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Abstract

Objectives: We proposed the application of a multivariate cross‐sectional frame-

work based on a combination of a variable selection method and a multiple factor

analysis (MFA) in order to identify complex meaningful biological signals related to

attention‐deficit/hyperactivity disorder (ADHD) symptoms and hyperactivity/inatten-

tion domains.

Methods: The study included 135 children from the general population with

genomic and neuroimaging data. ADHD symptoms were assessed using a ques-

tionnaire based on ADHD‐DSM‐IV criteria. In all analyses, the raw sum scores

of the hyperactivity and inattention domains and total ADHD were used. The ana-

lytical framework comprised two steps. First, zero‐inflated negative binomial linear

model via penalized maximum likelihood (LASSO‐ZINB) was performed. Second,

the most predictive features obtained with LASSO‐ZINB were used as input for

the MFA.

Results: We observed significant relationships between ADHD symptoms and

hyperactivity and inattention domains with white matter, gray matter regions, and

cerebellum, as well as with loci within chromosome 1.

Conclusions: Multivariate methods can be used to advance the neurobiological

characterization of complex diseases, improving the statistical power with respect

to univariate methods, allowing the identification of meaningful biological signals in

Imaging Genetic studies.
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1 | INTRODUCTION

Attention‐deficit/hyperactivity disorder (ADHD) is characterized by

hyperactivity and inattention symptoms with a clinical prevalence esti-

mated between 5% and 7% (Cardo, Servera, & Llobera, 2017). These

symptoms have a complex and polygenic etiology where multiple
wileyonlinelibrary.co
genes of small effect, altered brain development, and exposure to

environmental risk factors play a role in the development of the disor-

der (Arcos‐Burgos, Vélez, Solomon, & Muenke, 2012; Polanczyk, de

Lima, Horta, Biederman, & Rohde, 2007). Neuroimaging is commonly

used to quantify brain structure and function, being a useful tool to

unravel the complex etiology of ADHD symptoms. Neuroimaging data
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interpretation and understanding greatly improves with genetic stud-

ies. Imaging Genetics (IG) studies seek to analyze the combined effect

of multiple genetic and brain volume variations as potential bio-

markers of disease, providing a better understanding of mechanisms

of neurodevelopmental domains (Bogdan et al., 2017).

However, the dimensionality of the data in IG studies repre-

sents the principal handicap in the acquisition of analytical perspec-

tives on neurodevelopmental domains and complex neurological

diseases, amplifying existing issues of reliability and interpretability

of the results. Conventional strategies often test millions of single

nucleotide polymorphisms (SNPs) for association with a given

neuroimaging‐based measure, or, conversely, multiple neuroimag-

ing‐based measures are tested for association with candidate

genetic variants. These strategies ignore potential combined effects

between genetic and neuroimaging correlates and reduces statistical

power due to multiple testing correction. Several pioneering studies

have proposed different analytical procedures to assess neurological

and biological patterns of ADHD symptoms, by combining SNPs and

magnetic resonance imaging (MRI)‐derived features, such as gene‐

set analysis (Mous et al., 2015; Vilor‐Tejedor, Gonzalez, & Calle,

2015) and parallel independent component analysis (Khadka et al.,

2016). These methods have the advantage of integrating and cap-

turing underlying multivariate relationships but commonly perform

complex dimensionality reduction procedures for which it is difficult

to discern the individual information patterns related to the pheno-

type of interest.

The extraction of informative genetic and imaging‐based features

for in IG studies often relies on variable selection. This selection is

based on an initial identification of the most informative variables,

and the integration of different sources of data through multivariate

multiscale techniques, such as multiple factor analysis (MFA). The main

benefits of this process are twofold: first, it removes any redundant

features, which may improve prediction accuracy in addition to

supporting the interpretability of results. Second, it helps in the gener-

ation of post hoc inferences.

The use of variable selection methods can also be seen as an alter-

native strategy of genome‐wide association studies for the identifica-

tion of informative genetic markers related to neurodevelopmental

domains, reducing the dimensionality of the data. In this context, in

psychiatric research, it is uncommon the use of dichotomous status—

one that indicates whether the disorder is present or absent. How-

ever, such dichotomous classification does not capture accurately

the variability observed in the general population, because individuals

who present extreme score values are grouped together with individ-

uals whose symptoms are just above the diagnosis threshold. This

dichotomous approach contrasts with the notion of a continuum dis-

tribution of the symptoms describing a dimensional spectrum, ranging

from normal to dysfunctional. In this regard, when analyzing ADHD

symptoms as a continuous score, the phenotype often presents

skewed and overdispersed distribution, and, to date, little attention

has been paid to their efficient statistical modeling. Moreover, still

with the development of newly advanced methodologies that allow

novel analytical possibilities, the vast majority of these methods have

not yet been used in the IG field of ADHD (Vilor‐Tejedor, Cáceres,

Pujol, Sunyer, & González, 2016).
In order to overcome this methodological scarcity, we proposed

an analytical framework, which consists of a two‐step analysis com-

bining a variable selection strategy designed for a count data distri-

bution, along with a dimensionality reduction approach. In the first

step, we performed separate selection of most relevant SNPs and

brain regions of interest (ROIs) for ADHD via penalized zero‐

inflated negative binomial regression analysis (LASSO‐ZINB; Mallick

& Tiwari, 2016). In the second step, we jointly evaluated

preselected ROIs and SNPs by applying multiple factor analysis

(MFA) to determine significant genetic and imaging correlates of

ADHD variability (Escofier & Pagès, 1990).

The main aim of the application of our proposed analytical

framework was to identify the most informative genetic and brain

structure factors, which in turn, had better explain the underlying

structure of total ADHD symptoms and hyperactivity and inattention

domains.
2 | MATERIALS AND METHODS

2.1 | Participants

This study is based on a subsample of the BRrain dEvelopment and

Air pollution ultrafine particles in school childrEn (BREATHE) project.

This population‐based cohort of primary schoolchildren was designed

to analyze the adverse effects of traffic‐related air pollution on

neurodevelopment. As part of the BREATHE project design, 38

schools located in the metropolitan area of Barcelona were selected

based on modeled air pollution levels to achieve maximum exposure

contrast. Further details on study design and sociodemographic

descriptive for low and high polluted schools can be found elsewhere

(Sunyer et al., 2015). From those schools, a total of 2,875 children

aged 7 to 10 years and enrolled in the 2nd, 3rd, and 4th primary

grades were recruited. Genotypic, neuroimaging, and behavioural

data were available for a subset of 135 individuals. All the parents

or legal guardians of the study subjects provided signed informed

consent as approved by the Ethics Committees of the centers

involved in the study.

2.2 | Total ADHD symptoms and hyperactivity and
inattention domains

ADHD symptoms were collected using a questionnaire based on the

ADHD criteria of the Diagnostic and Statistical Manual of Mental Dis-

orders, fourth edition (4th ed., DSM–IV–TR; American Psychiatric

Association, 1994), completed by teachers. ADHD‐DSM–IV consists

of a list of 18 symptoms, assessing two separate symptom groups:

inattention (nine symptoms) and hyperactivity/impulsivity (nine symp-

toms). Each ADHD symptom was rated in a 4‐point scale of frequency

from never or rarely (0) to very often (3). The continuous measure of

total ADHD symptoms was calculated as the sum of the score of each

item. This measure ranges from 0 to 54. Hyperactivity and inattention

domains were calculated as the sum of the scores of the nine items

corresponding to each dimension. In all analyses, total ADHD symp-

toms and hyperactivity and inattention domains were treated as con-

tinuous outcome variables modeled by zero‐inflated negative‐binomial
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distributions, previously shown to improve the statistical modeling of

ADHD studies (Vilor‐Tejedor, Alemany, et al., 2016).
2.3 | Genomic assessment

Genome‐wide genotyping was performed using the HumanCore

BeadChip WG‐330‐1101 (Illumina) at the Spanish National Genotyp-

ing Centre (CEGEN) ‐ Spanish National Cancer Research Centre

(CNIO). Genotype calling was done using the GeneTrain2.0 algorithm

(with a default threshold of 0.15) based on HapMap clusters imple-

mented in the GenomeStudio software. PLINK was used for the

genetic data quality control (Purcell et al., 2007). We applied the fol-

lowing sample quality control thresholds: sample call rate > 97%

(N = 3 exclusions) and heterozygosity 4 SD (N = 5 exclusions). Then,

we checked sex discordances (N = 18 exclusions, 1%) and relatedness

(N = 80 exclusions: 1 twin, 32 siblings, 39 cousins, 8 incongruent

sibling's couples). In total, we excluded 106 subjects (6%). Genetic var-

iants were filtered by SNP call rate > 95%, Minor alelle frequency

(MAF) > 1%, and Hardy‐Weinberg equilibrium. (HWE)

pvalue > 1.10E‐6 (N = 58,827 exclusions, 19.68%). We additionally

used principal component analysis to identify population structure

patterns. The two first components showed a homogeneous cluster

indicating that it is not necessary to exclude any sample based on this

criterium. The final genetic data set included 246,103 SNPs. A full

description of the genotyping and quality control procedures can be

find elsewhere (Alemany et al., 2016). Moreover, a priori linkage dis-

equilibrium‐based SNP pruning was performed. The pruning proce-

dure consisted on calculating linkage disequilibrium (LD) between

each pair of SNPs considering a windows of 50 SNPs. One of a pair

of SNPs with an LD greater than 0.2 were removed, shifting then

the windows 5 SNPs forward and repeating the procedure. This pro-

cedure is extensively documented in Purcell et al. (2007). The pruned

genetic data set included 70,707 SNPs.
2.4 | Neuroimaging assessment

MRI of brain anatomy was performed using a 1.5 Tesla Signa Excite

system (General Electric, Milwaukee, WI, USA) equipped with an

eight‐channel phased‐array head coil and single‐shot echo planar

imaging software. High‐resolution three‐dimensional anatomical

images were obtained using an axial T1‐weighted three‐dimensional

fast spoiled gradient recalled acquisition in the steady state inversion

recovery‐prepared sequence. A total of 134 contiguous slices were

acquired with repetition time of 11.9 ms; echo time of 4.2 ms; flip

angle of 15°; field of view of 30 cm; 256 × 256 pixel matrixes; and

slice thickness of 1.2 mm. All the anatomical images were visually

inspected, and subjects with poor quality images were discarded. Cor-

tical reconstruction and volumetric segmentation were carried out

using FreeSurfer tool (http://surfer.nmr.mgh.harvard.edu/). Specifi-

cally in this study, measures of 42 subcortical structures obtained

from FreeSurfer automatic segmentation were used. For each isolated

structure, the program estimates the absolute volume in mm3. No

adjustment for global volumes (e.g., total brain or intracranial volume)

was used. Processing steps included removal of non‐brain tissue, seg-

mentation of the subcortical white matter (WM) and deep gray
matter (GM) volumetric structures in native space, tessellation of

the GM and WM boundary, registration to a spherical atlas which is

based on individual cortical folding patterns to match cortical geome-

try across subjects and creation of a variety of surface based data.

More details can be found in Mortamais et al. (2017) and Pujol

et al. (2016).
2.5 | Statistical analysis

A two‐step procedure was conducted (Figure 1). In the first step, we

performed variable selection based on a count data distribution to

select SNPs associated with each ADHD dimension (total ADHD

symptoms and hyperactivity and inattention domains) fitting penal-

ized zero inflated negative binomial regression analysis (LASSO‐ZINB)

models. LASSO is a modeling method that shrinks the coefficients of

uninformative variables towards zero, thus, performing variable selec-

tion on strongest effects. Cross‐validated log‐likelihood values for the

shrinkage parameter (λ) were computed though the mpath R package

(Mallick & Tiwari, 2016). These parameters are those used to control

the amount of shrinkage that is applied to the estimates in the penal-

ized zero‐inflated negative binomial regression models. We, therefore,

selected SNPs with regression coefficients different from zero.

LASSO‐ZINB models were computed with mpath package of R. At

the second step of analysis, we computed MFA to determine the

main genetic and brain structures influencing ADHD domains variabil-

ity. All SNPs selected in the previous step were included in the mul-

tivariate analysis. MFA was used to estimate the relationships

among genetic and neuroimaging correlates in order to identify con-

current changes in total ADHD, inattention, and hyperactivity dimen-

sions. Specifically, MFA standardizes variables in each predefined

block of data and calculates the global axes, which are the linear com-

bination of original parameters that maximize the global data vari-

ance. Hence, MFA highlights the most significant features and data

structures. MFA was computed using the FactoMineR R package. All

models at both steps were adjusted for age, sex, school, and the first

10 principal components.
3 | RESULTS

3.1 | Descriptives

Table 1 shows descriptive of age, sex, and the mean, standard

deviation, and range scores for total ADHD symptoms, hyperactivity

domain, and inattention domain, for the whole sample and the neu-

roimaging subsample. Samples were balanced for age and gender.

We also showed correlation patterns (Pearson correlation statistics)

between total ADHD symptoms and inattention and hyperactivity

dimensions. The three outcomes analyzed are highly correlated

(r > 0.6; p < 2e‐16). Figure 2 shows the empirical distributions of

ADHD symptoms and hyperactivity and inattention domains. We

can see that the distribution of the data is positively skewed

because a high proportion of the individuals have zero count scores.

Table S1 summarizes the cerebral structures analyzed in the study.

Figure 3 shows the pattern of correlations (Pearson correlation sta-

tistics) among the volumes for all the selected anatomical structures.

http://surfer.nmr.mgh.harvard.edu


TABLE 1 Descriptive data of the sample

N = 135 (IG sample)

Age in years, mean (SD), range 9.07 (0.82) 7.6–11.0

Sex distribution (F/M) 65/70 (48.15%)

DSM‐IV ADHD symptoms

Raw score, mean (SD) 7.78 (9.02)

Range 0–42

Wilcoxon test sex differences, pvalue W = 2,727; p = 1.43e‐3

DSM‐IV inattention domain

Raw score, mean (SD) 4.56 (4.53)

Range 0–24

Wilcoxon test sex differences, pvalue W = 2,849; p = 0.043

DSM‐IV hyperactivity domain

Raw score, mean (SD) 3.22 (5.76)

Range 0–23

Wilcoxon test sex differences, pvalue W = 2,751; p = 0.0014

Note. SDQ: Strengths and Difficulties Questionnaire; ADHD: attention‐
deficit/hyperactivity disorder; SD: standard deviation; IG: Imaging Genetic
sample.

FIGURE 1 Flow chart depicting the final sample size for each outcome analyzed and the analytical procedure. Solid lines and boxes represent
individuals remaining in the study. Dashed lines and boxes represent individuals excluded. Reason and number of individuals excluded are
indicated in dashed boxes. Double boxes indicate the analytical procedure performed. SNPs: single nucleotide polymorphisms; ROIs: brain regions
of interest; ADHD: attention‐deficit/hyperactivity disorder
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Brain structures highly correlated in size across subjects (i.e., struc-

tural covariance) included perivascular spaces with basal ganglia

and WM with cingulate cortex. In addition, we specifically identified

a negative correlation between perivascular spaces and cerebral

ventricles. Descriptive results are in general agreement with previ-

ous studies (Lukoshe, White, Schmidt, van der Lugt, & Hokken‐

Koelega, 2013).
3.2 | Step 1. Feature selection

LASSO‐ZINB selected 694 SNPs and 17 ROIs for total ADHD symp-

toms, 1,849 SNPs and 8 ROIs for hyperactivity domain, and 683 SNPs

and 10 ROIs for inattention dimension.
3.3 | Step 2. Multiple factor analysis

By applying multiple factor analysis (MFA), we found that the total var-

iability explained by the three first principal components is 6.7% for

total ADHD symptoms, 36.9% for hyperactivity domain, and 7.4% for

inattention domain. Cumulative explained variance considering the

whole number of components is reported in detail inTables S2–S4.

For total ADHDsymptoms, the first dimension of theMFA ismainly

positively correlated to specific brain structures, whereas the second

and third dimensions were mainly correlated with genetic components.

The first dimension was correlated to WM and GM volumes

(adj_pvalue = 1.65E‐57; adj_pvalue = 4.71E‐52; Figure S1), while the

rs763173 and the rs12563394within theCAMTA1 (Calmodulin Binding

Transcription Activator 1), and the rs301806within the RERE (Arginine/

Glutamic Acid Dipeptide Repeats) genes, respectively were the top

SNPs negatively correlated to the second dimension of the MFA

(adj_pvalue = 3.28E‐07; adj_pvalue = 3.28E‐07, adj_pvalue =

1.25E‐06). Moreover, the rs11808641 and rs6683453 were the top

intergenic SNPs positively correlated with the third dimension of the

MFA (adj_pvalue = 1.45E‐07; adj_pvalue = 7.84E‐07), and the

rs4654432, the top intronic variant negatively correlated

(adj_pvalue = 7.84E‐07; Table 2). For hyperactivity domain, the first

dimension was mainly positively correlated to GM and WM



FIGURE 2 Observed frequency distribution
of attention‐deficit/hyperactivity disorder
(ADHD) symptoms and hyperactivity and
inattention domains

FIGURE 3 Correlation heatmap showing
pair correlations across brain structures of
BREATHE project subsample, with blue color
indicating positive correlations and red color
indicating negative correlations. 3rd.Ventricle:
third ventricle; 4th.Ventricle: fourth ventricle;
CSF: cerebrospinal fluid; 5th.Ventricle:
septum pellucidum; ICV: total intracranial
volume; WM: white matter; TBV: total brain
volume; BPF: brain parenchymal fraction; GM:
gray matter; Perivascular.BG.Spaces: basal
ganglia perivascular spaces. Abbreviations for
all brain structures are shown in Table S5
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TABLE 2 Correlation coefficients between each variable and the first and second dimensions of the MFA for ADHD symptoms

Correlation pvalue adj_pvalue

Dimension 1

GM 0.927232688564944 1.38E−44 1.65E−43

WM 0.910424492643076 7.85E−39 4.71E−38

Thalamus_total 0.717095025829273 1.34E−08 5.38E−08

Cerebellum_total 0.683429156162821 6.67E−06 2.00E−05

VentralDC_total 0.676995448028593 1.99E−05 4.77E−05

Putamen_total 0.634838447442277 1.36E−02 2.72E−02

Pallidum_total 0.593448654612394 3.32E+00 5.70E+00

Caudate_total 0.585407440089544 8.85E+00 1.33E+01

Hippocampus_total 0.574935685894525 3.04E+01 4.06E+01

Amygdala_total 0.490218128831766 1.59E+05 1.91E+05

Accumbens_total 0.45703786625667 2.52E+06 2.75E+06

CorpusCallosum_total 0.36853162551687 1.09E+09 1.09E+09

Dimension 2

rs299499 0.405688972338025 1.05E+08 4.48E+08

rs6577561 0.396601916550131 1.92E+08 5.43E+06

rs241239 0.389752000367744 2.98E+08 7.21E+08

rs11121354 0.38768509204982 3.39E+08 7.21E+08

rs9434723 0.382335061401637 4.74E+08 8.95E+08

rs2095904 0.380289200809443 5.37E+08 9.14E+06

rs2289731 0.378160998010948 6.12E+08 9.41E+08

rs1541318 0.376829383381258 6.64E+08 9.41E+08

rs4926481 0.369494028743745 1.03E+09 1.33E+09

rs12041403 0.368486221566673 1.10E+09 1.33E+09

rs6678792 0.357626908188188 2.06E+09 2.33E+09

rs1009941 0.34279496000648 4.70E+09 4.70E+09

rs428180 −0.347986047251672 3.54E+09 3.76E+09

rs7517675 −0.399011088637171 1.64E+08 5.43E+06

rs12563394 −0.428266644675448 2.20E+07 1.25E+08

rs301806 −0.451582291220506 3.86E+06 3.28E+07

rs763173 −0.452099796238842 3.70E+06 3.28E+07

Dimension 3

rs11808641 0.467209943606731 1.11E+06 1.45E+07

rs6683453 0.433795581928581 1.47E+07 7.84E+07

rs4614226 0.403942736141467 1.18E+08 3.85E+08

rs228648 0.399816246208454 1.55E+08 4.04E+08

rs504560 0.358303096603233 1.98E+09 2.86E+09

rs428180 0.346584675383812 3.82E+09 4.76E+09

rs1040397 0.345633822436828 4.03E+09 4.76E+09

rs7523335 0.340903344883599 5.21E+09 5.56E+09

rs1556691 0.339692021868727 5.56E+09 5.56E+09

rs9988443 −0.363767401067916 1.45E+09 2.35E+09

rs4654512 −0.370752418497216 9.58E+08 1.78E+09

rs10864315 −0.391665962623566 2.63E+08 5.71E+08

rs4654432 −0.430969435191676 1.81E+07 7.84E+07

Note. Variables with correlation coefficients significantly different from zero are shown. ADHD: attention‐deficit/hyperactivity disorder; GM: gray matter;
MFA: multiple factor analysis; WM: white matter.
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(adj_pvalue = 5.71E‐64, adj_pvalue = 3.46E‐49; Figure S3). The second

dimension was positively correlated to the intergenic SNPs, rs4912036

and rs609506 (adj_pvalue = 4.20E‐06, adj_pvalue = 7.76E‐06) and neg-

atively correlated to the intergenic SNP rs10799708, and the
rs7531434 within the FBXO44 (F‐Box Protein 44) gene

(adj_pvalue = 1.58E‐05, adj_pvalue = 1.66E‐05), whereas the third

dimension was positively correlated to the rs4614226 and

rs11808641 (adj_pvalue = 3.99E‐08, adj_pvalue = 1.83E‐07) and
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negatively correlated to rs9988443 (adj_pvalue = 8.36E‐08; Table 3).

Also for inattention domain, the first dimension of the MFA was posi-

tively correlated to WM, in addition to cerebellum

(adj_pvalue = 6.42E‐77, adj_pvalue = 2.05E‐16; Figure S3). The sec-

ond dimension was positively correlated to the intergenic SNPs

(rs11808641) and the intragenic SNP (rs301806) within the RERE

gene (adj_pvalue = 3.1E‐09, adj_pvalue = 7.2E‐09) and negatively cor-

related to the intragenic SNP (rs299499; adj_pvalue = 1.02E‐08).

Finally, the top SNP correlated with the third dimension was the

rs10864315 within the PER3 (Period circadian regulator 3) gene

(adj_pvalue = 1.12E‐09; Table 4).

We also showed the quality of representation of each group of

data (neuroimaging, genetics, and ADHD domains). For total ADHD

symptoms, both groups have different coordinates on the MFA
TABLE 3 Correlation coefficients between each variable and the first an

Correlation

Dimension 1

GM 0.941771297833597

WM 0.899728612092088

Putamen_total 0.580555543615691

Pallidum_total 0.574558798033791

Amygdala_total 0.47812901810156

Accumbens_total 0.455283404150271

CorpusCallosum_total 0.416646105322838

Dimension 2

rs4912036 0.423924740764028

rs609506 0.404918666989798

rs2744750 0.383141786757075

rs780568 0.375125352977279

rs705690 0.370867760135604

rs1878052 0.36668839763096

rs3117048 0.361143153479151

rs241278 0.356522374059979

rs1891215 0.356183232911795

rs1541318 −0.35841355236352

rs12122426 −0.36602000730949

rs1556691 −0.371358957099761

rs7531434 −0.374452951530456

rs10799708 −0.38344428926564

Dimension 3

rs4614226 0.481704454191441

rs11808641 0.447828604469368

rs6683453 0.432701939651229

rs12743431 0.393084777654286

rs10915271 0.374844959387008

rs17472583 0.359573890812884

rs11579829 −0.35618121321993

rs6426389 −0.37649430455298

rs4233264 −0.387189378180583

rs1149048 −0.43800798109189

rs4654512 −0.445591798677868

rs9988443 −0.464441181119758

Note. Variables with correlation coefficients significantly different from zero are
dimensions, which mean that their contribution is dissimilar to each

factor. For instance, neuroimaging information is correlated to the sec-

ond dimension whereas genetic data in both (Figure S4). Similar pat-

terns were observed for hyperactivity and inattention domains

(Figures S5–S6).
4 | DISCUSSION

This study proposed the application of a two‐step analysis combining

a variable selection strategy designed for a count data distribution

along with a MFA approach. The aim was to increase the validity of

the results in IG studies and ultimately provide further insights into

ADHD. This proposed strategy was inspired by the conclusions of
d second dimensions of the MFA for hyperactivity domain

pvalue adj_pvalue

8.16E−51 5.71E−50

9.90E−36 3.46E−35

1.58E+01 3.68E+01

3.18E+01 5.57E+01

4.50E+04 6.30E+05

2.89E+06 3.37E+06

5.00E+07 5.00E+07

3.00E+07 4.20E+08

1.11E+07 7.76E+08

4.51E+08 1.58E+09

7.37E+08 1.66E+09

9.51E+08 1.66E+09

1.22E+09 1.77E+08

1.68E+09 2.14E+08

2.19E+09 2.24E+09

2.24E+09 2.24E+09

1.97E+09 2.24E+09

1.27E+09 1.77E+08

9.24E+08 1.66E+09

7.67E+08 1.66E+09

4.42E+08 1.58E+09

3.32E+05 3.99E+04

5.15E+06 1.83E+07

1.60E+07 3.19E+07

2.40E+08 4.12E+08

7.49E+08 8.99E+08

1.84E+09 2.01E+09

2.24E+09 2.24E+09

6.78E+08 8.99E+08

3.50E+08 5.25E+08

1.08E+07 2.59E+07

6.11E+06 1.83E+07

1.39E+06 8.36E+06

shown. GM: gray matter; MFA: multiple factor analysis; WM: white matter.



TABLE 4 Correlation coefficients between each variable and the first and second dimensions of the MFA for inattention domain

Correlation pvalue adj_pvalue

Dimension 1

WM 0.963279880355951 8.03E−65 6.42E−63

Thalamus_total 0.695059811866848 8.61E−07 2.79E−06

VentralDC_total 0.693975730674085 1.05E−06 2.79E−06

Cerebellum_total 0.636810693363686 1.02E−02 2.05E−02

Putamen_total 0.591831551865405 4.06E+00 6.49E+00

Pallidum_total 0.565833525203952 8.60E+01 1.15E+01

CorpusCallosum_total 0.448392856194293 4.93E+06 5.64E+06

Accumbens_total 0.382375347484038 4.73E+08 4.73E+08

Dimension 2

rs11808641 0.514582053857106 1.72E+04 3.10E+05

rs301806 0.495818211403101 9.68E+04 7.16E+05

rs7517675 0.493210871845464 1.22E+05 7.16E+05

rs428180 0.490213056002427 1.59E+05 7.16E+05

rs4614226 0.422198150192695 3.39E+07 7.63E+07

rs7523335 0.41216712378504 6.80E+07 1.22E+08

rs12743431 0.410291940545789 7.72E+07 1.26E+08

rs6663882 0.406457031793968 1.00E+08 1.50E+08

rs7520373 0.403339362344629 1.23E+08 1.71E+08

rs6683453 0.368771374849255 1.08E+09 1.39E+09

rs10910053 0.362807560536103 1.53E+09 1.83E+09

rs2840528 0.346905564303549 3.76E+09 3.98E+09

rs12137865 −0.337123488336764 6.38E+09 6.38E+09

rs9988443 −0.358567451741447 1.95E+09 2.20E+09

rs4654512 −0.416181426154807 5.16E+07 1.03E+08

rs2784739 −0.424406276455231 2.90E+07 7.45E+07

rs2289731 −0.429919659475771 1.95E+07 5.86E+07

rs299499 −0.483472232523089 2.86E+05 1.03E+06

Dimension 3

rs1556691 0.454934732975396 2.97E+06 1.26E+07

rs6678792 0.440289134782256 9.11E+05 2.58E+07

rs12756299 0.388778218453741 3.16E+08 5.38E+08

rs4926481 0.378742253879418 5.91E+08 8.37E+08

rs707476 0.358118137794679 2.00E+09 2.43E+09

rs2071986 0.342546478920176 4.77E+09 4.77E+09

rs641473 −0.347691436835545 3.60E+08 3.82E+09

rs227163 −0.350051522358633 3.16E+09 3.58E+09

rs1878052 −0.372165545241512 8.80E+08 1.15E+09

rs863171 −0.380437393089976 5.33E+08 8.23E+08

rs10864330 −0.389215346206817 3.08E+08 5.38E+08

rs609506 −0.416057780048898 5.20E+07 1.11E+08

rs2032563 −0.431401893712581 1.75E+07 4.26E+07

rs780568 −0.441299552357602 8.45E+06 2.58E+07

rs705690 −0.469364014327263 9.33E+05 5.29E+06

rs4654432 −0.491056687206438 1.48E+05 1.26E+06

rs10864315 −0.524520764781794 6.59E+03 1.12E+05

Note. Variables with correlation coefficients significantly different from zero are shown. MFA: multiple factor analysis; WM: white matter.
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earlier research, which indicated that the use of zero‐inflated negative

binomial regression models for count data outcomes provides better

parameter estimations (Vilor‐Tejedor, Alemany, et al., 2016). In the

proposed study, the application of variable selection based on a
LASSO‐ZINB distribution constitutes a novel aspect of the treatment

of these data, which accounts for the extra variability associated with

the overabundant zero observations in ADHD dimensions. Further-

more, LASSO‐ZINB provides an alternative to marginal feature
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selection, in which multiple genetic signals and brain structures possi-

bly correlated, can be analyzed in a single model (Szymczak et al.,

2009). Although this method has provided a successful performance

in a genetic association study (Mallick & Tiwari, 2016) to our knowl-

edge, this is the first time that LASSO‐ZINB is applied in an IG study.

On the other hand, the application of MFA was also novel in IG

studies of ADHD. MFA allows determining different correlation pat-

terns between genetic and imaging correlates and the symptomatol-

ogy. MFA can also deal with large numbers of predictor variables

even in the presence of complex interactions, which is not allowed in

common association analysis (deTayrac, Lê, Aubry, Mosser, & Husson,

2009). Hence, MFA could be an attractive strategy in IG studies given

its simplicity and structure, which allows the detection of complex

relationships between genetic variants and neuroimaging data. More-

over, prior variable selection provides high accuracy on the MFA,

which, in turn, represents a measure of importance reflecting the

impact of each variable of the model with the outcome of interest.

Results obtained after applying MFA indicate that WM and GM

were the most important brain‐MRI measurements in terms of vari-

ability explained associated with total ADHD symptoms and hyperac-

tivity domain, in addition to cerebellum structure for inattention

domains. Interestingly, an abnormal increase of WM may be related

to non‐optimal brain remodeling (deficient axonal pruning), resulting

in excessive anatomical connections (Fields, 2010; Tau & Peterson,

2010). However, larger WM volumes in ADHD could also relate to sig-

nificantly accelerated myelination, as measurable WM in conventional

(T1‐weighted) anatomical MRI scans correspond to myelinated WM

(Paus et al., 2001). It is important to note that myelination is an active

process throughout life (Narayan, Kass, & Thomas, 2007; Yakovlev &

Lecours, 1967), which is physiologically accelerated in early postnatal

years and during adolescence (Paus et al., 2001; Pujol et al., 2004),

and enhanced by repetitive use or skill learning (McKenzie et al.,

2014; Pujol et al., 2006). Patholsogical acceleration of myelination

has been suggested, for example, in melancholic depression (Soriano‐

Mas et al., 2011), childhood obesity (Ou, Andres, Pivik, Cleves, & Bad-

ger, 2015), heavy cannabis use (Matochik, Eldreth, Cadet, & Bolla,

2005), and pathological lying (Yang et al., 2005). In addition, for inat-

tention domain, the MFA procedure determined that the cerebellum

was also an important brain structure influencing the variability

explained. Although cerebellum structure has not been directly

related to total ADHD symptoms, some studies have already sug-

gested the involvement of the cerebellum structure in ADHD. For

instance, Goetz, Schwabova, Hlavka, Ptacek, and Surman (2017) sug-

gest a cerebellar involvement in dopaminergic neurotransmission

which, in turn, affects ADHD symptoms development. Other studies

found cerebellar structural abnormalities, which explained a signifi-

cant amount of the variance of ADHD symptoms (Bledsoe, Semrud‐

Clikeman, & Pliszka, 2011).

Moreover, MFA results associated these findings with two intra-

genic SNPs (rs301806 and rs12563394) within the CAMTA1 gene,

which has been related to episodic tremor and motor impairment

(Monies et al., 2017; Shinawi, Coorg, Shimony, Grange, & Al‐Kateb,

2015). Interestingly, it has been demonstrated that ADHD children

usually present difficulties in activities that require motor coordination

(Goulardins, Marques, & De Oliveira, 2017; Kaiser, Schoemaker,
Albaret, & Geuze, 2015). Thus, the results obtained could suggest

the mediation of specific genetic factors in total ADHD symptoms

and motor impairment. MFA also found an intragenic SNP

(rs7531434) within the FBXO44 gene, associated with hyperactivity

dimension. Although this gene has not been directly implicated in

the hyperactivity domain, it has been potentially related with phos-

phorylation‐dependent ubiquitination processes, which in turn could

play an important role in mechanisms that regulate accumulation at

synaptic site in the brain (Hunter, 2007). Finally, for the inattention

domain, MFA found two intragenic SNPs, the rs10864315 within

the PER3 gene and the rs301806 within the CAMTA1 gene. Interest-

ingly, the rs301806 was previously found in the MFA for total ADHD

symptoms, suggesting the shared contribution of genetic mechanisms

between total ADHD symptoms and inattention domains. Further-

more, the involvement of PER1 gene in the influence of sleep duration

and circadian regulation (Hida et al., 2015; Husse, Hintze, Eichele,

Lehnert, & Oster, 2012) could be seen as an interesting finding due

to the prevalence of sleep problems in ADHD individuals (Bogdan &

Reeves, 2018; Cassoff, Wiebe, & Gruber, 2012), especially for inatten-

tion domains (Gruber et al., 2012).

However, the current results should be interpreted in the context

of some limitations and strengths. First, the main limitation of the

study is the modest sample size. Second, the use of a cross‐sectional

design prevents us from addressing issues such as reverse‐causation.

Third, although the proposed analytical procedure minimizes the inter-

nal validation error of prediction, the lack of a replication sample

requires the present findings to be considered with caution. Fourth,

neurodevelopmental information related to ADHD domains were

reported by only one informant (teachers), which provides insufficient

information results in a lack of information about the occurrence of

these symptoms, and constitutes a subjective measure of the score

of these symptoms. Moreover, we examined a statistical framework

that, in turn, provide greater complexity in the interpretation of the

results. The optimal manner in which to interpret and visualize such

results and the suitability of applied statistical techniques (e.g., multi-

ple testing corrections) to such data analysis require further explora-

tion. Finally, results from the analysis of total ADHD symptoms as

outcome may be led by common effects that arise from the combina-

tion of hyperactivity and inattention domains into a total score. We

could hypothesize that it is necessary to study the hyperactivity and

inattention domains separately because they may be related to spe-

cific causal pathways that are not associated with the total ADHD

symptoms. However, the analysis of total ADHD symptoms allows

to capturing individuals presenting combined symptoms of hyperactiv-

ity and inattention domains, suggesting a representation of the most

serious cases of ADHD symptoms, given the combination of both

types of domains at the same time.

The strengths of the study include several aspects to overcome

these limitations. First, we used a population‐based sample of children,

increasing the generalization of the results. Second, the use of a con-

tinuous score for total ADHD symptoms and hyperactivity and inat-

tention domains increase statistical power and allows the application

of a novel framework and advanced statistical methods, which in turn,

contribute to a better characterization and understanding of ADHD

symptoms (Goodkind et al., 2015; Hudziak, Achenbach, Althoff, &
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Pine, 2007; Lubke, Hudziak, Derks, van Bijsterveldt, & Boomsma,

2009; MacCallum, Zhang, Preacher, & Rucker, 2002). Third, the pro-

posed variable selection strategy used in the first analytical step

(LASSO‐ZINB) is able to conduct simultaneous model selection and

strable effect estimation in the presence of multicollinearity, which,

in addition reduces the burden of multiple testing. Because

multicollinearity can result in large and opposite signed estimator

values for correlated predictors, a penalty function is imposed to keep

the value of predictors below a pre‐specified value and so select them

efficiently and also taking into account the existence of

multicollinearity (Mallick & Tiwari, 2016).

To conclude, the application and development of novel analytical

frameworks and advanced statistical methods allow determining the

combined effects of genetics and neuroimaging in the context of com-

plex disorders such as ADHD. Therefore, future research may benefit

from the application of multivariate strategies.
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