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Abstract

Statistical theory indicates that hierarchical clustering by interviewers or raters needs
to be considered to avoid incorrect inferences when performing any analyses
including regression, factor analysis (FA) or item response theory (IRT) modelling
of binary or ordinal data. We use simulated Positive and Negative Syndrome Scale
(PANSS) data to show the consequences (in terms of bias, variance andmean square
error) of using an analysis ignoring clustering on confirmatory factor analysis (CFA)
estimates. Our investigation includes the performance of different estimators, such
as maximum likelihood, weighted least squares and Markov Chain Monte Carlo
(MCMC). Our simulation results suggest that ignoring clustering may lead to
serious bias of the estimated factor loadings, item thresholds, and corresponding
standard errors in CFAs for ordinal item response data typical of that commonly
encountered in psychiatric research. In addition, fit indices tend to show a poor fit
for the hypothesized structural model. MCMC estimation may be more robust
against clustering than maximum likelihood and weighted least squares approaches
but further investigation of these issues is warranted in future simulation studies of
other datasets. Copyright © 2015 John Wiley & Sons, Ltd.
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Introduction

The assessment tools used inmany disciplines including psy-
chiatric and psychopathology research are often adminis-
tered by interviewers or raters rather than being completed
by patients. Typically in psychiatric research, a single rater
might assess multiple patients. Such complex data structures
are encountered, for example, when examining relationships
between self-reported and clinician rated measures, when
screening instruments are validated against assessments of
psychopathology, or when researching topics such as the
factorial validity of psychosis symptoms. Different types of
nesting are possible, however, such as when multiple raters
are involved in the assessment of a single patient.

The rater is usually either a clinicianwhoprovides the treat-
ment or a researcher who rates patients to obtain information
that can contribute to the evaluation of a symptomatology in
terms of severity estimates. One example of such a situation
is the use of the Positive and Negative Syndrome Scale
(PANSS) for the assessment of severity of symptoms of schizo-
phrenia (Kay et al., 1987). Although clinical raters in studies
typically reported in psychiatry are thoroughly trained to
achieve the most accurate and valid ratings possible, their
ratingsmay still depend on their experience, subjective percep-
tion of the symptoms and syndrome under investigation or
other personal judgements. Even if high inter-rater reliability
is established, part of the variability between patients can still
be attributed to differences between raters. This situation leads
to some degree of correlation among measurements on
patients who are assessed by the same rater, such that the ones
evaluated by the same rater appear to be more similar to each
other than they are to other patients. Traditional factor analytic
methods are grounded on the assumption that the data being
analysed originate from independent and identically distri-
buted observations (Bentler andChou, 1987; Hox, 1993). This
crucial assumption is obviously violated in the case of clustered
data, and the results of confirmatory factor analysis (CFA) or
related item response models may then be subject to bias.

Statistical developments have attempted to address
spurious correlations between individuals within a cluster.
Hierarchical modelling approaches have been developed
for this purpose. Such techniques are also known as mul-
tilevel or hierarchical modelling. Although originally
developed for a variety of regression models (De Leeuw
and Kreft, 1986; Gelman and Hill, 2007), these techniques
quickly became popular in latent variable applications,
including factor analysis (FA) and item response theory
(IRT) (Fox, 2005; Goldstein and Browne, 2005). If the
data contain information on which rater assessed each
patient, these methods provide a potentially effective and
statistically well-justified approach to account for inter-
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correlation effects and, thereby, accurately describing the
latent structure of the data.

Regrettably, missing identification of the cluster to which
each individual belongs (i.e. not knowing exactlywhichpatient
was rated by which rater) is a problem that is often encoun-
tered with empirical datasets in psychiatric research. Such
identificationmaybemissing because the study is not designed
to collect this information, for reasons of confidentiality, or
simply because this information is lost. In such situations,
the classic analytic approach for covariance structure model-
ling usually employs traditional (single-level) FA. The conse-
quences of this strategy in CFA have been studied using a
MonteCarlo design (Julian, 2001). The results show thatwhen
the variables exhibit minimal levels of intra-class correlation
(less than 0.05), the chi-square fit statistic, the parameter
estimates, and the estimated standard errors are relatively
unbiased. As the level of intra-class correlation increases, bias
is seen in all of these quantities. In addition, the effect of igno-
ring the multilevel data structure on the estimation quality
becomes more severe as the group/member ratio decreases.
Further, Julian (2001) reported slight overestimation of the
majority of parameters in factor analytic models.

Another study targeting the importance of multilevel ana-
lysis in structural equation modelling was published by
Muthén and Satorra (1995). They found that the standard
errors of conventional analysis are underestimated as soon as
positive intra-class correlation coefficients (ICCs) are ob-
served and clustering is ignored. In addition, the chi-square
statistic is inflated. However, the bias of estimated model pa-
rameter was found to be negligible for ICCs lower than 0.10.

The aim of the present study is to provide more insight
into these features for psychiatric researchers who are
aware of multilevel modelling as a topic, but have not been
exposed to examples from within the field of mental
health research using hierarchical factor models. We aim
to show the consequences of ignoring patient clustering
(within raters) in a psychiatric assessment using factor
analytic methods applied to simulated data. The data is
simulated according to the well-known and validated
structure of the PANSS as an illustrative case-example
and the impact of clustering on parameter estimates is
considered for a typical setting in which patients are
nested within rater and each patient is assessed by only a
single rater (researcher or clinician).
Multilevel structural equation modelling

Multilevel modelling (Goldstein, 2011) is a class of analy-
tical methods that has been developed to address issues
related to clustering. Its name conveys that different levels
are considered – individuals/patients are at the lower
hods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.1002/mpr
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(within) level, and raters or services are considered as units
at the higher (between) level.

There are three developmental perspectives that have
defined multilevel structural equation models: the Reticular
Action Model (RAM, McArdle and McDonald, 1984;
McDonald, 1994); the Linear Structural Relationships
(LISREL) model (Jöreskog, 1970; Jöreskog and Sörbom,
1989); the model of Muthén (Muthén, 1984, 1989) and a
range of software implementations e.g. Mplus (Muthén and
Muthén, 1998–2013), glamm in Stata (Rabe-Hesketh et al.,
2004), WinBUGS (Lunn et al., 2000) and others. The main
aimof all developmental lines ofmultilevel structural equation
models is to separate between-level andwithin-level variability
within a framework of covariance matrices, i.e. to separate
between-level and within-level covariance matrices. This
approach allows for simultaneous estimation of covariance
relations at both levels.

The general modelling framework used in this article is
based on the one developed byMuthén (1984). Themultilevel
considerations of this general covariance structuremodel have
been described in a series of publications (Muthén, 1989,
1991, 1994) and implemented in theMplus software.Muthén
(1991) specified the following separate factor analytic models
for between- and within-level covariance matrices:

ΣB ¼ ΛBΨBΛ′B þ ΘB (1)

and

ΣW ¼ ΛWΨWΛ′W þ ΘW ; (2)

where Σ represents an observed covariance matrix, Λ is a
matrix of factor loadings, Θ is a factor covariance matrix, Θ
is a covariance matrix of uniquenesses with variances of
measurement errors on the diagonal, and the subscripts B
and W refer to the between- and within-level covariances,
respectively. Each formula represents the factor structure at
the corresponding level. Within-level factor structure and
estimated parameters have the same interpretation as in tradi-
tional CFA. The between-level factor structure explains the
variation of the intercepts of the within-level observed
variables. The latent factors on between-level may therefore
refer to lenient/strict clinicians’ symptom ratings.

Several issues arise when data are ordinal rather than
continuous. In a two-level factormodel for ordinal variables,
for example, a threshold model that relates a set of continu-
ous latent variables to the observed ordinal counterparts
must also be defined (Grilli and Rampichini, 2007). Since
the means and standard deviations of the continuous latent
variables underlying the categorical items are not identi-
fiable, a standard normal distribution constraint can be
Int. J. Methods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.100
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imposed on each latent continuous variable underlying
observed categorical item and used to freely estimate all
item thresholds.

Methods

The Positive and Negative Syndrome Scale (PANSS)

Our goal was to build a clinically relevant simulation study
that would relate to measure that is well-researched and
widely known to the psychiatric community. The PANSS
(Kay et al., 1987) was chosen because it is used to assess
the individual differences between patients in terms of
symptom presence and their severity, in the dimensional
assessment of schizophrenia. PANSS consists of 30 items
measured on ordered categorical response scales ranging
from one (symptom absence) to seven (greatest severity
of the corresponding symptom) and showed satisfactory
inter-rater reliability (Lindstrom et al., 1994; Peralta and
Cuesta, 1994) as well as good validity and modest to good
internal consistency (Kay et al., 1988; Peralta and Cuesta,
1994). The meta-analytic study of more than 30 previously
published factorial structures of PANSS (Stochl et al.,
2014) showed that most existing studies have reported a
five-factor structure, usually containing positive, negative,
anxiety/depression/preoccupation, cognitive/disorganization/
dysphoric and activation/excitement factors. The same
study reported the moderate superiority of the five-factor
model structure proposed by White et al. (1997) among
other solutions. This solution offered an interesting and
strong rationale for our data generation, and was also
sufficiently complex as an exemplar.

Population model and data simulation

To accomplish the aim of this study we set up a Monte
Carlo simulation. Data were simulated according to a
five-factor CFA model at within-level (Figure 1) as intro-
duced earlier. Based on the results of our review (Stochl
et al., 2014), we set all factor loadings (i.e. all elements of
vector ΛW from Equation 2) to 0.7 and all factor correla-
tions (i.e. all off-diagonal elements of matrix ΨW) to 0.4.
The item thresholds for the seven-point ordinal categori-
cal data were set to 0, 0.5, 1, 1.5, 2 and 2.5 for all items
to determine the transition points between the observed
rating categories in each item. Such setting introduces
similar positive skewness of item responses to that found
in typical PANSS datasets. These threshold values are in
z-scores and therefore correspond to proportions of a
standard normal distribution in between corresponding
thresholds (i.e. 50% of the people would obtain rating 0,
19.1% score 1, etc.).
2/mpr
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Figure 1. The path diagram of the population model used for data simulation.
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The population model in Figure 1 corresponds to the
within-level structure of the simulated clustered data.
The between-level structure is deliberately ignored in this
study [only corresponding variance (ICC, see later)
between raters are specified on the between-level repre-
sented by the diagonal elements of ΘB from Equation 1].
This simplification is expected to be of minor impor-
tance in practice as the interest of the researcher often
centres on the within-level factor structure (Grilli and
Rampichini, 2007).

The rationale and modelling design for the simulation
were inspired by a real PANSS dataset (Stochl et al., 2014).
Int. J. Met
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Therefore the number of raters (i.e. between-level units)
was fixed to 70 in all simulated datasets. This is above
the recommended number of between-level units for a
proper multilevel approach to covariance structure mo-
delling, although maybe quite high as compared to some
recommendations in methodological papers in psychiatry
(Rouquette and Falissard, 2011). To eliminate any effects
of the number of patients nested within raters (cluster
size), the distribution of cluster sizes was constant in all
simulated datasets (20 clusters of size 5, 20 clusters of size
10, 20 clusters of size 20 and 10 clusters of size 30). The
mean cluster size was 14.3.
hods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.1002/mpr
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1 The Tucker–Lewis fit index (TLI) was also assessed; the results
were essentially identical to CFI. For the sake of brevity, we there-
fore do not report the TLI values.
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The following three explanatory variables (Boomsma
et al., 2012) were manipulated in our Monte Carlo design:

(a) ICC: Data were generated for 11 different levels of
between-level variability. These levels corresponded
to ICCs ranging from 0.001 to 0.390: these are typical
of the range of ICCs reported in the research litera-
ture. For each level, R = 100 datasets were generated
(that is, 1100 datasets in total). The sample size in
each simulated dataset was fixed at N = 1000 to reflect
a reasonable sample size encountered in psychiatric
literature for moderate sized factor analytic investiga-
tions of psychopathology data.

(b) Estimator: Given previously reported differences in
robustness of estimators to features such as the non-
normality of the data (Olsson et al., 2000), we
hypothesize that different estimators may exhibit dif-
ferent performance with respect to ignoring clustering.
In Mplus, the software chosen for our study, three
estimators are available for CFA modelling of ordinal
items when the between-level variability is ignored:
(1) weighted least squares mean and variance adjusted
(WLSMV); (2) full information maximum likelihood
(FIML); (3) Markov Chain Monte Carlo (MCMC)
methods. Given the computational demand of FIML
and MCMC estimators in multilevel modelling (the
estimation in our 1100 dataset would take many
months with current processor speed), we have not
studied performance of different estimators when the
clustering of data is acknowledged. We therefore show
the results for WLSMV only.

(c) Clustering: We present the results for two situations. In
the first, the data were analysed without considering the
multilevel structure (denoted as “clustering ignored”).
In the second, the data were analysed using a multilevel
approach and the rater identification for each patient
was available (“clustering acknowledged”). In both
cases, sample covariances were analysed and covariance
structure models (multifactor CFAs) were estimated. All
factor loading coefficients are presented as standardized
parameter estimates.

Analysis of simulated data

In all cells of the design (3 estimators × 2 clustering × 11
ICCs), the simulated data were analysed with a CFA with
an ordinal/polytomous item measurement model ap-
proach. A polychoric correlation matrix is therefore
analysed instead of regular covariance or correlation
matrix typically used when items are of continuous level
of measurement. This approach accounts for the observed
skewness in the polytomous (ordinal rating scale) data.
Int. J. Methods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.100
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The factor loadings, factor correlations, item thresholds
and selection of fit indices [chi-square, CFI (comparative
fit index) and RMSEA (root mean square error of appro-
ximation)1] are reported. It is important to emphasize that
the model was specified correctly in the analysis to study
only the effects of the explanatory variables (i.e. estimator,
clustering and ICC) on the factor analytic estimates. Thus
the estimated model for all datasets matches the popula-
tion model used for the data simulation.

Performance criteria

To evaluate the simulations we adopt conventional criteria
to assess bias. The accuracy of the parameter estimates
(factor loadings, factor correlations and item thresholds)
is quantified by the relative bias:

relative bias ¼
E θ̂
� �

� θ

θ
;

where θ̂ stands for the sample estimate of the population
parameter θ. For the purposes of this study, the acceptable
relative bias is proposed to be at the level of 0.05 (that is
5%). Note, that relative bias for the threshold with θ=0
(threshold one) is mathematically not defined and therefore
relative bias of this particular threshold is not included in
the results.

The accuracy of the standard error of the parameter esti-
mate is assessed by analysing the relative bias of the estimate,
where the population value is the standard deviation of the
corresponding model parameter over R = 100 replications.
In addition, we report the observed coverage of the 95% con-
fidence interval (for FIML and WLSMV) or 95% interval
credibility (for MCMC). This quantity reflects the proportion
(percentage) of times when the 95% confidence/credibility
interval of the parameter estimate contains the population
value of the corresponding estimate.

Performance of estimators is assessed in terms of the
mean square error (MSE) of the estimates, defined as:

MSEest ¼ Var θ̂
� �

þ E θ̂
� �

� θ
� �2

;

where lower MSE values indicate better performance. MSE
represents a way to simultaneously quantify the variance
of the estimator as well as the difference between values
implied by an estimator and the true values of the quantity
2/mpr
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being estimated. MSE can be used for comparative
purposes; estimators with smaller MSE are preferred.

For fit indices, the mean values over R = 100 replica-
tions are compared to cutoff values recommended by
Browne and Cudeck (1992): 0.05 for RMSEA and 0.95
for CFI. The 95% confidence intervals for fit indices are
computed as:

x±1:96
1

R
∑
R

1
x � xð Þ2

� �
;

where x represents corresponding fit index.

Software used for simulation and analysis

For both simulation and analysis Mplus (Muthén and
Muthén, 1998–2013) version 6.11 was used. A single seed
value (0) was used for generation of all datasets. The R
library MplusAutomation (Hallquist, 2012) was used for
generating MPlus syntax and automating all estimation
routines. An example of Mplus input and corresponding R
script file syntax can be found as Supporting Information.

Results

Relative bias of parameter estimates

Figure 2 shows the relative bias of factor loadings, factor
correlations and item thresholds (respective means over
R = 100) when a correct multilevel approach is used for the
analysis and when the clustering is ignored. Since the relative
bias of the five thresholds (without threshold at θ= 0)
would overlap if displayed, we present only a single figure
which represents the pattern of bias for all thresholds.

When clustering is acknowledged, all parameters appear
to be recovered correctly (i.e. within acceptable range)
regardless of the amount of between-level variability.

As described, results from three estimators were available
when clustering was ignored. The results suggest that
WLSMV and FIML perform similarly poorly at recovering
factor loadings and thresholds when clustering is ignored.
The loadings and thresholds are underestimated even for
low ICCs, and the bias is larger for higher ICC values. The
MCMC estimator recovered the factor loadings and thresh-
olds better than WLSMV and FIML for low ICC values but
the loadings become unacceptably underestimated for ICCs
≥ 0.10. The bias gradients (slopes of bias with respect to
ICC) of all of the estimators are comparable.

The point estimates of the factor correlations are al-
most unaffected, regardless of the estimator used. MCMC
performs slightly worse; factor correlations tend to be
underestimated, though only slightly and the bias
Int. J. Met
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becomes, according to our criteria, unacceptably large
only for high ICCs (≥0.35).

Figure 3 shows that standard errors of the parameter
estimates are also affected. Even if clustering is acknow-
ledged, standard errors of factor loadings and correlations
(but not thresholds) are unacceptably underestimated for
all ICCs. This bias is particularly large for ICCs very close
to zero, which, for the most part, reflects the large variabi-
lity of estimates rather than true underestimation. This
variability is caused by estimation difficulties or non-
convergence when the multilevel approach is used for
almost non-existing random effects in the model
(T. Asparouhov, personal communication, 2012). Indeed,
only 64 out of 100 replications succesfully converged for
ICC set to 0.001.

When clustering is ignored, the standard errors of the
model parameters are underestimated regardless of the es-
timation method. The bias becomes worse with increasing
degrees of between-level variance, and becomes unaccep-
table (>0.05) for ICCs larger than 0.02 (for thresholds),
0.10 (for loadings), and 0.20 (for factor correlations), re-
spectively. It is noteworthy that although the MCMC esti-
mator recovers item thresholds closer to their true values,
the underestimation of standard errors for high ICC values
remains comparable to that of WLSMV and FIML.

The coverage rates of confidence intervals presented in
Table 1 represent the percentage of times that the confi-
dence (for FIML and WLSMV) or credibility interval

(for MCMC) of the θ̂ covers θ. When clustering is
acknowledged, such probabilities are over 90% for factor
loadings and all thresholds, and only slightly lower for fac-
tor correlations. If clustering is not taken into account, the
coverage rates are smaller for higher ICC values regardless
of the estimator. Coverage rates for factor correlations are
similar for all estimators. For factor loadings, coverage
rates of WLSMV and FIML are very small regardless of
ICC value and MCMC shows reasonable coverage rate
only for small ICC values. For the WLSMV and FIML,
the higher the threshold’s true value, the less likely it is that
the confidence interval of the threshold point estimate will
cover the true value. This might be a consequence of response
distribution across the item categories (non-symmetric)
introduced in our simulated data, which leads to less informa-
tion available for the response categories at the extreme end
(these categories are rarely endorsed). This effect is not
observed for MCMC.

Mean square error (MSE)

Figure 4 depicts MSEs of the WLSMV, FIML and MCMC
for factor loadings, correlations and thresholds. In general,
hods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.1002/mpr
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Figure 2. Relative bias of (a) factor loadings, (b) factor correlations, and (c) thresholds (all thresholds overlapped within
estimator) for WLSMV, FIML and MCMC estimators when clustering is ignored and for WLSMV when clustering is
acknowledged (N = 1000, R = 100). The grey areas represent the region of acceptable bias.

Stochl et al. Effects of ignoring clustering in factor analysis
the smallest MSEs are observed when clustering is cor-
rectly acknowledged (and WLSMV is used as an estimator)
except for ICC values very close to zero. In this case, MSE
Int. J. Methods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.100
Copyright © 2015 John Wiley & Sons, Ltd.
is large, which reflects the difficulties of a multilevel
approach to recover parameters for data with nearly
non-existing random effects.
2/mpr
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When clustering is ignored, MCMC estimates of factor
loadings and thresholds are more robust (though still
inadequate) compared to WLSMV and FIML. Regarding
the estimation of factor correlations, the performance of
all estimators is comparable.
Fit indices (WLSMV estimator)

When clustering is acknowledged, the chi-square statistic
seems to be working as expected; that is, the population
model is not rejected (see Figure 5). However, the
chi-square statistic is seriously underestimated for ICCs
Figure 3. Relative bias of standard errors of (a) factor loadin
FIML and MCMC estimators when clustering is ignored and
R = 100 (R = 64 for ICC = 0.001)]. The grey areas represent
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close to zero as a consequence of the “almost non-existent”
random effects and related estimation problems
(T. Asparouhov, personal communication, 2012). There-
fore, making decisions on model fit based on this statistic
using a multilevel approach for data that do not have a
hierarchical structure cannot be recommended (at least
not when using Mplus software and WLSMV estimator).
Further, the chi-square statistic decreases for increasing
ICC values and tends to be underestimated for extreme
(but, in practice, unlikely) ICCs.

If the hierarchical structure is taken into account, the
RMSEA and CFI work well regardless of amount of
gs, (b) factor correlations, and (c) thresholds for WLSMV,
for WLSMV when clustering is acknowledged [N = 1000,
the region of acceptable bias.

hods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.1002/mpr
Copyright © 2015 John Wiley & Sons, Ltd.



Figure 3. (Continued)
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between-level variability. The RMSEA is below the recom-
mended cutoff value of good fit (i.e. < 0.05), and the CFI
also indicates a good fit to the data (>0.95) for all values of
the ICC.

Figure 6 shows the results for the scenario in which
the hierarchical structure is not considered. In this case, the
chi-square statistic is inflated. The point estimate of the
corresponding p-values drops below 0.05 for ICC ≈ 0.11,
and the confidence intervals suggest that the model would
be rejected based on the corresponding p-value if the
Int. J. Methods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.100
Copyright © 2015 John Wiley & Sons, Ltd.
hierarchical structure of the data is ignored for ICCs
greater than 0.16.

A similar pattern and sensitivity to hierarchical structure
can be seen for CFI (Figure 6). For ICCs higher than 0.2, CFI
drops below the recommended cutoff value and therefore
suggest unsatisfactory model fit. The RMSEA seems to be
robust to different levels of between-level variance. Al-
though this fit statistic shows slightly increased values with
increasing ICCs, it stays below the recommended cutoff
value for all of the between-level variability values tested.
2/mpr
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Table 1. Coverage rates (in %) for 95% confidence/credibility interval (CI)

Clustering Estimator Intra-class correlation coefficient

0.00 0.06 0.11 0.16 0.21 0.24 0.28 0.31 0.34 0.37 0.39

Loadings
Acknowledged WLSMV 93.21 90.3 90.5 90.2 91.3 91.3 91.5 91.9 91.9 92.6 92.2
Ignored WLSMV 4.7 2.2 1.3 0.8 0.7 0.5 0.6 0.5 0.5 0.4 0.5
Ignored FIML 0.8 0.4 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.3 0.3
Ignored MCMC2 94.9 92.0 83.2 71.9 60.6 51.2 43.4 37.3 33.0 29.0 26.8
Correlations
Acknowledged WLSMV 87.21 88.4 88.2 88.6 88.9 89.3 89.5 89.5 90.5 91.3 91.4
Ignored WLSMV 94.4 95.5 94.5 93.8 92.3 90.9 89.0 87.9 85.9 84.1 83.4
Ignored FIML 94.7 95.0 94.5 93.2 92.0 89.7 88.3 87.2 85.6 84.9 82.6
Ignored MCMC2 95.7 95.9 94.7 94.5 93.0 91.6 89.3 88.1 86.6 85.7 83.3
Threshold 1
Acknowledged WLSMV 97.31 95.3 94.9 94.6 95.1 95.0 95.1 95.4 95.1 95.1 94.9
Ignored WLSMV 95.5 87.2 79.9 75.4 71.4 67.7 65.6 63.3 61.2 59.8 58.8
Ignored FIML 94.9 86.1 79.3 74.4 70.2 66.9 64.7 62.4 60.3 59.4 57.9
Ignored MCMC2 94.6 85.5 78.8 74.4 70.1 66.3 63.8 61.9 60.1 59.0 57.9
Threshold 2
Acknowledged WLSMV 97.51 95.1 95.1 95.2 94.9 95.2 95.0 95.0 95.0 94.8 94.9
Ignored WLSMV 41.7 32.7 28.3 25.0 22.5 20.0 18.6 17.2 16.1 15.1 14.0
Ignored FIML 15.0 14.6 12.9 11.8 10.7 9.9 8.9 8.4 7.9 7.4 7.0
Ignored MCMC2 94.4 83.6 73.9 64.0 56.2 49.7 44.3 39.6 36.1 33.2 30.9
Threshold 3
Acknowledged WLSMV 96.71 95.3 95.4 95.1 95.2 95.2 94.8 95.3 94.8 94.9 94.5
Ignored WLSMV 2.3 1.8 1.4 1.2 1.1 0.9 0.7 0.6 0.6 0.4 0.4
Ignored FIML 0.1 0.3 0.4 0.3 0.3 0.3 0.2 0.3 0.2 0.2 0.2
Ignored MCMC2 94.3 82.7 63.5 46.2 33.3 25.2 18.4 14.6 11.1 8.8 7.0
Threshold 4
Acknowledged WLSMV 96.51 94.3 94.7 94.8 94.9 95.1 94.8 95.0 94.8 94.6 94.5
Ignored WLSMV 0.1 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Ignored FIML 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ignored MCMC2 94.5 79.7 55.0 33.9 19.7 12.2 7.6 5.0 3.3 2.4 1.9
Threshold 5
Acknowledged WLSMV 95.71 94.3 94.4 95.0 94.5 95.2 95.2 94.8 94.4 94.0 93.8
Ignored WLSMV 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ignored FIML 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ignored MCMC2 93.9 80.8 52.1 28.3 15.7 8.3 4.5 3.0 1.8 1.4 0.8
Threshold 6
Acknowledged WLSMV 96.21 95.1 94.8 94.8 94.8 94.9 94.9 94.6 94.0 93.9 93.7
Ignored WLSMV 2.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ignored FIML 8.9 3.3 1.4 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0
Ignored MCMC2 93.6 84.3 57.9 31.7 17.5 9.6 5.3 2.9 1.7 1.0 0.6

1Based on converged outputs (R = 64).
2Based on 95% credibility interval.
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Discussion

This study aimed to show the consequences of ignoring
patient clustering in datasets on factor analytic estimates.
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The data were simulated based on a real-life data set and
review (Stochl et al., 2014) according to a five-factor
model of the PANSS (White et al., 1997) and analysed
using CFA under two scenarios: (i) when the information
hods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.1002/mpr
Copyright © 2015 John Wiley & Sons, Ltd.
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on clustering is ignored; (ii) when all of the clustering in-
formation is available and taken into account. Our results
provide evidence for bias in factor analytic estimates when
patients are nested within raters and even only low cluster
effects (ICC ≥ 0.10) are ignored. We show this using a
range of different estimators and propose that MCMC
may be more robust against clustering effects. We also
provide evidence which should discourage researchers
from applying multilevel structural equation modelling
to data where there are almost non-existent random
effects.

TheMonte Carlo study showed that when rater informa-
tion is available for each patient and the multilevel approach
Figure 4. The mean square error for (a) factor loadings, (b) fa
MCMC estimators when clustering is ignored and for WLSMV w
for ICC = 0.001)].

Int. J. Methods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.100
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is adopted, factor analytic estimates usingWLSMV are unbi-
ased, regardless of the ICC value. Additionally, the fit indices
show acceptable model fit for all ICC values. Without con-
sidering clustering in the data, factor loadings, item thresh-
olds, and their corresponding standard errors are seriously
underestimated, and bias increases with larger ICC values.
However, the factor correlations are almost unbiased, even
for large ICCs. Bias in factor loadings and thresholds might
have serious consequences, for example, in investigations of
measurement invariance or differential item functioning
studies for instruments such as PANSS.

When clustering is ignored, our results showed less
bias for MCMC estimator compared to WLSMV and
ctor correlations, and (c) thresholds for WLSMV, FIML and
hen clustering is acknowledged [N = 1000, R = 100 (R = 64
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Figure 4. (Continued)
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FIML, although the slope of the bias with respect to
ICC and underestimation of standard errors is similar
for each of these estimators. The MCMC estimates
are relatively unbiased for ICCs smaller than 0.10.
The goodness-of-fit indices tended to show a poorer
fit for the analyses where clustering is ignored, espe-
cially for large ICCs which could lead to the rejection
of a structurally correct model. The most robust fit
index seems to be the RMSEA, possibly since the index
Int. J. Met
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assesses approximate model fit (Browne and Cudeck,
1992).

In a previous study employing multilevel analysis and
similar Monte Carlo methodology, Julian (2001) re-
ported that for very low levels of intra-class correlation,
the chi-square statistic, the parameters, and their stan-
dard error estimators are relatively unbiased, but as the
level of intra-class correlation increases, all of them are
biased. Those results are consistent with the findings
hods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.1002/mpr
Copyright © 2015 John Wiley & Sons, Ltd.



Figure 5. The CFA chi-square (a) and fit indices (b) (means over R = 100 replications per ICC level) when clustering is
acknowledged [WLSMV, N = 1000, R = 100 (R = 64 for ICC = 0.001)].

Stochl et al. Effects of ignoring clustering in factor analysis
presented here. However, we find an important diffe-
rence in the direction of the reported bias. Our Monte
Carlo study results revealed low factor analytic estimates
when the clustering information was ignored. By
contrast, Julian (2001) reported modest overestimation
of factor loading estimates, factor variances and cova-
riances. The overestimation became more serious for
larger ICCs and was found to be independent of the
model used for the data simulation. These different out-
comes might be explained by the fact that Julian’s study
modelled between-level structure, whereas ours did not.
Yet another explanation might be related to the diffe-
rences in software used for conducting the simulation
and subsequent analysis (EQS and LISREL respectively
in Julian’s study). This raises the question whether
amount and direction of the bias might depend on the
features of individual software. We acknowledge that we
relied on one analytic framework for data generation
and analysis. While this might limit the remit of this
study, we think that the basic framework (McDonald,
1999; Muthén, 1984) is general enough to be seen as a
representative for current software applications. It should
however be noted that freely available software will be of
great interest to applied researchers. These options will cer-
tainly need to be considered as new packages become
Int. J. Methods Psychiatr. Res. 25(3): 205–219 (2016). DOI: 10.100
Copyright © 2015 John Wiley & Sons, Ltd.
distributed in future [e.g. R packages lavaan, (Rosseel,
2012), OpenMx (Boker et al., 2011), and sem (Fox et al.,
2014)].

Another study reporting on the consequences of
ignoring a multilevel data structure was published by
Muthén and Satorra (1995). They found the same pattern
of bias: standard errors of conventional analysis are
underestimated and the chi-square statistic is inflated as
soon as positive ICCs are observed. Unlike our results, this
study found negligible bias of the parameter estimates. The
difference might be due to limited range of ICCs (≤0.20)
in comparison to our study.

From an applied point of view, our results can partly
explain the extraordinary heterogeneity in the results of
previous factor analytic studies of the PANSS. Indeed,
the majority of the published studies have not considered
that the PANSS is administered by clinical raters and have
not applied a multilevel approach for analysis (Stochl
et al., 2014). Previous results might therefore have been
prone to bias, the size of which might depend on indivi-
dual study characteristics.

Some limitations of our results must be outlined. First,
the simulation is intentionally based on a relatively simple
multilevel data structure. Each individual is completely
nested (i.e. each patient is assessed by single rater), and only
2/mpr
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Figure 6. The CFA chi-square (a), CFI and RMSEA (b) when clustering is ignored (WLSMV, N = 1000, R = 100).
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two levels were considered. Second, we have not considered
any between-level latent structural aspects of the model
(a factor structure for between-level variation). In practice,
hierarchical structures are often much more complicated.
Third, the simulation of the data was tailored to the situation
often observed in psychiatric practice (non-symmetric/
skewed data, distribution of cluster sizes, PANSS model).
Therefore, the external validity of this simulation is limited.

Despite the limitations of this study, we have provided
evidence of potential bias in the results for key parameter
estimates when FA of categorical data (i.e. item response
modelling) is used for data analysis and the clustering
of patients is ignored. In the light of these findings we
recommend that greater attention be given to application
of multilevel psychometric models and discourage
Int. J. Met
218
researchers from ignoring random effects when
performing CFA in psychiatric studies.
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