31036827

47. Frank CL, Manandhar D, Gordân R, Crawford GE. HDAC inhibitors cause site-specific chromatin

remodeling at PU.1-bound enhancers in K562 cells. Epigenetics Chromatin. 2016; 9:15. https://doi.org/

10.1186/s13072-016-0065-5 PMID: 27087856

48. Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C, et al. Efficient derivation of stable primed

pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci. 2018; 115:2090–5.

https://doi.org/10.1073/pnas.1716161115 PMID: 29440377

49. Strumpf D, Mao C-A, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al. Cdx2 is required

for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Develop-

ment. 2005; 132:2093–102. https://doi.org/10.1242/dev.01801 PMID: 15788452

50. Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, et al. Notch and hippo converge

on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev. Cell. NIH Public Access;

2014; 30:410–22.

51. Davies JOJ, Oudelaar AM, Higgs DR, Hughes JR. How best to identify chromosomal interactions: a

comparison of approaches. Nat. Methods. 2017; 14:125–34. https://doi.org/10.1038/nmeth.4146 PMID:

28139673

52. Arrigoni L, Al-Hasani H, Ramı́rez F, Panzeri I, Ryan DP, Santacruz D, et al. RELACS nuclei barcoding

enables high-throughput ChIP-seq. Commun. Biol. Nature Publishing Group; 2018; 1:214. https://doi.

org/10.1038/s42003-018-0219-z PMID: 30534606

Global histone modification profiling of bovine blastocysts by RAT-ChIP

PLOS ONE | https://doi.org/10.1371/journal.pone.0225801 November 25, 2019 22 / 24

https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1093/nar/gkw257
https://doi.org/10.1093/nar/gkw257
http://www.ncbi.nlm.nih.gov/pubmed/27079975
https://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
https://doi.org/10.1007/978-1-4939-0512-6_5
http://www.ncbi.nlm.nih.gov/pubmed/24743992
https://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.1186/gb-2011-12-8-r83
http://www.ncbi.nlm.nih.gov/pubmed/21859476
https://doi.org/10.1093/bioinformatics/btu056
http://www.ncbi.nlm.nih.gov/pubmed/24489365
https://doi.org/10.1038/nbt.1630
https://doi.org/10.1038/nbt.1630
http://www.ncbi.nlm.nih.gov/pubmed/20436461
https://doi.org/10.1186/s12859-015-0611-3
https://doi.org/10.1186/s12859-015-0611-3
http://www.ncbi.nlm.nih.gov/pubmed/25994840
https://doi.org/10.1038/nmeth.2688
http://www.ncbi.nlm.nih.gov/pubmed/24097267
https://doi.org/10.1038/nature11232
http://www.ncbi.nlm.nih.gov/pubmed/22955617
https://doi.org/10.1038/ng.2677
https://doi.org/10.1038/ng.2677
http://www.ncbi.nlm.nih.gov/pubmed/23793028
https://doi.org/10.1038/s41467-019-09982-5
http://www.ncbi.nlm.nih.gov/pubmed/31036827
https://doi.org/10.1186/s13072-016-0065-5
https://doi.org/10.1186/s13072-016-0065-5
http://www.ncbi.nlm.nih.gov/pubmed/27087856
https://doi.org/10.1073/pnas.1716161115
http://www.ncbi.nlm.nih.gov/pubmed/29440377
https://doi.org/10.1242/dev.01801
http://www.ncbi.nlm.nih.gov/pubmed/15788452
https://doi.org/10.1038/nmeth.4146
http://www.ncbi.nlm.nih.gov/pubmed/28139673
https://doi.org/10.1038/s42003-018-0219-z
https://doi.org/10.1038/s42003-018-0219-z
http://www.ncbi.nlm.nih.gov/pubmed/30534606
https://doi.org/10.1371/journal.pone.0225801


53. Gustafsson C, De Paepe A, Schmidl C, Månsson R. High-throughput ChIPmentation: freely scalable,

single day ChIPseq data generation from very low cell-numbers. BMC Genomics. 2019; 20:59. https://

doi.org/10.1186/s12864-018-5299-0 PMID: 30658577

54. Wallerman O, Nord H, Bysani M, Borghini L, Wadelius C. lobChIP: from cells to sequencing ready ChIP

libraries in a single day. Epigenetics Chromatin. BioMed Central; 2015; 8:25. https://doi.org/10.1186/

s13072-015-0017-5 PMID: 26195988

55. Hainer SJ, Fazzio TG. High-Resolution Chromatin Profiling Using CUT&RUN. Curr. Protoc. Mol. Biol.

2019;e85. https://doi.org/10.1002/cpmb.85 PMID: 30688406
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