
Received: 22 February 2017 Revised: 2 August 2017 Accepted: 3 August 2017
DO
I: 10.1002/mpr.1585
OR I G I N A L A R T I C L E
Modeling count data in the addiction field: Some simple
recommendations

Stéphanie Baggio1 | Katia Iglesias2 | Valentin Rousson3
1Life Course and Inequality Research Centre,

University of Lausanne, Lausanne, Switzerland

2Centre for the Understanding of Social

Processes, University of Neuchâtel, Neuchâtel,

Switzerland

3 Institute for Social and Preventive Medicine,

University Hospital Lausanne, Lausanne,

Switzerland

Correspondence

Stéphanie Baggio, Institute for Social Sciences,

University of Lausanne, Geopolis building,

Lausanne CH‐1015, Switzerland.

Email: stephanie.baggio@unil.ch

Present Address

Stéphanie Baggio, Division of Correctional

Medicine and Psychiatry, Geneva University

Hospitals, University of Geneva, Geneva,

Switzerland.
Int J Methods Psychiatr Res. 2018;27:e1585.
https://doi.org/10.1002/mpr.1585
Abstract

Analyzing count data is frequent in addiction studies but may be cumbersome, time‐consuming,

and cause misleading inference if models are not correctly specified. We compared different

statistical models in a simulation study to provide simple, yet valid, recommendations when

analyzing count data.We used 2 simulation studies to test the performance of 7 statistical models

(classical or quasi‐Poisson regression, classical or zero‐inflated negative binomial regression,

classical or heteroskedasticity‐consistent linear regression, and Mann‐Whitney test) for

predicting the differences between population means for 9 different population distributions

(Poisson, negative binomial, zero‐ and one‐inflated Poisson and negative binomial, uniform, left‐

skewed, and bimodal). We considered a large number of scenarios likely to occur in addiction

research: presence of outliers, unbalanced design, and the presence of confounding factors.

In unadjusted models, the Mann‐Whitney test was the best model, followed closely by the

heteroskedasticity‐consistent linear regression and quasi‐Poisson regression. Poisson regression

was by far the worst model. In adjusted models, quasi‐Poisson regression was the best model. If

the goal is to compare 2 groups with respect to count data, a simple recommendation would be

to use quasi‐Poisson regression, which was the most generally valid model in our extensive

simulations.
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1 | INTRODUCTION

Count data are frequent in addiction studies, for example, when ana-

lyzing the number of drinks or cigarettes per week or a total number

of criteria of addictive behaviors. These distributions typically feature

a large number of zeros and small values with a long right tail corre-

sponding to heavy users. Additionally, these distributions can vary

widely, and thus the choice of a statistical model may become tricky

since many are nonrobust to violations of the underlying assumptions

and conditions. Contrary to continuous data for which a normal distri-

bution often provides a reasonable fit, a single “default” distribution for

count data is lacking. The Poisson or the negative binomial (NB) distri-

butions have become classical statistical models in addiction research

(Atkins, Baldwin, Zheng, Gallop, & Neighbors, 2013; Horton, Kim, &

Saitz, 2007; Wagner, Riggs, & Mikulich‐Gilbertson, 2015) but have

not proved successful to consistently fit a large portion of reality.

Extensions of classical distributions have been proposed, such as

zero‐inflated distributions to account for an excess of zeros in the data,
wileyonlinelibrary.com/jou
but what should one do when facing an excess of ones instead of

zeroes (eg, the number of sexual partners when investigating people

in stable relationships)? In some situations, there may be outlying

observations. As a result, researchers often have developed their

own models when analyzing count data, which is cumbersome and

time‐consuming.

This problem was pointed out years ago (Gardner, Mulvey, &

Shaw, 1995), yet few studies in the addiction field investigated this

question from a practical perspective and especially using simulation

studies. A systematic literature review using PubMed and PsychNet

with the keywords “simulation” and “count data” (June, 16, 2017) pro-

vided 254 results. A total of 8 articles were relevant for our study, after

excluding articles related to longitudinal data, survival analysis, mixed‐

effect models and correlated data, mediation analysis, and missing

data. Table 1 summarizes the characteristics and conclusions of these

articles. Overall, the studies mainly simulated Poisson distributions or

distributions based on real data (6 articles). The tested models almost

always include Poisson and NB regressions (7 articles) and frequently
Copyright © 2017 John Wiley & Sons, Ltd.rnal/mpr 1 of 10
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TABLE 1 Systematic literature review of articles related to simulation on count data

Authors Year Topic DV Models Outcomes IV Varying Parameters Choice

Sturman 1999 Education Absenteeism
(based on
real data)

OLS, OLS with transformed
DV, Tobit, P, overdispersed‐
P, NB, ordered logistic,
ordered probit

Type 1 error rate and
no. of false
positive

10 Sample size (n = 100,
1000), distribution
of IV (normal or
same as DV)

Over‐
dispersed
P

Horton
et al

2007 Alcohol P, NB, ZIP,
over‐
dispersed
Poisson

P, NB, ZIP Type 1 error
rate and 99% CI

1
binary

Variance NB (13.3,
40, 70)

All
equivalent
except P
being
worse

Vives
et al

2008 Psychology P LS, LM, LMR I, LMR II, χ2 df
test

Type 1 error rate and
power

1 Sample size (n = 20,
50, 100, 500),
lambda (0.3, 1, 5)

χ2 df test

Ullah et al 2010 Falls Over‐
dispersed
falls data
(based on
real data)

P, NB, ZIP, ZINB Type 1 error rate and
power of model fit

0 No NB

Roudsari
et al

2011 Radiology P, NB, ZINB P, NB, ZINB, OLS 95% CI for estimate,
prediction of no. of
head computed
tomography

4 No Unclear

Herbison
et al.

2015 Falls P P, NB, risk ratio, hazard ratio,
ratio of means, ratio of
median

Estimates and
variances

1
binary

Kind of over‐
dispersion (no,
moderate, high)

All
equivalent

Payne
et al.

2015 Methodology P NB, P‐GLMM, NB‐GLMM AIC, BIC, standard
error of
coefficients, and
95% CI

3 Outliers NB and NB‐
GLMM

Preisser
et al.

2016 Dentistry Dental caries
(based on
real data)

P, NB, marginalized ZIP,
marginalized ZINB

Standard error of
coefficients, 95%
IC, and type I error
rate

4 Sample size (n = 100,
200, 500, 1000)

Marginalized
ZINB

Abbreviations: CI, confidence interval; DV, dependent variable; GLMM, generalized linear mixed model; IV, independent variable; LM, Wald and Lagrange
multiplier; LR, likelihood ratio; LRM I, Wald and Lagrange multiplier with Negbin I variance function; LMR II, Wald and Lagrange multiplier with Negbin II
variance function; NB, negative binomial; P, Poisson; OLS, ordinary least square (linear regression); ZINB, zero‐inflated negative binomial; ZIP, zero‐inflated
Poisson.
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include zero‐inflated models (4 articles), while linear regression and

over‐dispersed Poisson were not frequently investigated (respectively,

2 and 1 articles). It is difficult to draw a general conclusion from these

studies. Poisson regression often appears as being the worse model.

Indeed, Poisson distribution is not robust for over‐dispersed count

data (Horton et al., 2007) because the Poisson distribution makes

strong assumptions on the distribution (mean‐equal variance, resulting

in an inflexible model with a single parameter), which is unrealistic

when working on real health and addiction data. Thus, Poisson has

long been described as causing misleading inferences (Gardner et al.,

1995). More flexible count models should be used instead, such as

the NB and zero‐inflated models in case of excess zeros (Horton

et al., 2007; Payne et al., 2015; Preisser, Das, Long, & Divaris, 2016;

Ullah, Finch, & Day, 2010) or overdispersed‐Poisson, referred to

below as quasi‐Poisson (QP; Sturman, 1999). However, all these stud-

ies took into account a limited number of scenarios, varying mainly the

sample size or only 1 parameter of the simulated distribution. In par-

ticular, none of these studies did consider unbalanced designs or con-

founding effects, which are important issues in all observational

studies.

Overall, these publications and other publications not including

simulations provided overly general recommendations, suggesting that
one should compare and choose the best model according to the data

(Gorelick & McPherson, 2015; Wagner et al., 2015). A recent study

provided some guidelines for Student test use (Poncet, Courvoisier,

Combescure, & Perneger, 2016), recommending Student test use for

normal and symmetric distributions, the Mann‐Whitney (MW) test

for strongly skewed distributions, and a robust Student test in pres-

ence of outliers. However, this study focused on continuous distribu-

tions and groups of the same size and variance, which is often not

the case in addiction research. The two articles of our systematic liter-

ature review including linear regression did not conclude in favor of

this model for count data (Roudsari, Mack, & Jarvik, 2011; Sturman,

1999). Additionally, several studies highlighted classical models—such

as linear regression models—that provide nonoptimal analyses (Aiken,

Mistler, Coxe, & West, 2015).

In the present study, we compared different statistical count

models (Poisson, QP, classical, and zero‐inflated NB) in a simulation

study to explore whether and to what extent it is possible to provide

simple, yet valid, recommendations when analyzing count data in

addiction research. We also included in our comparison classical

models (linear regression and nonparametric statistics such as MW),

which would considerably facilitate the statistical analyses. We

considered a large number of scenarios likely to occur in addiction
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research, such as unbalanced designs, presence of confounding

factors, and presence of outliers.
2 | METHODS

We consider the statistical comparison issue of 2 samples of

individuals with respect to count data using 2 simulation studies.

2.1 | Design of the first simulation study

We considered combinations of 5 simulation factors as follows:

a. Seven classical statistical models were tested: the Poisson

regression, QP regression (Ver Hoef & Boveng, 2007), NB

regression, zero‐inflated negative binomial (ZINB) regression (a

2‐component model, where one combines NB regression to

model the counts with a logistic regression to model an excess

of zeroes, as explained, eg, in Zeileis, Kleiber, & Jackman, 2008),

the linear regression (equivalent here to a Student test), a

heteroskedasticity‐consistent (HC) test in linear regression

(White, 1980), and the nonparametric MW test.

b. We generated data according to 9 population distributions: the

Poisson distribution, the NB distribution (with variance equaling
FIGURE 1 Barplots showing the nine distributions used in the first simulati
twice the mean), zero‐ and one‐inflated Poisson and NB

distributions (obtained as mixtures with 50% of the observations

generated according to a Poisson/NB distribution, and 50% of

extra zeroes, respectively, of extra ones), a uniform count

distribution, a left‐skewed distribution (while the Poisson and

the NB distributions are right‐skewed), and a bimodal distribution

(while the Poisson and the NB distributions are unimodal). All of

these (noninflated) distributions were taken to have the same

mean (mean = 2) and are depicted in Figure 1. We also considered

the possibility to add outliers to contaminate these distributions,

with 5% outliers placed around the value 20.

c. We tested 2 differences between population means, corresponding

to a null hypothesis and an alternative hypothesis. Under the null

hypothesis, we generated the data according to the same

distribution in both groups (with means m1 = m2). Under the

alternative hypothesis, data in the first group were generated with

a mean m1 = 2 (respectively, m1 = 1 and m1 = 1.5 for zero‐

and one‐inflated distributions), and data in the second group

were generated according to a distribution with a similar shape,

but with a mean m2 = 4 (respectively, m2 = 2 and m2 = 3 for

zero‐ and one‐inflated distributions), such that we had m2/

m1 = 2 (the variance of the second group being also inflated,

eg, by a factor of 2 in a Poisson or an NB distribution). For
on study. NB, negative binomial
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the contaminated distributions, outliers were generated

identically in both groups under the null hypothesis and the

alternative hypothesis.

d. We considered 2 sample sizes: small (n1 = n2 = 30) and moderate

(n1 = n2 = 300).

e. Unbalanced designs were also considered for moderate sample

sizes, where one group was larger than the other, with n2/

n1 = 1/9, 1/2, 1, 2, or 9 (while n1 + n2 = 600). The case n2/

n1 = 1 corresponded to a balanced design.

2.2 | Design of the second simulation study

We studied situations where confounders were included as additional

predictors in the models to get an adjusted comparison of the two

groups. We considered combinations of 6 factors as follows:

a. Six statistical models were tested: the same as in study 1 except

MW (for which controlling for covariates would be problematic).

b. We generated data according to 2 population distributions: the NB

and the Poisson models (it would not be straightforward to define

and generate a model including confounders according to the

other distributions from Figure 1). Here also, we considered the

possibility to add outliers to contaminate these distributions, with

5% outliers placed around the value 20.

c. We considered the same differences in population means corre-

sponding to the null and the alternative hypothesis as in study 1.

Here also, the distribution of outliers was identical in both groups

under the null hypothesis and the alternative hypothesis.

d. We considered 2 sample sizes: small (n1 = n2 = 30) and moderate

(n1 = n2 = 300), as in study 1.

e. We considered unbalanced designs for a moderate sample size

(n1 + n2 = 600), as in study 1.

f. We considered 2 situations of confounding, where the unadjusted

ratio between the two groups is either inflated or deflated

because of confounding, compared to the adjusted ratio. We

simulated 2 confounding factors—thought to be age and gender

—where age was normally distributed with a standard deviation

of 10 and a mean of 35 in one group, of 45 in the other group,

and where we had 70% men and 30% women in one group

and the other way around in the other group. An increase of

20 years was associated with a mean increase of 40%. Likewise,

being a man rather than a woman was associated with a mean

increase of 40%. Under the alternative hypothesis (with adjusted

means m2/m1 = 2), the “inflated situation” corresponds to the

case where the second group (with mean m2) was older (mean

age 45 years) and with more men (70%) than the first group

(35 years and 30%, respectively), while the “deflated situation”

corresponds to the case where the second group was younger

(mean age, 35 years) with more women (70%) than the first

group (45 years and 30%, respectively). Under the null hypothe-

sis, where the two groups are interchangeable, the inflated and

the deflated situations corresponded to the same simulation
setting. Examples of inflated and deflated situations are depicted

in Figure 2.
2.3 | Implementation

For both simulation studies, we have implemented these models using

the R (3.2.5) software using the following functions: the “glm” function

for the Poisson regression (option “family = Poisson”), the QP regres-

sion (“family = quasi‐Poisson”), and the linear regression (default option

“family = gaussian”); the “glm.nb” routine from the “MASS” library for

the NB regression (with parameter “size = mu”); the “zeroinfl” routine

from the “pscl” library for ZINB regression (with options “dist = negbin”

and “link = logit”); the “vcovHC” routine from the “sandwich” library to

get an HC test in linear regression (with the option “type = HC3,” as

recommended in Long & Ervin, 2000); and the “wilcox.test” for the

MW test, with options set to “exact = FALSE” and “correct = FALSE”

to get the classic version of this test. Confidence intervals for the area

under the curve (AUC), the association measure used in a MW test,

were calculated using the “ci.auc” routine from the “pROC” library.

Finally, confidence intervals for the mean ratio in a ZINB regression

were obtained using the delta method via the “deltamethod” routine

from the “msm” library (where a mean in ZINB regression can be esti-

mated as the product of one minus the proportion of extra zeros,

obtained via the logistic regression component of the model, and the

average of the NB regression component of the model).
2.4 | Outcomes considered

A total of 10 000 simulations have been run under each setting consid-

ered. All statistical tests were bilateral tests run at the nominal 5% sig-

nificance level. We considered the 2 following criteria:

a. Type 1 error was estimated as the percentage of simulated sam-

ples under the null hypothesis in which the null hypothesis was

wrongly rejected, which should be approximately 5% for a valid

model. A test was considered valid if the type 1 error was below

7% and conservative if it was below 3% (Bradley, 1978).

b. Coverage of 95% confidence interval (CI) was estimated as the

percentage of simulated samples in which the 95% CI provided

by the different models contained the true mean ratio (Poisson,

NB, ZINB, and QP regressions), the true mean difference (Student

and HC test), or the true AUC (MW test). This was done under the

null hypothesis and the alternative hypothesis. Indeed, a valid test

implies a valid 95% CI under the null hypothesis. However, a

model producing a valid 95% CI under the null hypothesis does

not necessarily produce a valid 95% CI under the alternative

hypothesis, such that (b) was a different criterion than (a). In line

with the type 1 error, a 95% CI was considered valid if the

coverage was above 93% and conservative if it was above 97%.

In addition, we estimated the power to be the percentage of simu-

lated samples under the alternative hypothesis in which the null

hypothesis was rightly rejected, which should be as large as possible.

Such a power study is limited to our 2 sample sizes and is just reported



FIGURE 2 Barplots showing examples of negative binomial distributions used in the second simulation study, where the true (unconfounded)
mean ratio between the two groups would be equal to 2, whereas the observed (confounded) mean ratio is equal to 2.7 (panel A, corresponding
to an inflated scenario), respectively, to 1.5 (panel B, corresponding to a deflated scenario)
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as a useful indication. Note that for ZINB regression, we have

discarded from those calculations the few samples for which this

model could not be fitted due to technical problems.
3 | RESULTS

3.1 | First simulation study

The results of our first simulation study are summarized inTables 2 and

3. Table 2 reports the type 1 error rate and the power estimated for

the 7 models under different population distributions and with small

sample sizes. One can see that the Poisson regression was nonvalid

in most cases, except of course under a Poisson distribution (and under

a uniform distribution, being also conservative under a left‐skewed and

a one‐inflated Poisson distribution). On the other hand, the NB

regression was valid (or conservative) in all settings without outliers,

but not valid with outliers, whereas ZINB regression was not even valid

without outliers under a zero‐ or one‐inflated NB distribution with

these small sample sizes. In contrast, the remaining 4 models were

valid under each setting considered, also with outliers. Among the 4

valid models, the MW test was the most powerful with outliers,

whereas QP regression, linear regression, and the HC test were in gen-

eral more powerful (and pretty close of each other) without outliers

(except for one‐inflated distributions, where the MW test was better).

Similar results were found with moderate sample sizes—also with an

unbalanced design—except for ZINB regression, which became

accurate under a zero‐inflated (but not under a one‐inflated) NB

model, while the HC test was not valid with outliers together with

n2/n1 = 1/9 or 9, whereas the statistical power gets logically much

closer (and often reached) 100% in all tested settings (data not shown).

Table 3 reports the coverage of 95% CI estimated for the 4 models

under the alternative hypothesis without outliers and with moderate

sample sizes (to save space, cases with n2/n1 = 1/2 or 2 are not pre-

sented). Overall, the best models were the HC test and the MW test,

which were valid under virtually all settings, the only exception being

the MW test under a zero‐inflated Poisson distribution together with

n2/n1 = 9. On the other hand, linear regression did not perform well
with an unbalanced design. In fact, it was not valid when n2/n1 < 1

(ie, when the mean, and hence the variance, was higher for the smaller

group) and was conservative when n2/n1 > 1 (ie, when the mean, and

hence the variance, was higher for the larger group. Quasi‐Poisson

regression partly showed the same behavior as linear regression, the

coverage of the 95% CI increasing with n2/n1, though in a less pro-

nounced way than for linear regression. Without being perfect, NB

and ZINB were also better than linear and QP regression, while

Poisson regression produced nonvalid 95% CI under most distributions

except for Poisson distributed data.

We do not present the coverage of a 95% CI calculated with out-

liers here, since it is not clear what the true mean ratio should be—

respectively, the true mean difference—in the presence of outliers.
3.2 | Second simulation study

The results of our second simulation study, where confounders have

been included in the model, are summarized in Tables 4 and 5.

Table 4 reports the type 1 error rate estimated for the 6 models with

moderate sample sizes. Again, the Poisson regression was valid in

none of the settings considered except the Poisson distribution

without outliers. The NB regression was valid under Poisson and

NB distributions, but only without outliers, the same applying for

ZINB regression. Linear regression was mostly valid, except without

outliers together with n2/n1 = 1/9. Remarkably, QP regression and

the HC test were valid in all situations, also with outliers and with

an unbalanced design. With small sample sizes, QP regression was

slightly nonvalid and the HC test was slightly conservative with

outliers such that it is delicate to compare their power (data not

shown).

Table 5 reports the coverage of 95% CI estimated for the 6 models

under the alternative hypothesis, with moderate sample sizes, includ-

ing an inflated or a deflated situation of confounding. As usual, the

Poisson regression was valid only under Poisson, not under NB distrib-

uted data. Linear regression and the HC test were not valid with an

unbalanced design, while QP regression was much better, though not

perfect in some settings with NB distributed data. Not surprisingly,



TABLE 2 Type 1 error rate and power achieved by 7 statistical models to reject mean equality of 2 groups for 9 population distributions

Statistical Model

Population distribution Outliers Poisson QP NB ZINB Linear HC MW

Poisson No 4.6 4.6 4.1 4.2 4.8 4.8 5.0
(99.6) (99.5) (99.6) (98.0) (99.6) (99.6) (99.2)

Yes 42.3 6.1 17.1 15.9 4.1 4.2 5.3
‐ (44.6) ‐ ‐ (48.1) (48.4) (96.7)

Zero‐inflated Poisson No 15.9 4.6 4.3 6.8 5.2 5.3 5.2
‐ (48.8) (38.2) (9.5) (47.8) (48.0) (25.4)

Yes 53.6 6.3 12.4 14.0 3.7 3.7 5.0
‐ (17.4) ‐ ‐ (16.9) (17.1) (20.9)

One‐inflated Poisson No 2.9 5.3 2.8 3.8 4.8 4.9 5.0
‐ (98.2) ‐ (92.3) (98.4) (98.4) (99.8)

Yes 46.5 6.6 22.5 20.2 3.3 3.5 4.8
‐ (30.2) ‐ ‐ (32.2) (32.4) (98.8)

NB No 16.7 5.3 6.2 7.1 5.1 5.3 5.2
‐ (80.5) (83.0) ‐ (79.9) (80.1) (73.9)

Yes 44.9 6.0 13.0 12.5 4.3 4.4 5.0
‐ (36.4) ‐ ‐ (38.2) (38.4) (64.3)

Zero‐inflated NB No 25.3 4.4 4.6 8.6 4.6 4.7 5.3
‐ (32.3) (28.3) ‐ (30.3) (30.6) (16.1)

Yes 54.5 5.7 9.6 12.7 4.1 4.2 4.5
‐ (14.5) ‐ ‐ (14.2) (14.3) (13.8)

One‐inflated NB No 10.2 5.3 6.5 7.7 4.6 4.7 5.2
‐ (81.5) (87.7) ‐ (81.7) (81.8) (97.8)

Yes 47.5 6.6 20.9 18.8 3.8 3.9 4.8
‐ (27.6) ‐ ‐ (28.9) (29.1) (93.7)

Uniform No 4.8 4.4 4.3 3.7 4.8 4.9 4.7
(97.9) (93.7) (91.8) (85.9) (92.5) (92.7) (78.9)

Yes 42.0 6.0 15.2 14.8 3.9 4.0 4.7
‐ (41.5) ‐ ‐ (43.6) (43.8) (69.7)

Left‐skewed No 0.1 4.6 0.1 0.3 5.0 5.0 4.9
(100) (100) (100) (100)

Yes 39.7 5.9 20.3 20.3 2.9 3.1 4.5
‐ (47.2) ‐ ‐ ‐ (51.2) (99.6)

Bimodal No 11.4 5.1 6.1 6.4 5.3 5.4 4.9
‐ (82.9) (84.5) (67.6) (81.3) (81.5) (67.0)

Yes 43.4 5.8 14.6 14.0 4.0 4.1 4.9
‐ (37.2) ‐ ‐ (38.9) (39.3) (57.3)

Abbreviations: HC, heteroskedasticity consistent; MW, Mann Whitney; NB, negative binomial; QP, quasi‐Poisson; ZINB, zero‐inflated negative binomial.

Type 1 error rate for simulations under the null hypothesis is provided on the first line for each population distribution; power for simulations under the
alternative hypothesis is provided under brackets on the second line for each population distribution. Power was provided only for valid models (Type 1 error
rate < 7%) (hyphens for invalid models).

Distributions under the null hypothesis, m1 = m2; distributions under the alternative hypothesis, m1/m2 = 2, with sample size n1 = n2 = 30, estimation from
10 000 simulations.

Valid models and the most powerful models among the valid models are highlighted in bold.
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NB and ZINB regression were valid in all these settings since we con-

sidered here only Poisson/NB distributed data without outliers (recall

we did not consider the criterion of the coverage of a 95% CI with

outliers).
3.3 | Summary of simulations

To summarize the performance of the 7 or 6 models in the first (unad-

justed comparisons) and in the second (adjusted comparisons) simula-

tion studies, we calculated for each model the absolute difference

between the estimated coverage of the 95% CI (obtained via simula-

tion) and the target value of 0.95, averaged over the different settings

considered with moderate sample sizes (in what follows the “AACE”

for average absolute coverage error). We had 135 such settings in

the first simulation study (90 under the null, 45 under the alternative

hypothesis, the former being the pendent with moderate sample sizes
of those settings described in Table 2, but including also unbalanced

designs, the latter being described in Table 3), and 40 such settings in

the second simulation study (20 under the null hypothesis, described in

Table 4, and 20 under the alternative hypothesis, described inTable 5).

Table 6 provides the rankings of the models according to this AACE

criterion. In the first simulation study, the MW test was the best

model, followed closely by the HC test and QP regression, the 3

models achieving an AACE below 1%. Linear regression followed at

fourth position (because of its poor performance with an unbalanced

design under the alternative hypothesis), still in front of ZINB and

NB regression (which performed poorly with outliers), Poisson regres-

sion being by far the worst model (with an AACE of almost 20%). In the

second simulation study, QP regression was ranked first, being the

only model with an AACE below 1%, followed by NB and ZINB (which

again suffered from outliers), the HC test and linear regression lying far

behind (the HC test was not here improving linear regression with an



TABLE 4 Type 1 error rate achieved by 6 statistical models to reject
mean equality of 2 groups for 2 population distributions adjusting for
confounders

Statistical Model

Population
distribution Outliers

n2/
n1 Poisson QP NB ZINB Linear HC

Poisson No 1/9 4.7 4.8 4.5 6.8 8.9 5.5
1/2 4.7 4.7 4.5 5.2 5.6 4.8
1 4.7 4.7 4.4 4.6 4.6 4.7
2 5.0 5.0 4.9 3.9 4.4 5.4
9 4.8 4.9 4.7 3.8 3.7 5.6

Yes 1/9 40.2 3.1 10.3 11.8 4.6 6.6
1/2 40.8 4.5 14.0 12.4 5.3 5.2
1 41.6 4.6 15.0 13.6 4.7 4.6
2 42.8 5.7 17.2 16.0 5.2 5.0
9 43.1 6.3 20.5 17.6 4.9 6.7

NB No 1/9 18.6 6.9 5.3 7.1 10.4 5.3
1/2 17.3 5.5 5.0 5.7 6.2 4.9
1 18.1 5.6 5.4 5.5 4.9 5.3
2 16.9 4.8 5.0 4.5 3.8 4.9
9 16.9 4.2 5.4 4.4 2.9 5.5

Yes 1/9 43.4 3.7 8.2 10.4 5.4 6.0
1/2 44.1 4.5 10.5 9.7 5.2 5.3
1 45.4 4.6 11.4 10.4 4.6 4.6
2 45.0 5.5 12.4 11.1 4.9 5.1
9 44.9 5.8 14.3 11.9 4.4 5.9

Abbreviations: HC, heteroskedasticity consistent; NB, negative binomial;
QP, quasi‐Poisson; ZINB, zero‐inflated negative binomial.

Type 1 error rate for simulations under the null hypothesis is provided for
each population distribution.

Distributions under the null hypothesis: m1 = m2, with sample size
n1 + n2 = 600, estimation from 10 000 simulations. The confounding var-
iables were age and gender and were associated with a mean inflation of
40%. The mean age was 40 (standard deviation = 10) and the proportion
of men was.5 in both groups (centered mean).

Valid models (type 1 error rate between 3% and 7%) are flagged in bold.

TABLE 3 95% confidence intervals for ratio for 7 statistical models
under the alternative hypothesis for various population distributions

Statistical Model

Population
distribution

n2/
n1 Poisson QP NB ZINB Linear HC MW

Poisson 1/9 95.0 95.1 95.4 95.3 86.4 94.9 94.0
1 95.0 95.0 95.2 95.2 94.8 94.8 94.9
9 94.8 94.8 94.9 96.1 99.0 94.4 94.3

Zero‐inflated
Poisson

1/9 75.5 90.8 97.9 94.3 79.7 94.4 94.4
1 79.9 96.3 98.5 95.5 95.3 95.3 94.7
9 82.7 98.1 98.3 94.4 99.7 94.5 84.0

One‐inflated
Poisson

1/9 95.4 93.3 95.4 95.2 83.7 94.0 93.0
1 96.6 95.7 96.6 96.5 95.4 95.4 94.3
9 96.7 96.6 96.7 95.6 99.3 94.0 93.1

NB 1/9 75.7 90.8 94.7 94.1 79.7 94.0 94.7
1 79.9 95.9 95.2 94.9 94.7 94.8 94.9
9 82.9 98.2 95.3 95.3 99.6 94.5 94.8

Zero‐inflated
NB

1/9 63.0 89.6 96.8 93.1 77.6 93.2 94.3
1 69.7 96.2 98.0 94.8 95.1 95.2 94.9
9 73.2 98.4 97.7 94.1 99.6 94.4 94.2

One‐inflated
NB

1/9 81.6 90.1 89.6 89.4 78.9 92.4 93.2
1 86.2 95.6 92.6 92.7 94.9 95.0 95.3
9 88.5 98.0 93.9 93.9 99.6 94.0 94.2

Uniform 1/9 85.2 86.9 90.2 94.6 75.3 94.5 94.3
1 91.2 96.2 97.6 96.2 95.2 95.3 95.4
9 94.6 99.2 99.1 96.6 99.9 95.1 94.8

Left‐skewed 1/9 98.6 87.7 98.6 98.9 75.9 95.2 93.6
1 99.6 96.0 99.6 99.7 94.9 94.9 94.7
9 99.9 99.0 99.9 99.8 99.9 95.2 94.3

Bimodal 1/9 75.6 87.7 92.1 94.0 75.4 94.9 94.7
1 82.9 96.0 95.8 94.9 94.9 94.9 94.8
9 87.1 98.9 97.5 95.5 99.9 94.7 94.2

Abbreviations: HC, heteroskedasticity consistent; MW, Mann‐Whitney;
NB, negative binomial; QP, quasi‐Poisson; ZINB, zero‐inflated negative
binomial.

95% confidence intervals for the mean ratio are given for Poisson, NB, and
QP: for the mean difference for linear regression and HC or the area under
the curve for MW.

Distributions under the alternative hypothesis: m1/m2 = 2, with sample
size n1 + n2 = 600, estimation from 10 000 simulations.
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unbalanced design under the alternative hypothesis), Poisson regres-

sion remaining at the end of the ranking. Overall, it is fair to say that

QP regression was the best model, performing reasonably well in most

settings considered, under the various distributions considered, with or

without confounding, with or without outliers, and with a balanced or

an unbalanced design.
4 | DISCUSSION

This study aimed to compare different statistical models to provide

simple recommendations for a choice of model when analyzing count

data in addiction research, including combinations of different charac-

teristics likely to occur when real data are collected and which are

present in all observational studies (ie, unbalanced designs, presence

of confounders, and presence of outliers).

The study included 2 common count models in addiction research:

Poisson and NB regressions (Atkins et al., 2013; Horton et al., 2007;

Wagner et al., 2015). A Poisson regression was not valid in most cases,
as it was already pointed out in previous studies (Horton et al., 2007).

A Poisson regression resulted in an increased type 1 error rate and

thus should be avoided because it causes misleading inferences (Gard-

ner et al., 1995). This model was valid only in case of a Poisson distri-

bution (without outliers), which is not likely to occur in addiction

research, where the variance is often larger than the mean.

To our surprise, an NB regression was not the best model accord-

ing to the type 1 error criterion. Indeed, it has become a classic model

in addiction research (Atkins et al., 2013; Horton et al., 2007; Wagner

et al., 2015), and it is widely used and recommended (Horton et al.,

2007; Payne et al., 2015; Preisser et al., 2016; Ullah et al., 2010). It

offered a real improvement over the Poisson distribution, which was

by far the worst model in our simulations. However, even if the NB

regression was valid for different population distributions and not only

the NB distribution, it did not fit all population distributions. Its princi-

pal problem was that it was not robust against outliers. Outliers are

almost never included in simulation studies on count data (except the

article of Payne et al., 2015). Distribution with outliers is a common

feature in addiction research, and thus, this was an important short-

coming for model choice.

Zero‐inflated NB regression is an extension of NB regression that

has been proposed to account for a possible excess of zeros in the

data. One could also propose a similar model accounting for a possible

excess of ones, or of another values. Selecting a correct “inflated



TABLE 5 95% confidence intervals for mean ratio/difference for 6 statistical models under the alternative hypothesis for 2 population distribu-
tions, controlling for confounders

Statistical Model

Population distribution Direction of confounding n2/n1 Poisson QP NB ZINB Linear HC

Poisson Inflated 1/9 95.1 95.0 95.4 94.7 31.0 55.2
1/2 95.4 95.3 95.5 95.6 75.8 81.0
1 95.2 95.1 95.3 96.0 95.6 94.9
2 95.0 95.0 95.1 96.1 72.5 61.8
9 95.5 95.4 95.5 96.5 43.5 19.5

Deflated 1/9 95.1 94.9 95.2 95.8 50.1 60.7
1/2 95.2 95.2 95.4 96.6 75.1 79.0
1 95.3 95.2 95.5 96.5 93.6 94.8
2 95.3 95.2 95.4 96.9 88.9 89.0
9 95.2 95.1 95.3 96.8 72.9 66.0

NB Inflated 1/9 75.0 89.4 94.8 93.6 54.8 85.2
1/2 77.9 93.9 94.7 94.4 87.3 90.6
1 79.1 95.7 94.7 95.0 96.8 94.3
2 80.9 97.3 95.0 95.7 92.9 81.3
9 83.0 98.6 95.2 95.9 90.7 53.2

Deflated 1/9 77.2 92.5 95.0 94.4 68.6 78.3
1/2 77.5 93.3 94.6 95.2 83.2 87.9
1 76.5 93.6 94.7 95.3 92.2 94.2
2 78.1 94.6 94.7 95.9 91.8 93.1
9 79.0 96.3 95.0 96.5 90.4 82.6

Abbreviations: HC, heteroskedasticity consistent; NB, negative binomial; QP, quasi‐Poisson; ZINB, zero‐inflated negative binomial.

95% confidence intervals for the mean ratio are given for Poisson, NB, and QP, for the mean difference for linear regression.

Distributions under the alternative hypothesis, m1/m2 = 2, with sample size n1 + n2 = 600, estimation from 10 000 simulations.

Confounders were age and gender and were associated with a mean inflation of 40%. For inflated mean, group 2 was older (mean age 45) and with more
men (70%) than the first group (respectively, 35% and 30%), and for deflated mean, group 1 was older with more men.

Valid models (95% IC between 93% and 97%) are flagged in bold.

TABLE 6 Ranking of the models according to the average absolute
coverage error

First Simulation Study
(Unadjusted Comparisons)

Second Simulation Study
(Adjusted Comparisons)

1. MW 0.005 1. QP 0.009

2. HC 0.008 2. NB 0.023

3. QP 0.009 3. ZINB 0.026

4. Linear 0.020 4. HC 0.092

5. ZINB 0.039 5. Linear 0.094

6. NB 0.043 6. Poisson 0.153

7. Poisson 0.193

Abbreviations: HC, heterosketasticity consistent; MW, Mann‐Whitney;
NB, negative binomial; QP, quasi‐Poisson; ZINB, zero‐inflated negative
binomial.

Average absolute coverage error is calculated with the absolute difference
between the estimated coverage of the 95% CI (obtained from 10 000 sim-
ulations) and the target value of 0.95, averaged over the 135 settings with
moderate sample sizes from the first simulation study, averaged over the
40 settings with moderate sample sizes from the second simulation study.
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model” necessitates a good knowledge of the context, and this is why

one cannot propose them as a simple and general recommendation to

model count data. Moreover, these models typically have 4 (instead of

2) parameters, which should then be appropriately combined to get a

classical summary measure of association, such as a mean ratio. Infer-

ence on this association measure is then typically produced via the

delta‐method, which is not always trivial to program and which may

not be accurate in small samples. Finally, one may also encounter

numerical problems when fitting these models. In our simulations, we

could not fit a ZINB model in about 15% of the simulated samples
related to Table 5 (and in about, respectively, 4%, 5%, and 3% of the

simulated samples related to Tables 2, 3, and 4).

Overall, the results showed that QP regression was the best model to

detect a difference between 2 groups having a count distribution, allowing

control of the type 1 error in all situations and control of the coverage of

the 95% CI in most (though not in all) situations, becoming slightly less

accurate with an unbalanced design. This model (QP) is not a common

model in addiction research, is yet simple to use, and deserves to be better

known. This conclusion is in line with the finding of the only article that

tested QP regression in our systematic literature review (Sturman, 1999).

We included the linear regression in our comparison to see

whether a classical model would be good enough to analyze count

data, despite some obvious drawback such as the possibility to predict

negative values for the count distribution (Horton et al., 2007). Previ-

ous studies suggested that the linear regression and linear regression

provide nonoptimal analyses (Aiken et al., 2015) and should be used

for normal and symmetric distributions without outliers (Poncet et al.,

2016). This was also the conclusion of previous simulation studies

using linear regression to analyze count data (Roudsari et al., 2011;

Sturman, 1999). Remarkably, the linear regression was valid in all situ-

ations with respect to type 1 errors with outliers in an unbalanced

design and when adjusting for confounders. Other advantages of the

linear regression include popularity, simplicity of implementation (there

is no problem of convergence, as it may happen with count models),

and the possibility to apply it straightforwardly in a situation where

count data may include noninteger values (eg, some persons reporting

drinking an average of 1.5 glasses of wine per week). In spite of its

resilience, its validity with respect to the coverage of 95% CI under

the alternative was not as good, except possibly in the case of a
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balanced design. Interestingly, the validity of the linear model in the

case of an unbalanced design could be much improved by performing

a HC test (instead of a classical Student test), at least in the context

of an unadjusted comparison. Unfortunately, there was almost no

improvement in the context of an adjusted comparison.

Finally, while the MW test, using AUC as an association measure,

was overall the best model (and the more powerful in the presence of

outliers) in the context of an unadjusted comparison, it cannot be used

in the context of an adjusted comparison (at least under current statis-

tical methodology).

One advantage of Poisson, NB, and ZINB regression is that they

produce estimate of the whole count distribution in both groups. In

contrast, QP regression and the linear regression only provide a (plau-

sible) estimate of the mean of the count distribution in both groups,

where an association measure might be calculated using either a mean

ratio (QP regression) or a mean difference (linear regression). Note,

however, that for continuous data, one similarly summarizes a distribu-

tion with a mean and a standard deviation without the claim to provide

a reliable estimate of the whole distribution.

As noted by a reviewer, a possible drawback of a mean ratio as a

summary measure of association is that it is expressed in a relative

scale, not in an absolute scale. For example, one would get a same

mean ratio of 0.5 whether an intervention allows us to reduce an aver-

age number of symptoms or complications (compared to a situation

with no intervention) from 20 to 10 or from 10 to 5, although 10 symp-

toms can be prevented on average in the former case against only 5 in

the latter case. This is one reason why some authors prefer a mean dif-

ference rather than a mean ratio to summarize the information, eg, in

the context of evaluating public health policies. It is however possible

to estimate a (marginal) mean difference in a multiplicative model, such

as Poisson, QP, NB, and ZINB regression, where inference on the mean

difference can be conducted via the delta method. We have actually

done this in our simulations for these 4 multiplicative models, and we

have found largely the same results for mean difference than those

reported above for the mean ratio regarding the validity of inference

(data not shown).

To conclude, if the goal is not to estimate the whole distribution

but just an association measure to compare 2 groups with respect to

count data with a valid test and (often) valid 95% CI, a simple recom-

mendation would be to use a QP regression, which was the most gen-

erally valid model in our extensive simulations, including situations

with outliers, confounders, and unbalanced designs. Using QP regres-

sion as a “default” model to analyze count data in the addiction field

would considerably simplify the practice. Researchers willing to con-

sider an alternative or more sophisticated model could also compare

their results with those provided by QP regression, where a too large

discrepancy might be a suspicious indication that their findings are

based on an invalid model, preventing one to draw too strong conclu-

sions and warranting cautious progress in addiction research.
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